

SQL Server 2016 Developer's
Guide

Get the most out of the rich development capabilities of SQL
Server 2016 to build efficient database applications for your
organization

Dejan Sarka
Miloš Radivojević
William Durkin

BIRMINGHAM - MUMBAI

SQL Server 2016 Developer's Guide

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2017

Production reference: 1150317

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-534-4

www.packtpub.com

Credits

Authors

Dejan Sarka

Miloš Radivojević

William Durkin

Copy Editor

Vikrant Phadke

Reviewer

Tomaž Kaštrun

Project Coordinator

Nidhi Joshi

Commissioning Editor

Amey Varangaonkar

Proofreader

Safis Editing

Acquisition Editor

Vinay Argekar

Indexer

Tejal Daruwale Soni

Content Development Editor

Aishwarya Pandere

Production Coordinator

Shraddha Falebhai

Technical Editor

Vivek Arora

About the Authors
Dejan Sarka, MCT and SQL Server MVP, is an independent trainer and consultant who
focuses on the development of database and business intelligence applications, located in
Ljubljana, Slovenia. Besides his projects, he spends around half of his time on training and
mentoring. He is the founder of the Slovenian SQL Server and .NET Users Group. Dejan is
the main author and co-author of many books and courses about databases and SQL Server.
He is a frequent speaker at many worldwide events.

I would like to thank everybody involved in this book, especially to my co-authors, Miloš
and William, to the content development editor, Aishwarya, and to the technical editor,
Vivek.

Miloš Radivojević is a database consultant in Vienna, Austria. He is a Data Platform MVP
and specializes in SQL Server for application developers and performance and query
tuning. Currently, he works as a principal database consultant in bwin (GVC
Holdings)—the largest regulated online gaming company in the world. Miloš is a co-
founder of PASS Austria. He is also a speaker at international conferences and speaks
regularly at SQL Saturday events and PASS Austria meetings.

I would like to thank my co-authors, Dejan Sarka and William Durkin. It has been a
pleasure and privilege working with you guys! It was also a pleasure to work with editors,
Aishwarya Pandere and Vivek Arora, in the production of this book. I'd also like to thank,
Tomaž Kaštrun, for his prompt and helpful review. Finally, I would like to thank my wife,
Nataša, my daughter, Mila, and my son, Vasilije, for all their sacrifice, patience, and
understanding while I worked on this book.

William Durkin is a DBA and data platform architect for CloudDBA. He uses his decade of
experience with SQL Server to help multinational corporations achieve their data
management goals. Born in the UK and now based in Germany, he has worked as a
database developer and DBA on projects ranging from single-server installations, up to
environments spanning five continents using a range of high-availability solutions. William
is a regular speaker at conferences around the globe, a Data Platform MVP and is
the chapter leader of a German PASS chapter.

I would like to thank, Dejan and Miloš, for involving me in this book, it has been a
challenge but a lot of fun! I would also like to thank Aishwarya and Vivek, for their
editorial support. Last but certainly not least, thanks to my wife, Birgit, and son Liam, for
your support and patience.

About the Reviewer
Tomaž Kaštrun is a SQL Server developer and data analyst. He has more than 15 years of
experience in business warehousing, development, ETL, database administration and query
tuning. He also has more than 15 years of experience in the fields of data analysis, data
mining, statistical research, and machine learning.

He is a Microsoft SQL Server MVP for data platforms and has been working with Microsoft
SQL Server since version 2000.

Tomaž is a blogger, author of many articles, co-author of statistical analysis books, speaker
at community and Microsoft events, and avid coffee drinker.

Thanks to the people who inspire me, the community, and the SQL family. Thank you, dear
reader, for reading this. For endless inspiration, thank you Rubi.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1786465345.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Introduction to SQL Server 2016 8

Security 9
Row Level Security 9
Dynamic Data Masking 10
Always Encrypted 11

Engine features 12
Query Store 12
Live Query Statistics 13
Stretch Database 13
Database scoped configuration 14
Temporal Tables 15
Columnstore indexes 15

Programming 16
Transact SQL enhancements 16
JSON 17
In-Memory OLTP 17
SQL Server tools 18

Business intelligence 19
R in SQL Server 19

Release cycles 20
Summary 20

Chapter 2: Review of SQL Server Features for Developers 21

The mighty Transact-SQL SELECT 22
Core Transact-SQL SELECT statement elements 23
Advanced SELECT techniques 30

DDL, DML, and programmable objects 37
Data definition language statements 37
Data modification language statements 39
Using triggers 40
Data abstraction - views, functions, and stored procedures 42

Transactions and error handling 46
Error handling 47
Using transactions 50

[ii]

Beyond relational 51
Defining locations and shapes with Spatial Data 52
CLR integration 56
XML support in SQL Server 62

Summary 66

Chapter 3: SQL Server Tools 67

Installing and updating SQL Server tools 68
New SSMS features and enhancements 74

Autosave open tabs 74
Searchable options 75
Enhanced scroll bar 76
Execution plan comparison 76
Live Query Statistics 79

SQL Server Data Tools 81
Tools for developing R code 85

RStudio IDE 86
R Tools for Visual Studio 90

Summary 91

Chapter 4: Transact-SQL Enhancements 93

New and enhanced functions and expressions 94
STRING_SPLIT 94
STRING_ESCAPE 98
COMPRESS 101
DECOMPRESS 103
CURRENT_TRANSACTION_ID 105
SESSION_CONTEXT 106
DATEDIFF_BIG 107
AT TIME ZONE 109
HASHBYTES 111
JSON functions 114

Enhanced DML and DDL statements 115
The conditional DROP statement (DROP IF EXISTS) 115
CREATE OR ALTER 117
Online Alter Column 118
TRUNCATE TABLE 122
Maximum key size for nonclustered indexes 123

New query hints 125
NO_PERFORMANCE_SPOOL 125

[iii]

MAX_GRANT_PERCENT 129
MIN_GRANT_PERCENT 134

Summary 135

Chapter 5: JSON Support in SQL Server 136

Why JSON? 137
What is JSON? 138

Why is it popular? 139
JSON versus XML 139
JSON objects 139

JSON object 139
JSON array 141
Primitive JSON data types 141

JSON in SQL Server prior to SQL Server 2016 143
JSON4SQL 143
JSON.SQL 143
Transact-SQL-based solution 143

Retrieving SQL Server data in the JSON format 144
FOR JSON AUTO 144
FOR JSON PATH 147

FOR JSON additional options 149
Adding a root node to the JSON output 149
Including null values in the JSON output 150
Formatting a JSON output as a single object 151

Converting data types 153
Escaping characters 154

Converting JSON data in a tabular format 154
OPENJSON with the default schema 154

Processing data from a comma-separated list of values 160
Returning the difference between two table rows 160

OPENJSON with an explicit schema 161
Import the JSON data from a file 165

JSON storage in SQL Server 2016 167
Validating JSON data 168
Extracting values from a JSON text 170

JSON_VALUE 171
JSON_QUERY 173

Modifying JSON data 176
Adding a new JSON property 176
Updating the value for a JSON property 178
Removing a JSON property 180

[iv]

Multiple changes 181
Performance considerations 182

Indexes on computed columns 182
Full-text indexes 185

Summary 187

Chapter 6: Stretch Database 188

Stretch Database architecture 188
Is this for you? 189

Using Data Migration Assistant 190
Limitations of using Stretch Database 196

Limitations that prevent you from enabling the Stretch DB feature for a
table 196

Table limitations 196
Column limitations 197

Limitations for Stretch-enabled tables 198
Use cases for Stretch Database 199

Archiving of historical data 199
Archiving of logging tables 199
Testing Azure SQL database 199

Enabling Stretch Database 200
Enabling Stretch Database at the database level 200

Enabling Stretch Database by using wizard 201
Enabling Stretch Database by using Transact-SQL 208

Enabling Stretch Database for a table 210
Enabling Stretch DB for a table by using wizard 211
Enabling Stretch Database for a table by using Transact-SQL 213
Filter predicate with sliding window 216

Querying Stretch Databases 216
Querying and updating remote data 219

SQL Server Stretch Database pricing 221
Stretch DB management and troubleshooting 223

Monitoring Stretch Database 224
Pause and resume data migration 227
Disable Stretch Database 228

Disable Stretch Database for tables by using SSMS 228
Disable Stretch Database for tables using Transact-SQL 229
Disable Stretch Database for a database 229

Backup and restore Stretch-enabled databases 230
Summary 231

Chapter 7: Temporal Tables 232

[v]

What is temporal data? 232
Types of temporal table 233
Allen's interval algebra 235
Temporal constraints 238
Temporal data in SQL Server before 2016 238
Optimizing temporal queries 240
Temporal features in SQL:2011 243

System-versioned tables in SQL Server 2016 245
How temporal tables work in SQL Server 2016 245
Creating temporal tables 246

Period columns as hidden attributes 252
Converting non-temporal to temporal tables 252
Migration existing temporal solution to system-versioned tables 253

Altering temporal tables 256
Dropping temporal tables 259
Data manipulation in temporal tables 259
Querying temporal data in SQL Server 2016 263

Retrieving temporal data at a specific point in time 263
Retrieving temporal data from a specific period 265
Retrieving all temporal data 267

Performance and storage considerations with temporal tables 267
History data retention 268

History table physical implementation 269
History table overhead 269
Temporal tables with memory-optimized tables 270

What is missing in SQL Server 2016? 274
SQL Server 2016 temporal tables and data warehouses 274

Summary 278

Chapter 8: Tightening the Security 279

SQL Server security basics 280
Defining principals and securables 281
Managing schemas 285
Object and statement permissions 289

Encrypting the data 292
Leveraging SQL Server data encryption options 295
Always Encrypted 304

Row-Level security 313
Using programmable objects to maintain security 313
Predicate-based Row-Level Security 318

Exploring dynamic data masking 324

[vi]

Defining masked columns 324
Dynamic data masking limitations 326

Summary 328

Chapter 9: Query Store 329

Why Query Store? 330
What is Query Store? 333
Query Store architecture 333
Enabling and configuring Query Store 335

Enabling Query Store with SSMS 336
Enabling Query Store with Transact-SQL 337
Configuring Query Store 337

Query Store default configuration 338
Query Store Recommended Configuration 339

Disabling and cleaning Query Store 340
Query Store in action 340

Capturing Query info 342
Capturing plan info 343
Collecting runtime statistics 345
Query Store and migration 346

Query Store – identifying regressed queries 348
Query Store – fixing regressed queries 350

Query Store reports in SQL Server management studio 355
Regressed queries 356
Top resource consuming queries tab 359
Overall resource consumption 360

Query Store use cases 361
SQL Server version upgrades and patching 361
Application and service releases, patching, failovers, and cumulative
updates 362
Identifying ad hoc queries 363
Identifying unfinished queries 363

Summary 365

Chapter 10: Columnstore Indexes 366

Analytical queries in SQL Server 367
Joins and indexes 369

Benefits of clustered indexes 372
Leveraging table partitioning 375
Nonclustered indexes in analytical scenarios 377
Using indexed views 378

Data compression and query techniques 380

[vii]

Writing efficient queries 384
Columnar storage and batch processing 385

Columnar storage and compression 386
Recreating rows from columnar storage 387
Columnar storage creation process 389
Development of columnar storage in SQL Server 390

Batch processing 393
Nonclustered columnstore indexes 398

Compression and query performance 398
Testing the nonclustered columnstore Index 400

Operational analytics 406
Clustered columnstore indexes 407

Compression and query performance 408
Testing the clustered columnstore Index 409
Using archive compression 410

Adding B-Tree indexes and constraints 412
Updating a clustered columnstore index 417

Deleting from a clustered columnstore index 421
Summary 423

Chapter 11: Introducing SQL Server In-Memory OLTP 424

In-Memory OLTP architecture 425
Row and index storage 426

Row structure 426
Row header 427

Row payload 428
Index structure 428

Non-clustered Index 428
Hash indexes 430

Creating memory-optimized tables and indexes 431
Laying the foundation 432
Creating a table 433

Querying and data manipulation 434
Performance comparisons 437
Natively compiled stored procedures 441
Looking behind the curtain of concurrency 444

Data durability concerns 447
Database startup and recovery 449
Management of in-memory objects 450

Dynamic management objects 450
Extended Events 451
Perfmon counters 451

[viii]

Assistance in migrating to In-memory OLTP 452
Summary 455

Chapter 12: In-Memory OLTP Improvements in SQL Server 2016 456

Ch-Ch-Changes 456
Feature improvements 462

Collations 463
Data types and types of data 463
What's new with indexes? 464
Unconstrained integrity 464
Not all operators are created equal 465
Size is everything! 465
Improvements in the In-Memory OLTP Engine 466
Down the index rabbit-hole 467
Large object support 473
Storage differences of on-row and off-row data 477

Cross-feature support 481
Security 481
Programmability 482
High availability 482
Tools and wizards 483

Summary 488

Chapter 13: Supporting R in SQL Server 490

Introducing R 491
Starting with R 492
R language Basics 495

Manipulating data 501
Introducing data structures in R 502
Getting sorted with data management 507

Understanding the data 513
Basic visualizations 514
Introductory statistics 519

SQL Server R services 526
Discovering SQL Server R services 527
Creating scalable solutions 530
Deploying R models 535

Summary 538

Chapter 14: Data Exploration and Predictive Modeling with R in SQL
Server 539

Intermediate statistics – associations 540
Exploring discrete variables 541

[ix]

Finding associations between continuous variables 545
Continuous and discrete variables 548
Getting deeper into linear regression 551

Advanced analysis – undirected methods 554
Principal components and exploratory factor analysis 555
Finding groups with clustering 560

Advanced analysis – directed methods 564
Predicting with logistic regression 564
Classifying and predicting with decision trees 568

Advanced graphing 572
Introducing ggplot2 572
Advanced graphs with ggplot2 574

Summary 577

Index 578

Preface
Microsoft SQL Server is developing faster than ever in its nearly 30 years history. The
newest version, SQL Server 2016, brings many important new features. Some of these new
features just extend or improve features that were introduced in the previous versions of
SQL Server, and some of them open a completely new set of possibilities for a database
developer.

This book prepares the readers for more advanced topics by starting with a quick
introduction of SQL Server 2016's new features and a recapitulation of the possibilities
database developers had already in the previous versions of SQL Server. Then, the new
tools are introduced. The next part introduces small delights in the Transact-SQL language,
then the book switches to a completely new technology inside SQL Server—JSON support.
This is where the basic chapters finish, and the more complex chapters start. Stretch
database, security enhancements, and temporal tables are medium-level topics. The last
chapters of the book cover advanced topics, including Query Store, columnstore indexes,
and In-Memory OLTP. The final two chapters introduce R and R support in SQL Server and
show how to use the R language for data exploration and analysis beyond that which a
developer can achieve with Transact-SQL.

By reading this book, you will explore all of the new features added to SQL Server 2016.
You will be capable of identifying opportunities for using the In-Memory OLTP technology.
You will learn how to use columnstore indexes to get significant storage and performance
improvements for analytical applications. You will be able to extend database design by
using temporal tables. You will exchange JSON data between applications and SQL Server
in a more efficient way. For vary large tables with some historical data, you will be able to
migrate the historical data transparently and securely to Microsoft Azure by using Stretch
Database. You will tighten security by using the new security features to encrypt data or to
get more granular control over access to rows in a table. You will be able to tune workload
performance more efficiently than ever with Query Store. Finally, you will discover the
potential of R integration with SQL Server.

Preface

[2]

What this book covers
Chapter 1, Introduction to SQL Server 2016, very covers briefly the most important features
and enhancements, not only those for developers. We want to show the whole picture and
point where things are moving on.

Chapter 2, Review of SQL Server Features for Developers, is a brief recapitulation of the
features available for developers in previous versions of SQL Server and serves as a
foundation for an explanation of the many new features in SQL Server 2016. Some best
practices are covered as well.

Chapter 3, SQL Server Tools, helps you understand the changes in the release management
of SQL Server tools and explores small and handy enhancements in SQL Server
Management Studio (SSMS). It also introduces RStudio IDE, a very popular tool for
developing R code, and briefly covers SQL Server Data Tools (SSDT), including the new R
Tools for Visual Studio (RTVS), a plugin for Visual Studio, which enables you to develop R
code in an IDE that is common and well-known among developers that use Microsoft
products and languages.

Chapter 4, Transact-SQL Enhancements, explores small Transact-SQL enhancements: new
functions and syntax extensions, ALTER TABLE improvements for online operations, and
new query hints for query tuning.

Chapter 5, JSON Support in SQL Server, explores the JSON support built into SQL Server.
This support should make it easier for applications to exchange JSON data with SQL Server.

Chapter 6, Stretch Database, helps you understand how to migrate historical or less accessed
data transparently and securely to Microsoft Azure by using the Stretch Database (Stretch
DB) feature.

Chapter 7, Temporal Tables, introduces support for system-versioned temporal tables based
on the SQL:2011 standard. We’ll explain how this implemented in SQL Server is and
demonstrates some use cases for it (for example, a time-travel application).

Chapter 8, Tightening the Security, introduces three new security features. With Always
Encrypted, SQL Server finally enables full data encryption. Row-level security on the other
side restricts which data in a table can be seen by specific user. Dynamic data masking is a
soft feature that limits sensitive data exposure by masking it to non-privileged users.

Chapter 9, Query Store, guides you through Query Store, and helps you to troubleshoot and
fix performance problems that are related to execution plan changes.

Preface

[3]

Chapter 10, Columnstore Indexes, revises the columnar storage and then explores the huge
improvements for columnstore indexes in SQL Server 2016: updateable nonclustered
columnstore indexes, columnstore indexes on in-memory tables, and many other new
features for operational analytics.

Chapter 11, Introducing SQL Server In-Memory OLTP, describes a feature introduced in SQL
Server 2014 that is still underused: the In-Memory database engine, which provides
significant performance gains for OLTP workloads.

Chapter 12, In-Memory OLTP Improvements in SQL Server 2016, describes all of the
improvements of the In-Memory OLTP technology in SQL Server 2016, which extend the
number of potential use cases and allow implementation with less development effort and
risk.

Chapter 13, Supporting R in SQL Server, introduces R Services and the R language. It
explains how SQL Server R Services combine the power and flexibility of the open source R
language with enterprise-level tools for data storage and management, workflow
development, and reporting and visualization.

Chapter 14, Data Exploration and Predictive Modeling with R in SQL Server, shows how you
can use R for advanced data exploration and manipulation, and for statistical analysis and
predictive modeling that is way beyond what is possible when using T-SQL language.

What you need for this book
In order to run all of the demo code in this book, you will need SQL Server 2016 Developer
or Enterprise Edition. In addition, you will extensively use SQL Server Management Studio.
You will also need the RStudio IDE and/or SQL Server Data Tools with R Tools for Visual
Studio plug-in.

Who this book is for
This book is aimed at database developers and solution architects who plan to use new SQL
Server 2016 features or simply want to know what is now available and which limitations
from previous versions have been removed. An ideal book reader is an experienced SQL
Server developer, familiar with features of SQL Server 2014, but this book can be read by
anyone who has an interest in SQL Server 2016 and wants to understand its development
capabilities.

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " One
table has varchar(5) columns, which will be small enough to fit in the in-row storage."

A block of code is set as follows:

 EXEC dbo.InsertSimpleOrder
@OrderId = 5, @OrderDate = '20160702', @Customer = N'CustA';
EXEC dbo.InsertSimpleOrderDetail
@OrderId = 5, @ProductId = 1, @Quantity = 50;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

ProductId INT NOT NULL CONSTRAINT PK_Product PRIMARY KEY,
 ProductName NVARCHAR(50) NOT NULL,
 Price MONEY NOT NULL,
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

Any command-line input or output is written as follows:

 SQL Server Execution Times:
CPU time = 1797 ms, elapsed time = 1821 ms.

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this:

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Preface

[6]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /S Q L - S e r v e r - 2016- D e v e l o p e r s - G u i d e . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Preface

[7]

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Introduction to SQL Server

2016
SQL Server is the main relational database management product from Microsoft. It has been
around in one form or another since the late 1980s (developed in partnership with Sybase),
but as a standalone Microsoft product since the early 1990s. During the last 20 years, SQL
Server has changed and evolved, gaining newer features and functionality along the way.

The SQL Server we know today is based on what was arguably the most significant
(r)evolutionary step in its history, with the release of SQL Server 2005. The changes that
were introduced have allowed the versions that followed the 2005 release to take advantage
of newer hardware and software improvements such as: 64-bit memory architecture, better
multi-CPU and multi-core support, as concludes the overview of programming better
alignment with the .NET framework, and many more modernizations in general system
architecture.

The incremental changes introduced in each subsequent version of SQL Server have
continued to improve upon this solid foundation. Fortunately, Microsoft have changed their
release cycle for multiple products, including SQL Server, resulting in shorter timeframes
between releases. This has, in part, been due to Microsoft's focus on their much reported
“Mobile First, Cloud First” strategy. This strategy, together with the development of the
cloud version of SQL Server “Azure SQL Database”, has forced Microsoft into a drastically
shorter release cycle. The advantage of this strategy is that we are no longer required to wait
three to five years for a new release (and new features). There have been releases every two
years since SQL Server 2012 was introduced, with multiple releases of Azure SQL Database
in between the real versions.

Introduction to SQL Server 2016

[9]

While we can be pleased that we no longer need to wait for new releases, we are also at a
distinct disadvantage. The rapid release of new versions and features leaves us developers
with ever decreasing periods of time to get to grips with the shiny new features. Previously,
versions had many years between releases, allowing us to build up a deeper knowledge and
understanding of the available features before having to consume new information.

In this chapter, we will introduce what's new inside SQL Server 2016. We will outline
features that are brand new in this release of the product and look at features that have been
extended or improved upon.

We will be outlining new features in the following areas:

Security
Engine features
Programming
Business intelligence

Security
The last few years have provided frequent demonstrations of the importance of security in
IT. Whether we consider the repercussions of recent, high profile data leaks, or the multiple
cases of data theft by hacking. While no system is completely impenetrable, we should
always consider how we can improve security in the systems we build. These
considerations are wide-ranging and sometimes even dictated by rules, regulations, and
laws. Microsoft has responded to the increased focus on security by delivering new features
to assist developers and DBAs in their search for more secure systems. The security features
in SQL Server 2016 have been designed to make improving the security of SQL Server based
solutions even easier to implement.

Row Level Security
The first technology that has been introduced in SQL Server 2016 to address the need for
increased and improved security is Row Level Security (RLS). RLS provides the ability to
control access to the rows in a table based on the user executing a query. With RLS it is
possible to implement a filtering mechanism on any table in a database completely
transparently to any external application or direct T-SQL access. The ability to implement
such filtering without having to redesign a data access layer allows system administrators
to control access to data at an even more granular level than before.

Introduction to SQL Server 2016

[10]

The fact that this control can be achieved without any application logic redesign makes this
feature potentially even more attractive to certain use cases. RLS also makes it possible, in
conjunction with the necessary auditing features, to lock down a SQL Server database so
that even the traditional “god-mode” sysadmin cannot access the underlying data.

Further details for Row Level Security can be found in Chapter
8, Tightening the Security.

Dynamic Data Masking
The second security feature that we will be covering is Dynamic Data Masking (DDM).
DDM allows the system administrator to define column level data masking algorithms that
prevent users from reading the sensitive content of columns, while still being able to query
the rows themselves. This feature seems to have been initially aimed at allowing developers
to work with a copy of production data without having the ability to actually see the
underlying data. This can be particularly useful in environments where data protection
laws are enforced (for example, credit card processing systems, medical record storage). The
data masking occurs for unauthorized users at query runtime and does not affect the stored
data of a table. This means that it is possible to mask a multi-terabyte database through a
simple DDL statement, rather than resorting to the previous solution of physically masking
the underlying data in the table we want to mask. The current implementation of DDM
provides the ability to define a fixed set of functions to columns of a table, which will mask
data when a masked table is queried. If a user has permission to view the masked data, then
the masking function(s) are not run, whereas a user without those permissions will be
provided with the data as seen through the defined masking functions.

Further details for Dynamic Data Masking can be found in Chapter
8, Tightening the Security.

Introduction to SQL Server 2016

[11]

Always Encrypted
The third major security feature to be introduced in SQL Server 2016 is Always Encrypted.
Encryption with SQL Server was previously a (mainly) server-based solution. Databases
were either protected with encryption at the database level (the entire database was
encrypted) or at the column level (single columns had an encryption algorithm defined).
While this encryption was and is fully functional and safe, crucial portions of the encryption
process (for example, encryption certificates) are stored inside SQL Server. This effectively
gave the owner of a SQL Server instance the potential ability to gain access to this encrypted
data; if not directly, there was at least an increased surface area for a potential malicious
access attempt. As more and more companies moved into hosted service and cloud
solutions (for example, Microsoft Azure), the old encryption solutions no longer provided
the required level of control and security. Always Encrypted was designed to bridge this
security gap by removing the ability of an instance owner to gain access to the encryption
components. The entirety of the encryption process was moved outside SQL Server and
resides on the client-side. Previously, you could achieve a similar effect using a homebrew
solution, but Always Encrypted provides a fully integrated encryption suite into both the
.NET Framework and SQL Server. Whenever data is defined as requiring encryption, the
data is encrypted within the .NET Framework and only sent to SQL Server after encryption
has occurred. This means that a malicious user (or even system administrator) will only
ever be able to access encrypted information should they attempt to query data stored via
Always Encrypted.

Further details for Always Encrypted can be found in Chapter
8, Tightening the Security.

This concludes the overview of the three main security enhancements inside SQL Server
2016. Microsoft has made some positive progress in this area. While no system is completely
safe, and no single feature can provide an all-encompassing solution, each of these three
features provide a further option in building up, or improving upon, any system's current
security level. As mentioned for each feature, consult the dedicated chapter to explore how
each feature functions and how they may be used in your environments.

Introduction to SQL Server 2016

[12]

Engine features
The engine features section is traditionally the most important, or interesting, for most
DBAs or system administrators when a new version of SQL Server is released. However,
there are also numerous engine feature improvements that have tangential meaning for
developers too. So, if you are a developer, don't skip this section or you may miss some
improvements that could save you some trouble later on!

Query Store
The Query Store is possibly the biggest new engine feature to come with the release of SQL
Server 2016. DBAs and developers should be more than familiar with the situation of a
query behaving reliably for a long period, which suddenly changed into a slow-running,
resource-killing monster query. Some readers may identify the cause of the issue being the
phenomenon “parameter sniffing” or similarly “stale statistics”. Either way, when
troubleshooting why an unchanging query suddenly becomes slow, knowing the query
execution plan(s) that SQL Server has created and used can be very helpful. A major issue
when investigating these types of problems is the transient nature of query plans and their
execution statistics. This is where Query Store comes into play; SQL Server collects and
permanently stores statistics on query compilation and execution on a per database basis.
This information is then persisted inside each database that has Query Store enabled,
allowing a DBA or developer to investigate performance issues after the fact. It is even
possible to perform query regression analysis, providing an insight into how query
execution plans change over a longer timeframe. This sort of insight was previously only
possible via hand-written solutions or third-party monitoring solutions, which may still not
allow the same insights as the Query Store does.

Further details on Query Store can be found in Chapter 9, Query Store.

Introduction to SQL Server 2016

[13]

Live Query Statistics
When we are developing inside SQL Server, each developer creates a mental model of how
data flows inside SQL Server. Microsoft has provided a multitude of ways to display this
concept when working with query execution. The most obvious visual aid is the graphical
execution plan. There are endless explanations in books, articles and training seminars
which attempt to make reading these graphical representations easier. Depending upon
how your mind works, these descriptions can help or hinder your ability to understand the
data flow concepts: fully blocking iterators, pipeline iterators, semi-blocking iterators,
nested loop joins, the list goes on. When we look at an actual graphical execution plan, we
are seeing a representation of how SQL Server processed a query: which data retrieval
methods were used, which join types were chosen to join multiple data sets, what sorting
was required, and so on. However, this is a representation after the query has completed
execution. Live Query Statistics offers us the ability to observe during query execution and
identify how, when, and where data moves through the query plan. This live representation
is a huge improvement in making the concepts behind query execution clearer and is a
great tool to allow developers to better design their query and indexing strategies to
improve query performance.

Further details for Live Query Statistics can be found in Chapter 3, SQL
Server Tools.

Stretch Database
Microsoft has worked on their “Mobile First, Cloud First” strategy a lot in the past few
years. We have seen a huge investment in Azure, their cloud offering, with the line between
on-premises IT and cloud-based IT being continually blurred. The features being released in
the newest products from Microsoft continue this approach and SQL Server is taking steps
to bridge the divide between running SQL Server as a fully on-premises solution and
storing/processing relational data in the cloud. One big step in achieving this approach is
the new Stretch Database feature with SQL Server 2016. Stretch Database allows a DBA to
categorize the data inside a database, defining which data is “hot” (frequently accessed
data) and which is “cold” (infrequently accessed data). This categorization allows Stretch
Database to then move the “cold” data out of the on-premises database and into Azure
cloud storage. The segmentation of data remains transparent to any user/application that
queries the data which now resides in two different locations.

Introduction to SQL Server 2016

[14]

The idea behind this technology is to reduce storage requirements for the on-premises
system by offloading large amounts of archive data onto cheaper, slower storage in the
cloud. This reduction should then allow the smaller “hot” data to be placed on smaller
capacity, higher performance storage. The benefit of Stretch Database is the fact that this
separation of data requires no changes at the application or database query level. Stretch
Database has been implemented to allow each company to also decide for themselves how
data is defined as “hot” or “cold”, providing maximum flexibility with minimal
implementation overhead. This is a purely storage level change, which means the potential
ROI of segmenting a database is quite large.

Further details on Stretch Database can be found in Chapter 6, Stretch
Database.

Database scoped configuration
Many DBAs who support multiple third-party applications running on SQL Server
experience the difficulty of setting up their SQL Server instances according to the
application requirements or best practices. Many third-party applications have
prerequisites that dictate how the actual instance of SQL Server must be configured. A
common occurrence is a requirement of configuring the “Max Degree of Parallelism” to
force only one CPU to be used for query execution. As this is an instance-wide setting, this
can affect all other databases/applications in a multi-tenant SQL Server instance (which is
generally the case). With Database Scoped Configuration in SQL Server 2016 several
previously instance level settings have been moved to a database level configuration option.
This greatly improves multi-tenant SQL Server instances, as the decision, for example, how
many CPUs can be used for query execution can be made at the database level, rather than
for the entire instance. This allows DBAs to host databases with differing CPU usage
requirements on the same instance, rather than having to either impact the entire instance
with a setting or be forced to run multiple instances of SQL Server and possibly incur
higher licensing costs.

Introduction to SQL Server 2016

[15]

Temporal Tables
There are many instances where DBAs or developers are required to implement a change
tracking solution, allowing future analysis or assessment of data changes for certain
business entities. A readily accessible example is the change history on a customer account
in a CRM system. The options for implementing such a change tracking system are varied
and each option has strengths and weaknesses. One such implementation that has been
widely adopted is the use of triggers to capture data changes and store historical values in
an archive table. Regardless of the implementation chosen, it was often cumbersome to
develop and maintain these solutions. One of the challenges was incorporating table
structure changes in the table being tracked. It was equally challenging creating solutions to
allow for querying both the base table and the archive table belonging to it. The intelligence
of deciding whether to query the live and/or archive data can require some complex query
logic.

With the advent of Temporal Tables, this entire process has been simplified for both
developers and DBAs. It is now possible to activate this “change tracking” on a table and
push changes into an archive table with a simple change to a table's structure. Querying the
base table and including a temporal attribute to the query is also a simple T-SQL syntax
addition. As such, it is now possible for a developer to submit temporal analysis queries
and SQL Server takes care of splitting the query between the live and archive data and
returning the data in a single result set.

Further details for Temporal Tables can be found in Chapter 7, Temporal
Tables.

Columnstore indexes
Traditional data storage inside SQL Server has used the row-storage format, where the data
for an entire row is stored together on the data pages inside the database. SQL Server 2012
introduced a new storage format: Columnstore. This format stores the data as columns
rather than rows, combining the data from a single column and storing the data together on
the data pages. This storage format provides the ability for massive compression of data,
orders of magnitude better than traditional row-storage. Initially, only non-clustered
columnstore indexes were possible. With SQL Server 2014 clustered columnstore indexes
were introduced, expanding the usability of the feature greatly. Finally, with SQL Server
2016 updateable columnstore indexes and support for In-Memory columnstore indexes
have been introduced. The potential performance improvements through these
improvements are huge.

Introduction to SQL Server 2016

[16]

Further details on Columnstore Indexes can be found in Chapter
10, Columnstore Indexes.

This concludes the section outlining the engine features implemented in SQL Server 2016.
Through Microsoft's heavy move into cloud computing and their Azure offerings, they
have increased the need to improve their internal systems for themselves. Microsoft is
famous for their “dogfooding” approach to using their own software to run their own
business, and Azure is arguably their largest foray into this area. The main improvements
in the database engine have been fueled by the need to improve their own ability to
continue offering Azure database solutions and provide features to allow databases of
differing sizes and loads to be hosted together.

Programming
The programming landscape of SQL Server has continued to improve in order to adopt
newer technologies over the years. SQL Server 2016 is no exception to this: there have been
some long awaited general improvements and also some rather revolutionary additions to
the product that change the way SQL Server may be used in future projects. This section
will outline what programming improvements have been included in SQL Server 2016.

Transact SQL enhancements
The last major improvements in the T-SQL language allowed for better processing of
running totals and other similar window functions. This was already a boon and allowed
developers to replace arcane cursors with high performance T-SQL. These improvements
are never enough for the most performance-conscious developers among us, and as such
there were still voices requesting further incorporation of the ANSI SQL standards into the
T-SQL implementation.

Notable additions to the T-SQL syntax include the ability to finally split comma separated
strings via a single function call STRING_SPLIT() instead of the previous “hacky”
implementations using loops, functions, XML conversions or even the CLR.

The sensible opposing syntax for splitting strings is a function to aggregate values together:
STRING_AGG() returns a set of values in a comma separated string. This replaces similarly
“hacky” solutions using the XML data type or one of a multitude of looping solutions.

Introduction to SQL Server 2016

[17]

Each improvement in the T-SQL language further extends the toolbox that we as developers
possess in order to manipulate data inside SQL Server.

Further details on T-SQL Enhancements can be found in Chapter 4,
Transact-SQL Enhancements.

JSON
It is quite common to meet developers outside the Microsoft stack who look down on
products released from Redmond. Web developers in particular have been critical of the
access to the latest data exchange structures, or rather lack of it. JSON has become the de
facto data exchange method for the application development world. It is similar in structure
to the previous “cool-kid” XML, but for reasons beyond the scope of this book, JSON has
overtaken XML in general programming projects and is the expected payload for
application and database communications. Microsoft has included JSON as a possible data
exchange data type in SQL Server 2016 and provided a set of functions to accompany the
data type.

Further details on JSON can be found in Chapter 5, JSON Support in SQL
Server.

In-Memory OLTP
In-Memory OLTP (codename Hekaton) was introduced in SQL Server 2014. The promise of
ultra-high performance data processing inside SQL Server was a major feature when SQL
Server 2014 was released. As expected with a newly implemented feature, there were a
wide range of limitations in the initial release and this prevented many customers from
being able to adopt the technology. With SQL Server 2016 a great number of these
limitations have been either raised to a higher threshold or completely removed. In-
Memory OLTP has received the required maturity and extension in its feature set to make it
viable for prime production deployment. Chapter 11, Introducing SQL Server In-Memory
OLTP, of this book will show an introduction to In-Memory OLTP, explaining how the
technology works under the hood and how the initial release of the feature works in SQL
Server 2014. Chapter 12, In-Memory OLTP Improvements in SQL Server 2016, will build on
the introduction and explain how the feature has matured and improved with the release of
SQL Server 2016.

Introduction to SQL Server 2016

[18]

Further details on In-Memory OLTP can be found in Chapter
11, Introducing SQL Server In-Memory OLTP and Chapter 12, In-Memory
OLTP Improvements in SQL Server 2016.

SQL Server tools
Accessing or managing data inside SQL Server and developing data solutions are two
separate disciplines, each with their own specific focus on SQL Server. As such, Microsoft
has created two different tools, each tailored towards the processes and facets of these
disciplines.

SQL Server Management Studio (SSMS), as the name suggests, is the main management
interface between DBAs/Developers and SQL Server. The studio was originally released
with SQL Server 2005 as a replacement and consolidation of the old Query Analyzer and
Enterprise Manager tools. As with any non-revenue generating software, SSMS received
less attention over the years than the database engine, with limitations and missing tooling
for many of the newer features in SQL Server. With SQL Server 2016 the focus inside
Microsoft has been shifted and SSMS has been de-coupled from the release cycle of SQL
Server itself. This decoupling allows both SSMS and SQL Server to be developed without
having to wait for each other or for release windows. New releases of SSMS are created on
top of more recent versions of Visual Studio and have seen almost monthly update releases
since SQL Server 2016 was released to the market.

SQL Server Data Tools (SSDT) is also an application based on the Visual Studio
framework. SSDT is focused on the application/data development discipline. SSDT is much
more closely aligned with Visual Studio in its structure and the features offered. This focus
includes the ability to create entire database projects and solution files, an easier integration
into source control systems, the ability to connect projects into automated build processes,
and generally offering a developer-centric development environment with a familiarity
with Visual Studio. It is possible to design and create solutions in SSDT for SQL Server
using the Relational Engine, Analysis Services, Integration Services, Reporting Services, and
of course, for Azure SQL Database.

Further details for SQL Server Tools can be found in Chapter 3, SQL
Server Tools.

Introduction to SQL Server 2016

[19]

This concludes the overview of programming enhancements inside SQL Server 2016. The
improvements outlined are all solid evolutionary steps in their respective areas. New
features are very welcome and allow us to achieve more, while requiring less effort on our
side. The In-Memory OLTP enhancements are especially positive, as they now expand on
the groundwork laid down in the release of SQL Server 2014. Read the respective chapters
to gain a deeper insight into how these enhancements can help you.

Business intelligence
Business intelligence is a huge area of IT and has been a cornerstone of the SQL Server
product since at least SQL Server 2005. As the market and technologies in the Business
intelligence space improve, so must SQL Server. The advent of cloud-based data analysis
systems as well as the recent buzz around “big data” are driving forces for all data platform
providers and Microsoft is no exception here. While there are many enhancements in the
Business intelligence portion of SQL Server 2016, we will be concentrating on the feature
that has a wider audience than just data analysts: The R language in SQL Server.

R in SQL Server
Data analytics has been the hottest topic in IT for the past few years, with new niches being
crowned as the pinnacle of information science almost as fast as technology can progress.
However, IT does have a few resolute classics that have stood the test of time and are still in
wide use. SQL (in its many permutations) is a language we are well aware of in the SQL
Server world. Another such language is the succinctly titled R. The R language is a data
mining, machine learning and statistical analysis language that has existed since 1993. Many
professionals with titles such as data scientists, data analyst, or statistician have been using
the R language and tools that belong in that domain ever since. Microsoft has identified
that, although they may want all the world's data inside SQL Server, this is just not feasible
or sensible. External data sources and languages such as R exist and need to be accessible in
an integrated manner.

For this to work, Microsoft made the decision to purchase Revolution Analytics (a
commercial entity producing the forked Revolution R) in 2015, which made it possible for
them to integrate the language and server process into SQL Server 2016. This integration
allows a normal T-SQL developer to interact with the extremely powerful R service in a
native manner and allow more advanced data analysis to be performed on their data.

Introduction to SQL Server 2016

[20]

Further details on R in SQL Server can be found in Chapter 13, Supporting
R in SQL Server and Chapter 14, Data Exploration and Predictive Modeling
with R in SQL Server.

Release cycles
Microsoft has made a few major public-facing changes in the past five years. These changes
include a departure from longer release cycles for their main products and a transition
towards subscription-based services, for example, Office 365 and Azure services. The ideas
surrounding continuous delivery and agile software development have also shaped the
way that Microsoft has been delivering their flagship integrated development environment,
Visual Studio, with new releases approximately every six months. This change in
philosophy is now flowing into the development cycle of SQL Server. Due to the similarly
constant release cycle of the cloud-version of SQL Server (Azure SQL Database), Microsoft
wants to keep both the cloud and on-premises versions of the product as close to each other
as possible. As such, it is not a surprise to see that the previous release cycle of every three
to five years is being replaced by much shorter intervals. A clear example of this was that
SQL Server 2016 released to the market in June of 2016, with a Community Technology
Preview (CTP) of the next version of SQL Server being released in November of 2016. The
wave of technology progress stops for no one. This is clearly true in the case of SQL Server!

Summary
In this introductory chapter, we have given you a brief outline of what lies ahead in this
book. Each version of SQL Server has hundreds of improvements and enhancements, both
through new features and through extensions of previous versions. The outlines for each
chapter provide an insight into the main topics covered in this book and allow you to
identify which areas you may like to dive in to and where to find them.

As we've already hinted, we need to get to work and learn about SQL Server 2016 before it's
too late!

2
Review of SQL Server Features

for Developers
Before delving into the new features in SQL Server 2016, let's have a quick recapitulation of
the features of SQL Server for developers already available in the previous versions of SQL
Server. Recapitulating the most important features will help you remember what you
already have in your development toolbox and also understand the need and the benefits of
the new or improved features in SQL Server 2016.

This chapter has a lot of code. As this is not a book for beginners, the
intention of this chapter is not to teach you the basics of database
development. It is rather a reminder of the many powerful and efficient
Transact-SQL (T-SQL) and other elements included in SQL Server version
2014 and even earlier.

The recapitulation starts with the mighty T-SQL SELECT statement. Besides the basic
clauses, advanced techniques such as window functions, common table expressions, and
the APPLY operator are explained. Then, you will pass quickly through creating and altering
database objects, including tables and programmable objects, such as triggers, views, user-
defined functions, and stored procedures. You will also review data modification language
statements. Of course, errors might appear, so you have to know how to handle them. In
addition, data integrity rules might require that two or more statements are executed as an
atomic, indivisible block. You can achieve this with the help of transactions.

Note that this chapter is not a comprehensive development guide.

Review of SQL Server Features for Developers

[22]

The last section of this chapter deals with the parts of SQL Server Database Engine
marketed with a common name: “Beyond Relational.” This is nothing beyond the relational
model—beyond relational is really just a marketing term. Nevertheless, you will review the
following:

How SQL Server supports spatial data
How you can enhance the T-SQL language with Common Language Runtime
(CLR) elements written in a .NET language, such as Visual C#
How SQL Server supports XML data

The code in this chapter uses the WideWorldImportersDW demo database. In order to test
the code, this database must be present in the SQL Server instance you are using for testing,
and you must also have SQL Server Management Studio (SSMS) as the client tool.

This chapter will cover the following points:

Core Transact-SQL SELECT statement elements
Advanced SELECT techniques
Data definition language statements
Data modification language statements
Triggers
Data abstraction: views, functions, and stored procedures
Error handling
Using transactions
Spatial data
CLR integration
XML support in SQL Server

The mighty Transact-SQL SELECT
You probably already know that the most important SQL statement is the mighty SELECT
statement you use to retrieve data from your databases. Every database developer knows
the basic clauses and their usage:

SELECT to define the columns returned, or a projection of all table columns
FROM to list the tables used in the query and how they are associated, or joined
WHERE to filter the data to return only the rows that satisfy the condition in the
predicate

Review of SQL Server Features for Developers

[23]

GROUP BY to define the groups over which the data is aggregated
HAVING to filter the data after the grouping with conditions that refer to
aggregations
ORDER BY to sort the rows returned to the client application

Besides these basic clauses, SELECT offers a variety of advanced possibilities as well. These
advanced techniques are unfortunately less exploited by developers, although they are
really powerful and efficient. Therefore, I advise you to review them and potentially use
them in your applications. The advanced query techniques presented here include:

Queries inside queries, or shortly, subqueries
Window functions
The TOP and OFFSET...FETCH expressions
The APPLY operator
Common tables expressions (CTEs)

Core Transact-SQL SELECT statement elements
Let's start with the simplest concept of SQL that every Tom, Dick, and Harry is aware of!
The simplest query to retrieve the data you can write includes the SELECT and the FROM
clauses. In the SELECT clause, you can use the star (*) character, literally SELECT *, to
denote that you need all columns from a table in the result set. The following code switches
to the WideWorldImportersDW database context and selects all data from the
Dimension.Customer table. Note that there are many versions of this demo database, so
your results might vary.

USE WideWorldImportersDW;
SELECT *
FROM Dimension.Customer;

The code returns 403 rows, all customers with all columns.

Using SELECT * is not recommended in production. Such queries can
return an unexpected result when the table structure changes, and it's also
not suitable for good optimization.

Review of SQL Server Features for Developers

[24]

Better than using SELECT * is to explicitly list only the columns you need. This means you
are returning only a projection on the table. The following example selects only four columns
from the table:

SELECT [Customer Key], [WWI Customer ID],
 [Customer], [Buying Group]
FROM Dimension.Customer;

Here is the shortened result, limited to the first three rows only:

Customer Key WWI Customer ID Customer Buying Group
------------ --------------- ----------------------------- -------------
0 0 Unknown N/A
1 1 Tailspin Toys (Head Office) Tailspin Toys
2 2 Tailspin Toys (Sylvanite, MT) Tailspin Toys

You can see that the column names in the WideWorldImportersDW database include
spaces. Names that include spaces are called delimited identifiers. In order to make SQL
Server properly understand them as column names, you must enclose delimited identifiers
in square parentheses. However, if you prefer to have names without spaces, or if you use
computed expressions in the column list, you can add column aliases. The following query
completely returns the same data as the previous one, just with columns renamed
with aliases to avoid delimited names:

SELECT [Customer Key] AS CustomerKey,
 [WWI Customer ID] AS CustomerId,
 [Customer],
 [Buying Group] AS BuyingGroup
FROM Dimension.Customer;

You might have noticed in the result set returned from the last two queries that there is also
a row in the table for an unknown customer. You can filter this row with the WHERE clause:

SELECT [Customer Key] AS CustomerKey,
 [WWI Customer ID] AS CustomerId,
 [Customer],
 [Buying Group] AS BuyingGroup
FROM Dimension.Customer
WHERE [Customer Key] <> 0;

In a relational database, you typically have data spread across multiple tables. Each table
represents a set of entities of the same kind, like the customers in the examples you have seen
so far. In order to get meaningful result sets for the business your database supports, most
of the time you need to retrieve data from multiple tables in the same query. You need to
join two or more tables based on some conditions.

Review of SQL Server Features for Developers

[25]

The most frequent kind of a join is the inner join. Rows returned are those for which the
condition in the join predicate for the two tables joined evaluates to true. Note that in a
relational database, you have three-valued logic, because there is always a possibility that a
piece of data is unknown. You mark the unknown with the NULL keyword. A predicate can
thus evaluate to true, false, or NULL. For an inner join, the order of the tables involved in
the join is not important. In the following example, you can see the Fact.Sale table joined
with an inner join to the Dimension.Customer table:

SELECT c.[Customer Key] AS CustomerKey,
 c.[WWI Customer ID] AS CustomerId,
 c.[Customer],
 c.[Buying Group] AS BuyingGroup,
 f.Quantity,
 f.[Total Excluding Tax] AS Amount,
 f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key];

In the query, you can see that table aliases are used. If a column's name is unique across all
tables in the query, then you can use it without a table name. If not, you need to use the
table name in front of the column, to avoid ambiguous column names, in the
table.column format. In the previous query, the [Customer Key] column appears in
both tables. Therefore, you need to precede this column name with the table name of its
origin to avoid ambiguity. You can shorten two-part column names by using table aliases.
You specify table aliases in the FROM clause. Once you specify table aliases, you must
always use the aliases; you can't refer to the original table names in that query anymore.
Note that a column name might be unique in the query at the moment when you write the
query. However, later somebody could add a column with the same name in another table
involved in the query. If the column name is not preceded by an alias or by the table name,
you would get an error when executing the query because of the ambiguous column name.
In order to make the code more stable and more readable, you should always use table
aliases for each column in the query.

Review of SQL Server Features for Developers

[26]

The preceding query returns 228,265 rows. It is always recommended to know at least
approximately the number of rows your query should return. This number is the first
control of the correctness of the result set, or put differently, whether the query is written
logically correct. The query returns the unknown customer and the orders associated with
this customer, or more precisely put, associated to this placeholder for an unknown
customer. Of course, you can use the WHERE clause to filter the rows in a query that joins
multiple tables, just as you use it for a single table query. The following query filters the
unknown customer's rows:

SELECT c.[Customer Key] AS CustomerKey,
 c.[WWI Customer ID] AS CustomerId,
 c.[Customer],
 c.[Buying Group] AS BuyingGroup,
 f.Quantity,
 f.[Total Excluding Tax] AS Amount,
 f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0;

The query returns 143,968 rows. You can see that a lot of sales are associated with the
unknown customer.

Of course, the Fact.Sale table cannot be joined to the Dimension.Customer table only.
The following query joins it to the Dimension.Date table. Again, the join performed is an
inner join:

SELECT d.Date, f.[Total Excluding Tax],
 f.[Delivery Date Key]
FROM Fact.Sale AS f
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date;

The query returns 227,981 rows. The query that joined the Fact.Sale table to the
Dimension.Customer table returned 228,265 rows. It looks as if not all Fact.Sale table
rows have a known delivery date; not all rows can match the Dimension.Date table rows.
You can use an outer join to check this.

Review of SQL Server Features for Developers

[27]

With an outer join, you preserve the rows from one or both tables, even if they don't have a
match in the other table. The result set returned includes all of the matched rows like you
get from an inner join plus the preserved rows. Within an outer join, the order of the tables
involved in the join might be important. If you use LEFT OUTER JOIN, then the rows from
the left table are preserved. If you use RIGHT OUTER JOIN, then the rows from the right
table are preserved. Of course, in both cases, the order of the tables involved in the join is
important. With FULL OUTER JOIN, you preserve the rows from both tables, and the order
of the tables is not important. The following query preserves the rows from the Fact.Sale
table, which is on the left-hand side of the join to the Dimension.Date table. In addition,
the query sorts the result set by the invoice date descending using the ORDER BY clause:

SELECT d.Date, f.[Total Excluding Tax],
 f.[Delivery Date Key], f.[Invoice Date Key]
FROM Fact.Sale AS f
 LEFT OUTER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date
ORDER BY f.[Invoice Date Key] DESC;

The query returns 228,265 rows. Here is the partial result of the query:

Date Total Excluding Tax Delivery Date Key Invoice Date Key
---------- -------------------- ----------------- ----------------
NULL 180.00 NULL 2016-05-31
NULL 120.00 NULL 2016-05-31
NULL 160.00 NULL 2016-05-31
...
2016-05-31 2565.00 2016-05-31 2016-05-30
2016-05-31 88.80 2016-05-31 2016-05-30
2016-05-31 50.00 2016-05-31 2016-05-30

For the last invoice date (2016-05-31), the delivery date is NULL. The NULL in the Date
column from the Dimension.Date table is there because the data from this table is
unknown for the rows with an unknown delivery date in the Fact.Sale table.

Joining more than two tables is not tricky if all the joins are inner joins. The order of joins is
not important. However, you might want to execute an outer join after all of the inner joins.
If you don't control the join order with the outer joins, it might happen that a subsequent
inner join filters out the preserved rows of an outer join. You can control the join order with
parentheses. The following query joins the Fact.Sale table with an inner join to the
Dimension.Customer, Dimension.City, Dimension.[Stock Item], and
Dimension.Employee tables, and with a left outer join to the Dimension.Date table:

SELECT cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,
 ci.[State Province] AS StateProvince, ci.[Sales Territory] AS

Review of SQL Server Features for Developers

[28]

SalesTeritory,
 d.Date, d.[Calendar Month Label] AS CalendarMonth,
 d.[Calendar Year] AS CalendarYear,
 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product, s.Color,
 e.[Employee Key] AS EmployeeKey, e.Employee,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
FROM (Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Employee AS e
 ON f.[Salesperson Key] = e.[Employee Key])
 LEFT OUTER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date;

The query returns 228,265 rows. Note that with the usage of the parenthesis the order of
joins is defined in the following way:

Perform all inner joins, with an arbitrary order among them
Execute the left outer join after all of the inner joins

So far, I have tacitly assumed that the Fact.Sale table has 228,265 rows, and that the
previous query needed only one outer join of the Fact.Sale table with Dimension.Date
to return all of the rows. It would be good to check this number in advance. You can check
the number of rows by aggregating them using the COUNT(*) aggregate function. The
following query introduces this function:

SELECT COUNT(*) AS SalesCount
FROM Fact.Sale;

Now you can be sure that the Fact.Sale table has exactly 228,265 rows.

Many times, you need to aggregate data in groups. This is the point where the GROUP BY
clause becomes handy. The following query aggregates the sales data for each customer:

SELECT c.Customer,
 SUM(f.Quantity) AS TotalQuantity,
 SUM(f.[Total Excluding Tax]) AS TotalAmount,
 COUNT(*) AS InvoiceLinesCount
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0

Review of SQL Server Features for Developers

[29]

GROUP BY c.Customer;

The query returns 402 rows, one for each known customer. In the SELECT clause, you can
have only the columns used for grouping, or aggregated columns. You need to get a scalar,
a single aggregated value for each row for each column not included in the GROUP BY list.

Sometimes, you need to filter aggregated data. For example, you might need to find only
frequent customers, defined as customers with more than 400 rows in the Fact.Sale table.
You can filter the result set on the aggregated data using the HAVING clause, as the
following query shows:

SELECT c.Customer,
 SUM(f.Quantity) AS TotalQuantity,
 SUM(f.[Total Excluding Tax]) AS TotalAmount,
 COUNT(*) AS InvoiceLinesCount
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
GROUP BY c.Customer
HAVING COUNT(*) > 400;

The query returns 45 rows for the 45 most frequent known customers. Note that you can't
use column aliases from the SELECT clause in any other clause introduced in the previous
query. The SELECT clause logically executes after all other clause from the query, and the
aliases are not known yet. However, the ORDER BY clause executes after the SELECT clause,
and therefore the columns aliases are already known and you can refer to them. The
following query shows all of the basic SELECT statement clauses used together to aggregate
the sales data over the known customers, filters the data to include the frequent customers
only, and sorts the result set descending by the number of rows of each customer in the
Fact.Sale table:

SELECT c.Customer,
 SUM(f.Quantity) AS TotalQuantity,
 SUM(f.[Total Excluding Tax]) AS TotalAmount,
 COUNT(*) AS InvoiceLinesCount
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
GROUP BY c.Customer
HAVING COUNT(*) > 400
ORDER BY InvoiceLinesCount DESC;

Review of SQL Server Features for Developers

[30]

The query returns 45 rows. Here is the shortened result set:

Customer TotalQuantity TotalAmount SalesCount
------------------------------- ------------- ------------ ----------
Tailspin Toys (Vidrine, LA) 18899 340163.80 455
Tailspin Toys (North Crows Nest, IN) 17684 313999.50 443
Tailspin Toys (Tolna, ND) 16240 294759.10 443

Advanced SELECT techniques
Aggregating data over the complete input rowset or aggregating in groups produces
aggregated rows only—either one row for the whole input rowset or one row per group.
Sometimes you need to return aggregates together with the detailed data. One way to
achieve this is by using subqueries, queries inside queries.

The following query shows an example of using two subqueries in a single query. In the
SELECT clause, a subquery calculates the sum of quantities for each customer. It returns a
scalar value. The subquery refers to the customer key from the outer query. The subquery
can't execute without the outer query. This is a correlated subquery. There is another
subquery in the FROM clause that calculates the overall quantity for all customers. This
query returns a table, though it is a table with a single row and single column. It is a self-
contained subquery, independent of the outer query. A subquery in the FROM clause is also
called a derived table.

Another type of join is used to add the overall total to each detail row. A cross join is a
Cartesian product of two input rowsets—each row from one side is associated with every
single row from the other side. No join condition is needed. A cross join can produce an
unwanted huge result set. For example, if you cross join just 1,000 rows from the left of the
join with 1,000 rows from the right, you get 1,000,000 rows in the output. Therefore,
typically you'd want to avoid a cross join in production. However, in the example in the
following query, 143,968 rows from the left-hand-side rows are cross-joined to a single row
from the subquery, therefore producing 143,968 rows only. Effectively, this means that the
overall total column is added to each detail row:

SELECT c.Customer,
 f.Quantity,
 (SELECT SUM(f1.Quantity) FROM Fact.Sale AS f1
 WHERE f1.[Customer Key] = c.[Customer Key]) AS TotalCustomerQuantity,
 f2.TotalQuantity
FROM (Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key])
 CROSS JOIN

Review of SQL Server Features for Developers

[31]

 (SELECT SUM(f2.Quantity) FROM Fact.Sale AS f2
 WHERE f2.[Customer Key] <> 0) AS f2(TotalQuantity)
WHERE c.[Customer Key] <> 0
ORDER BY c.Customer, f.Quantity DESC;

Here is the abbreviated output of the query:

Customer Quantity TotalCustomerQuantity TotalQuantity
--------------------------- -------- --------------------- -------------
Tailspin Toys (Absecon, NJ) 360 12415 5667611
Tailspin Toys (Absecon, NJ) 324 12415 5667611
Tailspin Toys (Absecon, NJ) 288 12415 5667611

In the previous example, the correlated subquery in the SELECT clause has to logically
execute once per row of the outer query. The query was partially optimized by moving the
self-contained subquery for the overall total in the FROM clause, where it logically executes
only once. Although SQL Server can often optimize correlated subqueries and convert them
to joins, there also exists a much better and more efficient way to achieve the same result as
the previous query returned. You can do this by using the window functions.

The following query uses the window aggregate function SUM to calculate the total over
each customer and the overall total. The OVER clause defines the partitions, or the windows
of the calculation. The first calculation is partitioned over each customer, meaning that the
total quantity per customer is reset to zero for each new customer. The second calculation
uses an OVER clause without specifying partitions, thus meaning the calculation is done
over all input rowsets. This query produces exactly the same result as the previous one:

SELECT c.Customer,
 f.Quantity,
 SUM(f.Quantity)
 OVER(PARTITION BY c.Customer) AS TotalCustomerQuantity,
 SUM(f.Quantity)
 OVER() AS TotalQuantity
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
ORDER BY c.Customer, f.Quantity DESC;

Review of SQL Server Features for Developers

[32]

You can use many other functions for window calculations. For example, you can use the
ranking functions, such as ROW_NUMBER(), to calculate some rank in the window or in the
overall rowset. However, rank can be defined only over some order of the calculation. You
can specify the order of the calculation in the ORDER BY sub-clause inside the OVER clause.
Note that this ORDER BY clause defines only the logical order of the calculation, and not the
order of the rows returned. A standalone outer ORDER BY clause at the end of the query
defines the order of the result.

The following query calculates a sequential number, the row number of each row in the
output, for each detail row of the input rowset. The row number is calculated once in
partitions for each customer and once ever the whole input rowset. The logical order of
calculation is over quantity descending, meaning that row number 1 gets the largest
quantity, either the largest for each customer or the largest in the whole input rowset:

SELECT c.Customer,
 f.Quantity,
 ROW_NUMBER()
 OVER(PARTITION BY c.Customer
 ORDER BY f.Quantity DESC) AS CustomerOrderPosition,
 ROW_NUMBER()
 OVER(ORDER BY f.Quantity DESC) AS TotalOrderPosition
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
ORDER BY c.Customer, f.Quantity DESC;

The query produces the following result, again abbreviated to a couple of rows only:

Customer Quantity CustomerOrderPosition TotalOrderPosition
------------------------ -------- --------------------- -----------------
Tailspin Toys (Absecon, NJ) 360 1 129
Tailspin Toys (Absecon, NJ) 324 2 162
Tailspin Toys (Absecon, NJ) 288 3 374
...
Tailspin Toys (Aceitunas, PR) 288 1 392
Tailspin Toys (Aceitunas, PR) 250 4 1331
Tailspin Toys (Aceitunas, PR) 250 3 1315
Tailspin Toys (Aceitunas, PR) 250 2 1313
Tailspin Toys (Aceitunas, PR) 240 5 1478

Review of SQL Server Features for Developers

[33]

Note the position, or the row number, for the second customer. The order does not appear
completely correct—it is 1, 4, 3, 2, 5, and not 1, 2, 3, 4, 5, as you might expect. This is due to
the repeating value for the second largest quantity—the quantity 250. The quantity is not
unique, and thus the order is not deterministic. The order of the result is defined over the
quantity and not over the row number. You can't know in advance which row will get
which row number when the order of the calculation is not defined on unique values. Also,
note that you might get a different order when you execute the same query on your SQL
Server instance.

Window functions are useful for some advanced calculations, such as running totals and
moving averages as well. However, the calculation of these values can't be performed over
the complete partition. Additionally, you can frame the calculation to a subset of rows of
each partition only.

The following query calculates the running total of the quantity per customer (the Q_RT
column alias in the query) ordered by the sale key and framed differently for each row. The
frame is defined from the first row in the partition to the current row. Therefore, the
running total is calculated over one row for the first row, over two rows for the second row,
and so on. Additionally, the query calculates the moving average of the quantity (the Q_MA
column alias in the query) for the last three rows:

SELECT c.Customer,
 f.[Sale Key] AS SaleKey,
 f.Quantity,
 SUM(f.Quantity)
 OVER(PARTITION BY c.Customer
 ORDER BY [Sale Key]
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS Q_RT,
 AVG(f.Quantity)
 OVER(PARTITION BY c.Customer
 ORDER BY [Sale Key]
 ROWS BETWEEN 2 PRECEDING
 AND CURRENT ROW) AS Q_MA
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
ORDER BY c.Customer, f.[Sale Key];

Review of SQL Server Features for Developers

[34]

The query returns the following (abbreviated) result:

Customer SaleKey Quantity Q_RT Q_MA
--------------------------- -------- ---------- ----------- ----------
Tailspin Toys (Absecon, NJ) 2869 216 216 216
Tailspin Toys (Absecon, NJ) 2870 2 218 109
Tailspin Toys (Absecon, NJ) 2871 2 220 73

Let's find the top three orders by quantity for the Tailspin Toys (Aceitunas, PR)
customer! You can do this by using the OFFSET...FETCH clause after the ORDER BY clause,
as the following query shows:

SELECT c.Customer,
 f.[Sale Key] AS SaleKey,
 f.Quantity
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.Customer = N'Tailspin Toys (Aceitunas, PR)'
ORDER BY f.Quantity DESC
OFFSET 0 ROWS FETCH NEXT 3 ROWS ONLY;

This is the complete result of the query:

Customer SaleKey Quantity
------------------------------ -------- --------
Tailspin Toys (Aceitunas, PR) 36964 288
Tailspin Toys (Aceitunas, PR) 126253 250
Tailspin Toys (Aceitunas, PR) 79272 250

But wait…. Didn't the second largest quantity, the value 250, repeat three times? Which two
rows were selected in the output? Again, because the calculation is done over a non-unique
column, the result is somehow non-deterministic. SQL Server offers another possibility, the
TOP clause. You can specify TOP n WITH TIES, meaning you can get all the rows with ties
on the last value in the output. However, this way you don't know the number of rows in
the output in advance. The following query shows this approach:

SELECT TOP 3 WITH TIES
 c.Customer,
 f.[Sale Key] AS SaleKey,
 f.Quantity
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.Customer = N'Tailspin Toys (Aceitunas, PR)'
ORDER BY f.Quantity DESC;

Review of SQL Server Features for Developers

[35]

This is the complete result of the previous query—this time it is four rows:

Customer SaleKey Quantity
---------------------------- -------- --------
Tailspin Toys (Aceitunas, PR) 36964 288
Tailspin Toys (Aceitunas, PR) 223106 250
Tailspin Toys (Aceitunas, PR) 126253 250
Tailspin Toys (Aceitunas, PR) 79272 250

The next task is to get the top three orders by quantity for each customer. You need to
perform the calculation for each customer. The APPLY Transact-SQL operator comes in
handy here. You use it in the FROM clause. You apply, or execute, a table expression defined
on the right-hand side of the operator once for each row of the input rowset from the left
side of the operator. There are two flavors of this operator. The CROSS APPLY version filters
out the rows from the left rowset if the tabular expression on the right-hand side does not
return any rows. The OUTER APPLY version preserves the row from the left-hand side, even
if the tabular expression on the right-hand side does not return any rows, just as the LEFT
OUTER JOIN does. Of course, columns for the preserved rows do not have known values
from the right-hand side tabular expression. The following query uses the CROSS APPLY
operator to calculate the top three orders by quantity for each customer that actually does
have some orders:

SELECT c.Customer,
 t3.SaleKey, t3.Quantity
FROM Dimension.Customer AS c
 CROSS APPLY (SELECT TOP(3)
 f.[Sale Key] AS SaleKey,
 f.Quantity
 FROM Fact.Sale AS f
 WHERE f.[Customer Key] = c.[Customer Key]
 ORDER BY f.Quantity DESC) AS t3
WHERE c.[Customer Key] <> 0
ORDER BY c.Customer, t3.Quantity DESC;

Review of SQL Server Features for Developers

[36]

The following is the result of this query, shortened to the first nine rows:

Customer SaleKey Quantity
-------------------------------- -------- --------
Tailspin Toys (Absecon, NJ) 5620 360
Tailspin Toys (Absecon, NJ) 114397 324
Tailspin Toys (Absecon, NJ) 82868 288
Tailspin Toys (Aceitunas, PR) 36964 288
Tailspin Toys (Aceitunas, PR) 126253 250
Tailspin Toys (Aceitunas, PR) 79272 250
Tailspin Toys (Airport Drive, MO) 43184 250
Tailspin Toys (Airport Drive, MO) 70842 240
Tailspin Toys (Airport Drive, MO) 630 225

For the final task in this section, assume that you need to calculate some statistics on the
totals of customers' orders. You need to calculate the average total amount for all customers,
the standard deviation of this total amount, and the average count of the total count of
orders per customer. This means you need to calculate the totals over customers in advance,
and then use the AVG() and STDEV()aggregate functions on these aggregates. You could do
aggregations over customers in advance in a derived table. However, there is another way
to achieve this. You can define the derived table in advance, in the WITH clause of the
SELECT statement. Such a subquery is called a common table expression, or CTE.

CTEs are more readable than derived tables, and may also be more efficient. You could use
the result of the same CTE multiple times in the outer query. If you use derived tables, then
you need to define them multiple times if you want to use them multiple times in the outer
query. The following query shows the usage of a CTE to calculate the average total amount
for all customers, the standard deviation of this total amount, and the average count of total
count of orders per customer:

WITH CustomerSalesCTE AS
(
SELECT c.Customer,
 SUM(f.[Total Excluding Tax]) AS TotalAmount,
 COUNT(*) AS InvoiceLinesCount
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
GROUP BY c.Customer
)
SELECT ROUND(AVG(TotalAmount), 6) AS AvgAmountPerCustomer,
 ROUND(STDEV(TotalAmount), 6) AS StDevAmountPerCustomer,
 AVG(InvoiceLinesCount) AS AvgCountPerCustomer
FROM CustomerSalesCTE;

Review of SQL Server Features for Developers

[37]

It returns the following result:

AvgAmountPerCustomer StDevAmountPerCustomer AvgCountPerCustomer
--------------------- ---------------------- -------------------
270479.217661 38586.082621 358

DDL, DML, and programmable objects
As a developer, you are often also responsible to create database objects. Of course, in an
application, you also need to insert, update, and delete the data. In order to maintain data
integrity, enforcing data complies with business rules, you need to implement constraints.
In a quick review of the data definition language (DDL) and data modification language
(DML) elements, the following statements are presented:

CREATE for creating tables and programmatic objects
ALTER to add constraints to a table
DROP to drop an object
INSERT to insert new data
UPDATE to change existing data
DELETE to delete the data

In a SQL Server database, you can also use programmatic objects. You can use triggers for
advanced constraints or to maintain redundant data like aggregated data. You can use other
programmatic objects for data abstraction, for an intermediate layer between the actual data
and an application. The following programmatic objects are introduced here:

Triggers
Stored procedures
Views
User-defined functions

It is worth mentioning again that this chapter is just a reminder of the
features SQL Server gives to developers. Therefore, this section is not a
comprehensive database logical and physical design guide.

Review of SQL Server Features for Developers

[38]

Data definition language statements
Let's start with data definition language statements. The following code shows how to
create a simple table. This table represents customers' orders. For this demonstration of
DDL and DML statements, only a couple of columns are created in the table. The OrderId
column uniquely identifies each row in this table, is a primary key for the table, as the
PRIMARY KEY constraint specifies. Finally, the code checks whether a table with the name
SimpleOrders already exists in the dbo schema, and drops it in such a case:

IF OBJECT_ID(N'dbo.SimpleOrders', N'U') IS NOT NULL
 DROP TABLE dbo.SimpleOrders;
CREATE TABLE dbo.SimpleOrders
(
 OrderId INT NOT NULL,
 OrderDate DATE NOT NULL,
 Customer NVARCHAR(5) NOT NULL,
 CONSTRAINT PK_SimpleOrders PRIMARY KEY (OrderId)
);

For further examples, another table is needed. The following code creates the
dbo.SimpleOrderDetails table in a very similar way to how the previous table was
created, by checking for existence and dropping it if it exists. The OrderId and ProductId
columns form a composite primary key. In addition, a CHECK constraint on the Quantity
column prevents inserts or updates of this column to the value zero:

IF OBJECT_ID(N'dbo.SimpleOrderDetails', N'U') IS NOT NULL
 DROP TABLE dbo.SimpleOrderDetails;
CREATE TABLE dbo.SimpleOrderDetails
(
 OrderId INT NOT NULL,
 ProductId INT NOT NULL,
 Quantity INT NOT NULL
 CHECK(Quantity <> 0),
 CONSTRAINT PK_SimpleOrderDetails
 PRIMARY KEY (OrderId, ProductId)
);

Review of SQL Server Features for Developers

[39]

The previous two examples show how to add constraints when you create a table. It is
always possible to add constraints later too, by using the ALTER TABLE statement. The
tables created in the previous two examples are associated through a foreign key. The
primary key of the dbo.SimpleOrders table is associating the order details in the
dbo.SimpleOrderDetails table with their correspondent order. The code in the following
example defines this association:

ALTER TABLE dbo.SimpleOrderDetails ADD CONSTRAINT FK_Details_Orders
FOREIGN KEY (OrderId) REFERENCES dbo.SimpleOrders(OrderId);

Data modification language statements
The two demo tables are empty at the moment. You add data to them with the INSERT
statement. You specify the data values in the VALUES clause. You can insert more than one
row in a single statement, as the following code shows by inserting two rows into the
dbo.SimpleOrderDetails table in a single statement. You can omit the column names in
the INSERT part. However, this is not good practice. Your insert depends on the order of the
columns if you don't specify the column names explicitly. Imagine what could happen if
somebody later changes the structure of the table. In the event of a bad outcome, the insert
would fail. However, you would at least have the information that something went wrong.
In an even worse outcome, the insert into the altered table could succeed. You could end
up with the wrong data in the wrong columns without even noticing this problem:

INSERT INTO dbo.SimpleOrders
 (OrderId, OrderDate, Customer)
VALUES
 (1, '20160701', N'CustA');
INSERT INTO dbo.SimpleOrderDetails
 (OrderId, ProductId, Quantity)
VALUES
 (1, 7, 100),
 (1, 3, 200);

The following query checks the recently inserted data. As you probably expected, it returns
two rows:

SELECT o.OrderId, o.OrderDate, o.Customer,
 od.ProductId, od.Quantity
FROM dbo.SimpleOrderDetails AS od
 INNER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
ORDER BY o.OrderId, od.ProductId;

Review of SQL Server Features for Developers

[40]

Here is the result:

OrderId OrderDate Customer ProductId Quantity
----------- ---------- -------- ----------- --------
1 2016-07-01 CustA 3 200
1 2016-07-01 CustA 7 100

The next example shows how to update a row. It updates the Quantity column in the
dbo.SimpleOrderDetails table for the order with OrderId equal to 1 and for the
product with ProductId equal to 3.

UPDATE dbo.SimpleOrderDetails
 SET Quantity = 150
WHERE OrderId = 1
 AND ProductId = 3;

You can use the same SELECT statement to check the data, whether it has updated correctly,
as introduced right after the inserts.

Frequently, you really need to check data right after a modification. For example, you might
use the IDENTITY property or the SEQUENCE object to generate identification numbers
automatically. When you insert an order, you need to check the generated value of the
OrderId column to insert the correct value to the order details table. You can use the
OUTPUT clause for this task, as the following code shows:

INSERT INTO dbo.SimpleOrders
 (OrderId, OrderDate, Customer)
OUTPUT inserted.*
VALUES
 (2, '20160701', N'CustB');
INSERT INTO dbo.SimpleOrderDetails
 (OrderId, ProductId, Quantity)
OUTPUT inserted.*
VALUES
 (2, 4, 200);

The output of the two inserts is as follows:

OrderId OrderDate Customer
----------- ---------- --------
2 2016-07-01 CustB
OrderId ProductId Quantity
----------- ----------- --------
2 4 200

Review of SQL Server Features for Developers

[41]

Using triggers
The code for creating the dbo.SimpleOrders table doesn't check the order date value
when inserting or updating the data. The following INSERT statement, for example, inserts
an order with a pretty old and probably incorrect date.

INSERT INTO dbo.SimpleOrders
 (OrderId, OrderDate, Customer)
VALUES
 (3, '20100701', N'CustC');

You can check that the incorrect date is in the table with the following query:

SELECT o.OrderId, o.OrderDate, o.Customer
FROM dbo.SimpleOrders AS o
ORDER BY o.OrderId;

Of course, it would be possible to prevent inserting an order date too far in the past, or
updating it to a value that is too old, with a check constraint. However, imagine that you
don't want to just reject inserts and updates with an order date value in the past; imagine
you need to correct the value to a predefined minimal value, for example, January 1st, 2016.
You can achieve this with a trigger.

SQL Server supports two different kinds of DML triggers and one kind of DDL trigger.
DML triggers can fire after or instead of a DML action, and DDL triggers can fire only after
a DDL action. For a database developer, the after DML triggers are the most useful. As you
already know, you can use them for advanced constraints, for maintaining redundant data,
and more. A database administrator (DBA) might use DDL triggers to, for example, check
and reject the inappropriate altering of an object and to make a view updateable, instead of
DML triggers. Of course, often there is no such strict role separation in place. DDL and
instead-of-DML triggers are not forbidden for database developers. Anyway, the following
code shows a trigger created on the dbo.SimpleOrders table that fires after an INSERT or
an UPDATE to this table. It checks the OrderDate column value. If the date is too far in the
past, it replaces it with the default minimum value:

IF OBJECT_ID(N'trg_SimpleOrders_OrdereDate', N'TR') IS NOT NULL
 DROP TRIGGER trg_SimpleOrders_OrdereDate;
GO
CREATE TRIGGER trg_SimpleOrders_OrdereDate
 ON dbo.SimpleOrders AFTER INSERT, UPDATE
AS
 UPDATE dbo.SimpleOrders
 SET OrderDate = '20160101'
 WHERE OrderDate < '20160101';

Review of SQL Server Features for Developers

[42]

Let's try to insert a low order date, and update an existing value to a value too far in the
past:

INSERT INTO dbo.SimpleOrders
 (OrderId, OrderDate, Customer)
VALUES
 (4, '20100701', N'CustD');
UPDATE dbo.SimpleOrders
 SET OrderDate = '20110101'
 WHERE OrderId = 3;

You can check the data after the updates with the following query:

SELECT o.OrderId, o.OrderDate, o.Customer,
 od.ProductId, od.Quantity
FROM dbo.SimpleOrderDetails AS od
 RIGHT OUTER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
ORDER BY o.OrderId, od.ProductId;

Here is the result. As you can see, the trigger changed the incorrect dates to the predefined
minimum date:

OrderId OrderDate Customer ProductId Quantity
----------- ---------- -------- ----------- -----------
1 2016-07-01 CustA 3 150
1 2016-07-01 CustA 7 100
2 2016-07-01 CustB 4 200
3 2016-01-01 CustC NULL NULL
4 2016-01-01 CustD NULL NULL

Note that the query used OUTER JOIN to include the orders without the details in the result
set.

Data abstraction - views, functions, and stored
procedures
A very good practice is to use SQL Server stored procedures for data modification and data
retrieval. Stored procedures provide many benefits. Some of the benefits include:

Data abstraction: Client applications don't need to work with the data directly,
rather they call the stored procedures. The underlying schema might even get
modified without an impact on an application as long as you change the stored
procedures that work with the objects with modified schema appropriately.

Review of SQL Server Features for Developers

[43]

Security: Client applications can access data through stored procedures and other
programmatic objects only. For example, even if an end user uses their own SQL
Server Management Studio instead of the client application that the user should
use, the user still cannot modify the data in an uncontrolled way directly in the
tables.
Performance: Stored procedures can reduce network traffic, because you can
execute many statements inside the procedure within a single call to a stored
procedure. In addition, SQL Server has a lot of work with optimization and
compilation of the code an application is sending. SQL Server optimizes this by
storing the optimized and compiled code in memory. The compiled execution
plans for stored procedures are typically held longer in memory than the
execution plans for ad hoc queries and thus get reused more frequently.
Usage: Stored procedures accept input and can return output parameters, so they
can be easily coded to serve multiple users.

The code in the following example creates a stored procedure to insert a row into the
dbo.SimpleOrders table. The procedure accepts one input parameter for each column of
the table:

IF OBJECT_ID(N'dbo.InsertSimpleOrder', N'P') IS NOT NULL
 DROP PROCEDURE dbo.InsertSimpleOrder;
GO
CREATE PROCEDURE dbo.InsertSimpleOrder
(@OrderId AS INT, @OrderDate AS DATE, @Customer AS NVARCHAR(5))
AS
INSERT INTO dbo.SimpleOrders
 (OrderId, OrderDate, Customer)
VALUES
 (@OrderId, @OrderDate, @Customer);

Here is a similar procedure for inserting data into the dbo.SimpleOrderDetails table:

IF OBJECT_ID(N'dbo.InsertSimpleOrderDetail', N'P') IS NOT NULL
 DROP PROCEDURE dbo.InsertSimpleOrderDetail;
GO
CREATE PROCEDURE dbo.InsertSimpleOrderDetail
(@OrderId AS INT, @ProductId AS INT, @Quantity AS INT)
AS
INSERT INTO dbo.SimpleOrderDetails
 (OrderId, ProductId, Quantity)
VALUES
 (@OrderId, @ProductId, @Quantity);

Review of SQL Server Features for Developers

[44]

Let's test the procedures. In the first part, the two calls to the dbo.InsertSimpleOrder
procedure insert two new orders:

EXEC dbo.InsertSimpleOrder
 @OrderId = 5, @OrderDate = '20160702', @Customer = N'CustA';
EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 5, @ProductId = 1, @Quantity = 50;

The following code calls the dbo.InsertSimpleOrderDetail procedure four times to
insert four order details rows:

EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 2, @ProductId = 5, @Quantity = 150;
EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 2, @ProductId = 6, @Quantity = 250;
EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 1, @ProductId = 5, @Quantity = 50;
EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 1, @ProductId = 6, @Quantity = 200;

The following query checks the state of the two tables after these calls:

SELECT o.OrderId, o.OrderDate, o.Customer,
 od.ProductId, od.Quantity
FROM dbo.SimpleOrderDetails AS od
 RIGHT OUTER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
ORDER BY o.OrderId, od.ProductId;

Here is the result after the inserts go through the stores procedures:

OrderId OrderDate Customer ProductId Quantity
----------- ---------- -------- ----------- -----------
1 2016-07-01 CustA 3 150
1 2016-07-01 CustA 5 50
1 2016-07-01 CustA 6 200
1 2016-07-01 CustA 7 100
2 2016-07-01 CustB 4 200
2 2016-07-01 CustB 5 150
2 2016-07-01 CustB 6 250
3 2016-01-01 CustC NULL NULL
4 2016-01-01 CustD NULL NULL
5 2016-07-02 CustA 1 50

Review of SQL Server Features for Developers

[45]

You can see in the result of the previous query that there are still some orders without order
details in your data. Although this might be unwanted, it could happen quite frequently.
Your end users might need to quickly find orders without details many times. Instead of
executing the same complex query over and over again, you can create a view which
encapsulates this complex query. Besides simplifying the code, views are also useful for
tightening security. Just like stored procedures, views are securables as well. A DBA can
revoke direct access to tables from end users, and give them access to view only.

The following example creates a view that finds the orders without details. Note that a view
in SQL Server can consist of a single SELECT statement only, and that it does not accept
parameters:

CREATE VIEW dbo.OrdersWithoutDetails
AS
SELECT o.OrderId, o.OrderDate, o.Customer
FROM dbo.SimpleOrderDetails AS od
 RIGHT OUTER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
WHERE od.OrderId IS NULL;

Now the query that finds the orders without details becomes extremely simple—it just uses
the view:

SELECT OrderId, OrderDate, Customer
FROM dbo.OrdersWithoutDetails;

Here is the result: the two orders without order details.

OrderId OrderDate Customer
----------- ---------- --------
3 2016-01-01 CustC
4 2016-01-01 CustD

If you need to parameterize a view, you have to use an inline table-valued function
instead. Such a function serves as a parameterized view. SQL Server also supports multi-
statement table-valued functions and scalar functions. The following example shows an
inline table-valued function that retrieves top two order details ordered by quantity for an
order, where the order ID is a parameter:

CREATE FUNCTION dbo.Top2OrderDetails
(@OrderId AS INT)
RETURNS TABLE
AS RETURN
SELECT TOP 2 ProductId, Quantity
FROM dbo.SimpleOrderDetails
WHERE OrderId = @OrderId

Review of SQL Server Features for Developers

[46]

ORDER BY Quantity DESC;

The following example uses this function to retrieve the top two details for each order with
the help of the APPLY operator:

SELECT o.OrderId, o.OrderDate, o.Customer,
 t2.ProductId, t2.Quantity
FROM dbo.SimpleOrders AS o
 OUTER APPLY dbo.Top2OrderDetails(o.OrderId) AS t2
ORDER BY o.OrderId, t2.Quantity DESC;

Note that another form of the APPLY operator is used, the OUTER APPLY. This form
preserves the rows from the left table. As you can see from the following result, the query
returns two rows for orders with two or more order details, one for orders with a single
order detail, and one with NULL values in the place of the order detail columns for orders
without order detail:

OrderId OrderDate Customer ProductId Quantity
----------- ---------- -------- ----------- -----------
1 2016-07-01 CustA 6 200
1 2016-07-01 CustA 3 150
2 2016-07-01 CustB 6 250
2 2016-07-01 CustB 4 200
3 2016-01-01 CustC NULL NULL
4 2016-01-01 CustD NULL NULL
5 2016-07-02 CustA 1 50

Transactions and error handling
In a real-world application, errors always appear. Syntax or even logical errors may be in
the code, the database design might be incorrect, there might even be a bug in the database
management system you are using. Even if everything works correctly, you might get an
error because the users insert wrong data. With Transact-SQL error handling you can catch
such user errors and decide what to do upon them. Typically, you want to log the errors,
inform the users about the errors, and sometimes even correct them in the error handling
code.

Review of SQL Server Features for Developers

[47]

Error handling for user errors works on the statement level. If you send SQL Server a batch
of two or more statements and the error is in the last statement, the previous statements
execute successfully. This might not be what you desire. Frequently, you need to execute a
batch of statements as a unit, and fail all of the statements if one of the statements fails. You
can achieve this by using transactions. In this section, you will learn about:

Error handling
Transaction management

Error handling
You can see there is a need for error handling by producing an error. The following code
tries to insert an order and a detail row for this order:

EXEC dbo.InsertSimpleOrder
 @OrderId = 6, @OrderDate = '20160706', @Customer = N'CustE';
EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 6, @ProductId = 2, @Quantity = 0;

In SQL Server Management Studio, you can see that an error occurred. You should get a
message that the error 547 occurred, that the INSERT statement conflicted with the CHECK
constraint. If you remember, in order details, only rows where the value for the quantity is
not equal to zero are allowed. The error occurred in the second statement, in the call of the
procedure that inserts an order detail. The procedure that inserted an order was executed
without an error. Therefore, an order with an ID equal to six must be in the
dbo.SimpleOrders table. The following code tries to insert order 6 again:

EXEC dbo.InsertSimpleOrder
 @OrderId = 6, @OrderDate = '20160706', @Customer = N'CustE';

Of course, another error occurred. This time it should be error 2627, a violation of the
PRIMARY KEY constraint. The values of the OrderId column must be unique. Let's check
the state of the data after these successful and unsuccessful inserts:

SELECT o.OrderId, o.OrderDate, o.Customer,
 od.ProductId, od.Quantity
FROM dbo.SimpleOrderDetails AS od
 RIGHT OUTER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
WHERE o.OrderId > 5
ORDER BY o.OrderId, od.ProductId;

Review of SQL Server Features for Developers

[48]

The previous query checks only orders and their associated details where the order
ID value is greater than five. The query returns the following result set:

OrderId OrderDate Customer ProductId Quantity
----------- ---------- -------- ----------- --------
6 2016-07-06 CustE NULL NULL

You can see that only the first insert of the order with the ID 6 succeeded. The second insert
of an order with the same ID and the insert of the detail row for the order six did not
succeed.

You start handling errors by enclosing the statements in the batch you are executing in the
BEGIN TRY...END TRY block. You can catch the errors in the BEGIN CATCH...END
CATCH block. The BEGIN CATCH statement must be immediately after the END TRY
statement. The control of the execution is passed from the try part to the catch part
immediately after the first error occurs.

In the catch part, you can decide how to handle the errors. If you want to log the data about
the error or inform an end user about the details of the error, the following functions might
be very handy:

ERROR_NUMBER(): This function returns the number of the error.
ERROR_SEVERITY(): It returns the severity level. The severity of the error
indicates the type of problem encountered. Severity levels 11 to 16 can be
corrected by the user.
ERROR_STATE(): This function returns the error state number. Error state gives
more details about a specific error. You might want to use this number together
with the error number to search Microsoft knowledge base for the specific details
of the error you encountered.
ERROR_PROCEDURE(): It returns the name of the stored procedure or trigger
where the error occurred, or NULL if the error did not occur within a stored
procedure or trigger.
ERROR_LINE(): It returns the line number at which the error occurred. This
might be the line number in a routine if the error occurred within a stored
procedure or trigger, or the line number in the batch.
ERROR_MESSAGE(): This function returns the text of the error message.

Review of SQL Server Features for Developers

[49]

The following code uses the try...catch block to handle possible errors in the batch of
the statements, and returns the information of the error using the preceding mentioned
functions. Note that the error happens in the first statement of the batch:

BEGIN TRY
 EXEC dbo.InsertSimpleOrder
 @OrderId = 6, @OrderDate = '20160706', @Customer = N'CustF';
 EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 6, @ProductId = 2, @Quantity = 5;
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrorNumber,
 ERROR_MESSAGE() AS ErrorMessage,
 ERROR_LINE() as ErrorLine;
END CATCH

There was a violation of the PRIMARY KEY constraint again, because the code tried to insert
an order with an ID of six again. The second statement would succeed if you executed it in
its own batch, without error handling. However, because of the error handling, the control
was passed to the catch block immediately after the error in the first statement, and the
second statement never executed. You can check the data with the following query:

SELECT o.OrderId, o.OrderDate, o.Customer,
 od.ProductId, od.Quantity
FROM dbo.SimpleOrderDetails AS od
 RIGHT OUTER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
WHERE o.OrderId > 5
ORDER BY o.OrderId, od.ProductId;

The result set should be the same as the results set of the last check of the orders with an ID
greater than five—a single order without details. The following code produces an error in
the second statement:

BEGIN TRY
 EXEC dbo.InsertSimpleOrder
 @OrderId = 7, @OrderDate = '20160706', @Customer = N'CustF';
 EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 7, @ProductId = 2, @Quantity = 0;
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrorNumber,
 ERROR_MESSAGE() AS ErrorMessage,
 ERROR_LINE() as ErrorLine;
END CATCH

Review of SQL Server Features for Developers

[50]

You can see that the insert of the order detail violates the CHECK constraint for the quantity.
If you check the data with the same query as the last two times again, you will see that there
are orders with an ID of six and seven in the data, both without order details.

Using transactions
Your business logic might request that the insert of the first statement fails when the second
statement fails. You might need to repeal the changes of the first statement on the failure of
the second statement. You can define that a batch of statements executes as a unit by using
transactions. The following code shows how to use transactions. Again, the second
statement in the batch in the try block is the one that produces an error:

BEGIN TRY
 BEGIN TRANSACTION
 EXEC dbo.InsertSimpleOrder
 @OrderId = 8, @OrderDate = '20160706', @Customer = N'CustG';
 EXEC dbo.InsertSimpleOrderDetail
 @OrderId = 8, @ProductId = 2, @Quantity = 0;
 COMMIT TRANSACTION
END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS ErrorNumber,
 ERROR_MESSAGE() AS ErrorMessage,
 ERROR_LINE() as ErrorLine;
 IF XACT_STATE() <> 0
 ROLLBACK TRANSACTION;
END CATCH

You can check the data again:

SELECT o.OrderId, o.OrderDate, o.Customer,
 od.ProductId, od.Quantity
FROM dbo.SimpleOrderDetails AS od
 RIGHT OUTER JOIN dbo.SimpleOrders AS o
 ON od.OrderId = o.OrderId
WHERE o.OrderId > 5
ORDER BY o.OrderId, od.ProductId;

Here is the result of the check:

OrderId OrderDate Customer ProductId Quantity
----------- ---------- -------- ----------- -----------
6 2016-07-06 CustE NULL NULL
7 2016-07-06 CustF NULL NULL

Review of SQL Server Features for Developers

[51]

You can see that the order with the ID 8 does not exist in your data. Because the insert of
the detail row for this order failed, the insert of the order was rolled back as well. Note that
in the catch block, the XACT_STATE() function was used to check whether the transaction
still exists. If the transaction was rolled back automatically by SQL Server, then the
ROLLBACK TRANSACTION would produce a new error.

The following code drops the objects (incorrect order, due to object constraints) created for
the explanation of the DDL and DML statements, programmatic objects, error handling,
and transactions:

DROP FUNCTION dbo.Top2OrderDetails;
DROP VIEW dbo.OrdersWithoutDetails;
DROP PROCEDURE dbo.InsertSimpleOrderDetail;
DROP PROCEDURE dbo.InsertSimpleOrder;
DROP TABLE dbo.SimpleOrderDetails;
DROP TABLE dbo.SimpleOrders;

Beyond relational
Beyond relational is actually only a marketing term. The relational model, used in the
relational database management system, is nowhere limited to specific data types or specific
languages only. However, with the term “beyond relational,” we typically mean specialized
and complex data types that might include spatial and temporal data, XML or JSON data,
and extending the capabilities of the Transact-SQL language with CLR languages such as
Visual C#, or statistical languages such as R. SQL Server in versions before 2016 already
supports some of the features mentioned. Here is a quick review of this support that
includes:

Spatial data
CLR support
XML data

Review of SQL Server Features for Developers

[52]

Defining locations and shapes with Spatial Data
In modern applications, often you want to show your data on a map, using the physical
location. You might also want to show the shape of the objects that your data describes. You
can use spatial data for tasks like these. You can represent the objects with points, lines, or
polygons. From simple shapes, you can create complex geometrical objects or geographical
objects, for example, cities and roads. Spatial data appears in many contemporary
databases. Acquiring spatial data has become quite simple with the Global Positioning
System (GPS) and other technologies. In addition, many software packages and database
management systems help you to work with spatial data. SQL Server supports two spatial
data types, both implemented as .NET common language runtime data types, from version
2008:

The geometry type represents data in a Euclidean (flat) coordinate system.
The geography type represents data in a round-earth coordinate system.

We need two different spatial data types because of some important differences between
them. These differences include units of measurement and orientation.

In the planar, or flat-earth, system, you define the units of measurements. The length of a
distance and the surface of an area are given in the same unit of measurement as you use
for the coordinates of your coordinate system. You, as the database developer, know what
the coordinates mean and what the unit of measure is. In geometry, the distance between
the points described with the coordinates (1, 3) and (4, 7) is 5 units regardless of the units
used. You, as the database developer who created the database where you are storing this
data, know the context. You know what these 5 units mean: 5 kilometers, or 5 inches.

When talking about locations on earth, coordinates are given in degrees of latitude and
longitude. This is the round-earth, or ellipsoidal system. Lengths and areas are usually
measured in the metric system, in meters and square meters. However, not everywhere in
the world is the metric system used for spatial data. The spatial reference identifier (SRID)
of the geography instance defines the unit of measure. Therefore, whenever measuring a
distance or area in the ellipsoidal system, you should always quote the SRID used, which
defines the units.

In the planar system, the ring orientation of a polygon is not an important factor. For
example, a polygon described by the points ((0, 0), (10, 0), (0, 5), (0, 0)) is the same as a
polygon described by ((0, 0), (5, 0), (0, 10), (0, 0)). You can always rotate the coordinates
appropriately to get the same feeling of the orientation. However, in geography, the
orientation is needed to completely describe a polygon. Just think of the equator, which
divides the earth into two hemispheres. Is your spatial data describing the northern or
southern hemisphere?

Review of SQL Server Features for Developers

[53]

The Wide World Importers data warehouse includes city locations in the Dimension.City
table. The following query retrieves it for cities in the main part of the USA:

SELECT City,
 [Sales Territory] AS SalesTerritory,
 Location AS LocationBinary,
 Location.ToString() AS LocationLongLat
FROM Dimension.City
WHERE [City Key] <> 0
 AND [Sales Territory] NOT IN
 (N'External', N'Far West');

Here is the partial result of the query.

City SalesTerritory LocationBinary LocationLongLat
----------- --------------- -------------------- ------------------
Carrollton Mideast 0xE6100000010C70... POINT (-78.651695
42.1083969)
Carrollton Southeast 0xE6100000010C88... POINT (-76.5605078
36.9468152)
Carrollton Great Lakes 0xE6100000010CDB... POINT (-90.4070632
39.3022693)

You can see that the location is actually stored as a binary string. When you use the
ToString() method of the location, you get the default string representation of the
geographical point, which is the degrees of longitude and latitude.

In SSMS, you send the results of the previous query to a grid, in the results pane you get an
additional representation for the spatial data. Click on the Spatial results tab, and you can
see the points represented in the longitude-latitude coordinate system, as you can see in the
following screenshot:

Figure 2 1 Spatial results showing customers' locations

Review of SQL Server Features for Developers

[54]

If you executed the query, you might have noticed that the spatial data representation
control in SSMS has some limitations. It can show only 5,000 objects. The result displays
only the first 5,000 locations. Nevertheless, as you can see from the previous figure, this is
enough to realize that these points form a contour of the main part of the USA. Therefore,
the points represent the customers' locations for customers from USA.

The following query gives you the details, such as location and population, for Denver,
Colorado:

SELECT [City Key] AS CityKey, City,
 [State Province] AS State,
 [Latest Recorded Population] AS Population,
 Location.ToString() AS LocationLongLat
FROM Dimension.City
WHERE [City Key] = 114129
 AND [Valid To] = '9999-12-31 23:59:59.9999999';

Spatial data types have many useful methods. For example, the STDistance() method
returns the shortest line between two geography types. This is a close approximate to the
geodesic distance, defined as the shortest route between two points on the Earth's surface.
The following code calculates this distance between Denver, Colorado, and Seattle,
Washington:

DECLARE @g AS GEOGRAPHY;
DECLARE @h AS GEOGRAPHY;
DECLARE @unit AS NVARCHAR(50);
SET @g = (SELECT Location FROM Dimension.City
 WHERE [City Key] = 114129);
SET @h = (SELECT Location FROM Dimension.City
 WHERE [City Key] = 108657);
SET @unit = (SELECT unit_of_measure
 FROM sys.spatial_reference_systems
 WHERE spatial_reference_id = @g.STSrid);
SELECT FORMAT(@g.STDistance(@h), 'N', 'en-us') AS Distance,
 @unit AS Unit;

The result of the previous batch is as follows:

Distance Unit
------------- ------
1,643,936.69 metre

Note that the code uses the sys.spatial_reference_system catalog view to get the unit
of measure for the distance of the SRID used to store the geographical instances of data. The
unit is meter. You can see that the distance between Denver, Colorado, and Seattle,
Washington, is more than 1,600 kilometers.

Review of SQL Server Features for Developers

[55]

The following query finds the major cities within a circle of 1,000 km around Denver,
Colorado. Major cities are defined as those with a population larger than 200,000:

DECLARE @g AS GEOGRAPHY;
SET @g = (SELECT Location FROM Dimension.City
 WHERE [City Key] = 114129);
SELECT DISTINCT City,
 [State Province] AS State,
 FORMAT([Latest Recorded Population], '000,000') AS Population,
 FORMAT(@g.STDistance(Location), '000,000.00') AS Distance
FROM Dimension.City
WHERE Location.STIntersects(@g.STBuffer(1000000)) = 1
 AND [Latest Recorded Population] > 200000
 AND [City Key] <> 114129
 AND [Valid To] = '9999-12-31 23:59:59.9999999'
ORDER BY Distance;

Here is the result abbreviated to the 12 closest cities to Denver, Colorado:

City State Population Distance
----------------- ----------- ----------- -----------
Aurora Colorado 325,078 013,141.64
Colorado Springs Colorado 416,427 101,487.28
Albuquerque New Mexico 545,852 537,221.38
Wichita Kansas 382,368 702,553.01
Lincoln Nebraska 258,379 716,934.90
Lubbock Texas 229,573 738,625.38
Omaha Nebraska 408,958 784,842.10
Oklahoma City Oklahoma 579,999 809,747.65
Tulsa Oklahoma 391,906 882,203.51
El Paso Texas 649,121 895,789.96
Kansas City Missouri 459,787 898,397.45
Scottsdale Arizona 217,385 926,980.71

There are many more useful methods and properties implemented in these two spatial data
types. In addition, you can improve the performance of spatial queries with the help of
specialized spatial indexes. Refer to the MSDN article Spatial Data (SQL Server) at
https://msdn.microsoft.com/en-us/library/bb933790.aspx for more details on spatial
data types, their methods, and spatial indexes.

Review of SQL Server Features for Developers

[56]

CLR integration
You probably noticed that the two spatial data types are implemented as CLR data types.
The spatial data types are shipped with SQL Server; therefore, Microsoft developers created
them. However, you also can create your own CLR data types. SQL Server featured CLR
inside the Database Engine for the first time in the 2005 version.

You can create the following CLR objects in a SQL Server database:

User-defined functions
Stored procedures
Triggers
User-defined aggregate functions
User-defined data types

You can use CLR objects to extend the functionality of the Transact-SQL language. You
should use CLR for objects that you can't create in Transact-SQL, like user-defined
aggregates or user-defined data types. For objects that you can also create in Transact-SQL,
like functions, stored procedures and triggers, you should use Transact-SQL to manipulate
the data, and CLR only in the areas where CLR languages like Visual C# are faster than
Transact-SQL, such as complex calculations, and string manipulations.

For example, Transact-SQL language includes only a fistful of aggregate functions. To
describe a distribution of a continuous variable, in the descriptive statistics you use the first
four population moments, namely the:

Mean, or average value
Standard deviation
Skewness, or tailed-ness
Kurtosis, or peaked-ness

Transact-SQL includes only aggregate functions for calculating the mean and the standard
deviation. These two measures might be descriptors good enough to describe the regular
normal, or Gaussian distribution, as this figure shows:

Review of SQL Server Features for Developers

[57]

Figure 2 2 Normal or Gaussian distribution

However, a distribution in the real world might not follow the normal curve exactly.
Often, it is skewed. A typical example is income, which is usually highly skewed to the
right, known as a positive skew. The following figure shows a positively skewed
distribution, where you have a long tail on the right side of the distribution:

Figure 2.3: Positively skewed distribution

Review of SQL Server Features for Developers

[58]

Here is the formula for skewness:

The formula for skewness uses the mean value and the standard deviation in the formula. I
don't want to calculate these values in advance. If I calculated these values in advance, I
would need to scan through the data twice. I want to have a more efficient algorithm, an
algorithm that will scan the data only once.

I use a bit of mathematics for this optimization. First, I expand the formula for the
subtraction of the mean from the ith value on the third degree:

Then I use the fact that the sum is distributive over the product, as shown in the formula for
two values only:

This formula can be generalized for all values:

Of course, I can do the same mathematics for the remaining elements of the expanded
formula for the subtraction and calculate all the aggregates I need with a single pass
through the data, as shown in the following C# code for the user-defined aggregate function
that calculates the skewness.

Review of SQL Server Features for Developers

[59]

The first part of the code declares the namespaces used:

-- C# code for skewness
using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

You represent a user-defined aggregate (UDA) with a class or a structure in CLR. First, you
decorate it with attributes that give some information about the UDA's behavior and
information for the potential optimization of the queries that use it:

[Serializable]
[SqlUserDefinedAggregate(
 Format.Native,
 IsInvariantToDuplicates = false,
 IsInvariantToNulls = true,
 IsInvariantToOrder = true,
 IsNullIfEmpty = false)]

The next part of the code for the UDA defines the structure and internal variables used to
hold the intermediate results for the elements of the calculation, as I explained in the
formula reorganization:

public struct Skew
{
 private double rx;
 private double rx2;
 private double r2x;
 private double rx3;
 private double r3x2;
 private double r3x;
 private Int64 rn;

Structures or classes that represent UDAs must implement four methods. The Init()
method initializes the internal variables:

 public void Init()
 {
 rx = 0;
 rx2 = 0;
 r2x = 0;
 rx3 = 0;
 r3x2 = 0;
 r3x = 0;
 rn = 0;
 }

Review of SQL Server Features for Developers

[60]

The Accumulate() method does the actual work of aggregating:

 public void Accumulate(SqlDouble inpVal)
 {
 if (inpVal.IsNull)
 {
 return;
 }
 rx = rx + inpVal.Value;
 rx2 = rx2 + Math.Pow(inpVal.Value, 2);
 r2x = r2x + 2 * inpVal.Value;
 rx3 = rx3 + Math.Pow(inpVal.Value, 3);
 r3x2 = r3x2 + 3 * Math.Pow(inpVal.Value, 2);
 r3x = r3x + 3 * inpVal.Value;
 rn = rn + 1;
 }

The Merge() method accepts another aggregate as the input. It merges two aggregates.
Where do two or more aggregates come from? SQL Server might decide to execute the
aggregating query in parallel, store the intermediate aggregate results internally, and then
merge them by using the Merge()method:

 public void Merge(Skew Group)
 {
 this.rx = this.rx + Group.rx;
 this.rx2 = this.rx2 + Group.rx2;
 this.r2x = this.r2x + Group.r2x;
 this.rx3 = this.rx3 + Group.rx3;
 this.r3x2 = this.r3x2 + Group.r3x2;
 this.r3x = this.r3x + Group.r3x;
 this.rn = this.rn + Group.rn;
 }

The Terminate() method does the final calculations and returns the aggregated value to
the calling query. The return value type must be in compliance with SQL Server data types:

 public SqlDouble Terminate()
 {
 double myAvg = (rx / rn);
 double myStDev = Math.Pow((rx2 - r2x * myAvg + rn *
Math.Pow(myAvg, 2))
 / (rn - 1), 1d / 2d);
 double mySkew = (rx3 - r3x2 * myAvg + r3x * Math.Pow(myAvg, 2)
 - rn * Math.Pow(myAvg, 3)) /
 Math.Pow(myStDev,3) * rn / (rn - 1) / (rn - 2);
 return (SqlDouble)mySkew;
 }

Review of SQL Server Features for Developers

[61]

}

You can use the C# compiler to compile the code for the UDA. However, in the associated
code for the book, a compiled assembly, the .dll file, is provided for your convenience.
The code also includes the function that calculates the kurtosis; for the sake of brevity, this
code is not explained in detail here.

In order to use CLR objects, you need to enable CLR for your instance. Then, you need to
catalog, or deploy, the assembly in the database with the CREATE ASSEMBLY statement.
Then, you create the aggregate functions with the CREATE AGGREGATE statement. The
following code enables CLR, deploys the assembly provided with the book, and then
creates the two aggregate functions. The code assumes that the assembly is stored in the
C:SQL2016DevGuide folder:

EXEC sp_configure 'clr enabled', 1;
RECONFIGURE WITH OVERRIDE;

CREATE ASSEMBLY DescriptiveStatistics
FROM 'C:SQL2016DevGuideDescriptiveStatistics.dll'
WITH PERMISSION_SET = SAFE;

CREATE AGGREGATE dbo.Skew(@s float)
RETURNS float
EXTERNAL NAME DescriptiveStatistics.Skew;

CREATE AGGREGATE dbo.Kurt(@s float)
RETURNS float
EXTERNAL NAME DescriptiveStatistics.Kurt;

Once the assembly is cataloged and UDAs have been created, you can use them just like
built-in aggregate functions. The following query calculates the four moments for the sum
over customers of the amount ordered without tax. In a CTE, it calculates the sum of the
amount per customer, and then in the outer query the average, the standard deviation, the
skewness, and the kurtosis for this total:

WITH CustomerSalesCTE AS
(
SELECT c.Customer,
 SUM(f.[Total Excluding Tax]) AS TotalAmount
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]
WHERE c.[Customer Key] <> 0
GROUP BY c.Customer
)
SELECT ROUND(AVG(TotalAmount), 2) AS Average,

Review of SQL Server Features for Developers

[62]

 ROUND(STDEV(TotalAmount), 2) AS StandardDeviation,
 ROUND(dbo.Skew(TotalAmount), 6) AS Skewness,
 ROUND(dbo.Kurt(TotalAmount), 6) AS Kurtosis
FROM CustomerSalesCTE;

Here is the result:

Average StandardDeviation Skewness Kurtosis
------------- ----------------- -------- ---------
270479.220000 38586.08 0.005943 -0.263897

After you have tested the UDAs, you can execute the following code to clean up your
database, and potentially disable CLR. Note that you need to drop the UDAs before you
drop the assembly:

DROP AGGREGATE dbo.Skew;
DROP AGGREGATE dbo.Kurt;
DROP ASSEMBLY DescriptiveStatistics;
/*
EXEC sp_configure 'clr enabled', 0;
RECONFIGURE WITH OVERRIDE;
*/

XML support in SQL Server
SQL Server in version 2005 also started to feature extended support for XML data inside the
database engine, although some basic support was already included in version 2000. The
support starts by generating XML data from tabular results. You can use the FOR XML
clause of the SELECT statement for this task.

The following query generates an XML document from the regular tabular result set by
using the FOR XML clause with AUTO option, to generate an element-centric XML instance,
with namespace and inline schema included:

SELECT c.[Customer Key] AS CustomerKey,
 c.[WWI Customer ID] AS CustomerId,
 c.[Customer],
 c.[Buying Group] AS BuyingGroup,
 f.Quantity,
 f.[Total Excluding Tax] AS Amount,
 f.Profit
FROM Dimension.Customer AS c
 INNER JOIN Fact.Sale AS f
 ON c.[Customer Key] = f.[Customer Key]
WHERE c.[Customer Key] IN (127, 128)

Review of SQL Server Features for Developers

[63]

FOR XML AUTO, ELEMENTS,
 ROOT('CustomersOrders'),
 XMLSCHEMA('CustomersOrdersSchema');
GO

Here is the partial result of this query. The first part of the result is the inline schema:

<CustomersOrders>
 <xsd:schema targetNamespace="CustomersOrdersSchema" ...
 <xsd:import namespace="http://schemas.microsoft.com/sqlserver
 /2004/sqltypes" ...
 <xsd:element name="c">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="CustomerKey" type="sqltypes:int" />
 <xsd:element name="CustomerId" type="sqltypes:int" />
 <xsd:element name="Customer">
 <xsd:simpleType>
 <xsd:restriction base="sqltypes:nvarchar" ...
 <xsd:maxLength value="100" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 ...
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <c xmlns="CustomersOrdersSchema">
 <CustomerKey>127</CustomerKey>
 <CustomerId>127</CustomerId>
 <Customer>Tailspin Toys (Point Roberts, WA)</Customer>
 <BuyingGroup>Tailspin Toys</BuyingGroup>
 <f>
 <Quantity>3</Quantity>
 <Amount>48.00</Amount>
 <Profit>31.50</Profit>
 </f>
 <f>
 <Quantity>9</Quantity>
 <Amount>2160.00</Amount>
 <Profit>1363.50</Profit>
 </f>
 </c>
 <c xmlns="CustomersOrdersSchema">
 <CustomerKey>128</CustomerKey>
 <CustomerId>128</CustomerId>
 <Customer>Tailspin Toys (East Portal, CO)</Customer>

Review of SQL Server Features for Developers

[64]

 <BuyingGroup>Tailspin Toys</BuyingGroup>
 <f>
 <Quantity>84</Quantity>
 <Amount>420.00</Amount>
 <Profit>294.00</Profit>
 </f>
 </c>
 ...
</CustomersOrders>

You can also do the opposite process: convert XML to tables. Converting XML to relational
tables is known as shredding XML. You can do this by using the nodes() method of the
XML data type or with the OPENXML() rowset function.

Inside SQL Server, you can also query the XML data from Transact-SQL to find specific
elements, attributes, or XML fragments. XQuery is a standard language for browsing XML
instances and returning XML, and is supported inside XML data type methods.

You can store XML instances inside a SQL Server database in a column of the XML data
type. An XML data type includes five methods that accept XQuery as a parameter. The
methods support querying (the query() method), retrieving atomic values (the value()
method), existence checks (the exist() method), modifying sections within the XML data
(the modify() method), as opposed to overriding the whole thing and shredding XML data
into multiple rows in a result set (the nodes() method).

The following code creates a variable of the XML data type to store an XML instance in it.
Then, it uses the query() method to return XML fragments from the XML instance. This
method accepts XQuery query as a parameter. The XQuery query uses the FLWOR
expressions to define and shape the XML returned:

DECLARE @x AS XML;
SET @x = N'
<CustomersOrders>
 <Customer custid="1">
 <!-- Comment 111 -->
 <companyname>CustA</companyname>
 <Order orderid="1">
 <orderdate>2016-07-01T00:00:00</orderdate>
 </Order>
 <Order orderid="9">
 <orderdate>2016-07-03T00:00:00</orderdate>
 </Order>
 <Order orderid="12">
 <orderdate>2016-07-12T00:00:00</orderdate>
 </Order>
 </Customer>

Review of SQL Server Features for Developers

[65]

 <Customer custid="2">
 <!-- Comment 222 -->
 <companyname>CustB</companyname>
 <Order orderid="3">
 <orderdate>2016-07-01T00:00:00</orderdate>
 </Order>
 <Order orderid="10">
 <orderdate>2016-07-05T00:00:00</orderdate>
 </Order>
 </Customer>
</CustomersOrders>';
SELECT @x.query('for $i in CustomersOrders/Customer/Order
 let $j := $i/orderdate
 where $i/@orderid < 10900
 order by ($j)[1]
 return
 <Order-orderid-element>
 <orderid>{data($i/@orderid)}</orderid>
 {$j}
 </Order-orderid-element>')
 AS [Filtered, sorted and reformatted orders with let clause];

Here is the result of the previous query:

<Order-orderid-element>
 <orderid>1</orderid>
 <orderdate>2016-07-01T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>3</orderid>
 <orderdate>2016-07-01T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>9</orderid>
 <orderdate>2016-07-03T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>10</orderid>
 <orderdate>2016-07-05T00:00:00</orderdate>
</Order-orderid-element>
<Order-orderid-element>
 <orderid>12</orderid>
 <orderdate>2016-07-12T00:00:00</orderdate>
</Order-orderid-element>

Review of SQL Server Features for Developers

[66]

Summary
In this chapter, you got a review of the SQL Server features for developers that exist in the
previous versions. You can see that this support goes well beyond basic SQL statements,
and also beyond pure Transact-SQL.

The recapitulation in this chapter is also useful as an introduction to the new features in
SQL Server 2016 covered in Chapter 4, Transact-SQL Enhancements, Chapter 5, JSON
Support in SQL Server, Chapter 7, Temporal Tables, and Chapter 13, Supporting R in SQL
Server.

3
SQL Server Tools

We as developers are accustomed to using integrated development environments (IDEs)
in our software projects. Visual Studio has been a major player in the IDE space for many
years, if not decades, and has allowed developers to use the latest software development
processes to further improve quality and efficiency in software projects. Server
management on the other hand, has generally been a second-class citizen for many
products in the past. In general, this focus can be understood, if not agreed with. IDEs are
tools that design and create software which can generate revenue for a business, whereas
management tools generally only offer the benefit of some sort of cost savings, rather than
direct revenue generation.

The SQL Server Tools of the past (pre-SQL 2005) were very much focused on fulfilling the
requirements of being able to manage and query SQL Server instances and databases, but
received no great investments in making the tools “comfortable”, or even enjoyable to use.
Advanced IDEs were firmly in the application development domain and application
developers knew that databases were a storage system at best and therefore required no
elegant tooling to work with them.

Luckily for us, the advent of SQL Server 2005, along with the release of the .NET
Framework encouraged some people at Microsoft to invest a little more time and resources
into providing an improved interface for both developers and DBAs for database and data
management purposes. SQL Server Management Studio (SSMS) was born and unified the
functionality of two legacy tools: Query Analyzer and Enterprise Manager. Anyone who
has worked with SQL Server since the 2005 release will recognize the application regardless
of whether they are using the 2005 release, or the latest 2016 build.

SQL Server Tools

[68]

There have been several different names and releases of the second tool in this chapter: SQL
Server Data Tools (SSDT), going back to SQL Server 2005/2008, when the tool was
known as Visual Studio Database Projects (also known as Data Dude). The many
incarnations of this tool since SQL Server 2005 have been focused on the development of
database projects. SSDT has many of the tools and interfaces known to Visual Studio users
and allows a seasoned Visual Studio user to quickly familiarize themselves with the tool.
Particularly interesting is the improved ability to integrate database and business
intelligence projects into source control, continuous integration and automated deployment
processes.

In this chapter, we will be exploring:

Changes in the release management of SQL Server tools (SSMS and SSDT)
New SSMS features and enhancements
Using live query statistics
New developer tools for the R language

Installing and updating SQL Server tools
The very beginning of our journey with SQL Server starts with the installation process. In
previous versions of SQL Server, the data management and development tools were
delivered together with the SQL Server installation image. As such, if a developer wanted to
install SSMS, the setup of SQL Server had to be used to facilitate the installation.

As of SQL Server 2016, Microsoft made the very smart decision to separate the management
tools from the server installation. This is not only a separation of the installation medium,
but also a separation of the release process. This separation means that both products can be
developed and released without having to wait for the other team to be ready. Let's take a
look at how this change affects us at installation time.

In the following screenshot, we see the SQL Server Installation Center screen. This is the
first screen we will encounter when running the SQL Server setup.exe provided in the
installation image. After choosing the Installation menu point on the left, we are confronted
with the generic installation options of SQL Server, which have only minimally changed in
the last releases. The second and third options presented on this screen are Install SQL
Server Management Tools and Install SQL Server Data Tools. If we read the descriptions
of these options, we note that both links will redirect us to the download page for either
SSMS or SSDT. This is the first clear indication that the delivery of these tools has now been
decoupled from the server installation.

SQL Server Tools

[69]

Figure 3 1 SQL Server Installation Center

SQL Server Tools

[70]

After clicking on Install SQL Server Management Studio, you should be redirected to the
download page, which should look like the following screenshot:

Figure 3 2 SQL Server Management Studio download page

The download page offers us the latest production version of SSMS on the main page,
together with any beta versions or community technology preview (CTP) of the software.
We are also able to see details of the current release, view and download previous releases,
and find information on change logs and release notes on the left of the web page.

SQL Server Tools

[71]

Figure 3 3 SQL Server Management Studio Setup Dialogue

After downloading the desired version of SSMS, we can run the installation just the same
way as with previous versions of the tool. The next immediately noticeable difference to
previous versions is the installation program itself. SSMS 2016 is based on Visual Studio
2015 Isolated Shell and as such, uses similar color schemes and iconography to Visual
Studio 2015.

Once the installation has completed, we can start SSMS and are greeted with a similar
starting screen to all previous versions of SSMS. The subtle differences in the application are
exactly that, subtle. The splash screen at application start shows the SSMS is now “powered
by Visual Studio”; otherwise there are no major indications that we are working in a tool
based on Visual Studio. The interface may feel familiar, but the menus and options available
are solely concentrated on working with SQL Server.

SQL Server Tools

[72]

Previously, SQL Server and the SQL Server Tools were packaged together, leading to bug
fixes and feature additions to the tools having to be bundled with Cumulative Updates
(CU), Service Packs (SP), or general version releases of the SQL Server product. Through
the decoupling of the applications SSMS and SSDT from SQL Server, we no longer have to
wait for CUs, SPs, or version releases of SQL Server before we can receive the
required/requested features and fixes for SSMS and SSDT. The SQL Server tools team has
taken immediate advantage of this and has made regular releases to both SSMS and SSDT
since the general release of SQL Server 2016. The initial release of SSMS 2016 was in June
2016 and there have been subsequent update releases in July 2016, August 2016, September
2016, and December 2016. Each release has included a range of bug fixes and feature
additions and are much more rapidly deployable when compared to previous versions of
SQL Server and SSMS.

A further advantage of the separation of the data tools from the server product is the
reduced overhead of managing the installation and updating the tools in a network. The
process of updating an already installed SSMS installation is demonstrated in Figure 3.4
where we see that a Check for Updates… option has been included in the Tools menu of
SSMS. Further to this, the separation of the tools as a standalone installer will reduce the
administrative overhead in larger organizations where software is deployed using
centralized management software. Where, previously, the larger ISO image of a SQL Server
installation was required, now a smaller standalone installer is available for distribution.

Figure 3 4 Check for Updates in SQL Server Management Studio

SQL Server Tools

[73]

We also have the option to request that SSMS automatically checks for updates at
application start. This will create a notification balloon message in Windows if a new
version is available. A sample notification on a Windows 10 machine can be seen in the
following screenshot:

Figure 3 5 Update notification for SQL Server Management Studio

Once the update check has been opened, SSMS connects to the update systems of Microsoft
and performs checks against the currently installed version and the latest downloadable
release of the software. If updates have been found, these will be offered via the update
mechanism, as shown in Figure 3.6. We are also able to decide whether the automated
update check should be performed or not.

Figure 3 6 SQL Server Management Studio Update Checker

These enhancements to the install and update process are not mind-blowing, especially
considering that these features have been available in other products for years or even
decades. However, these are the first main improvements which have to do with the switch
from a standalone application to an application based on the extremely successful Visual
Studio framework.

SQL Server Tools

[74]

New SSMS features and enhancements
As we saw with the installation process, there are already a few enhancements in the
installation and updating process for SSMS. Through the migration of the SSMS application
to the Visual Studio 2015 Isolated Shell, there are a number of additions into SSMS that will
be familiar to application developers who use Visual Studio 2015 (or one of its derivatives).
While some of these are simple improvements, these additions can be of help to many SQL
developers who have been isolated inside SSMS 2016.

Autosave open tabs
The first improvement is the option to choose whether SSMS should prompt to save
unsaved tabs when you decide to close SSMS. This is a simple change, but if you use SSMS
to run many ad hoc queries and do not want to constantly close out and save each tab, this
is now an option. The default is for SSMS to prompt when closing a window, but by
unchecking the checkbox marked in Figure 3.7, you can force SSMS to silently close these
windows.

Figure 3 7 Options window in SQL Server Management Studio – prompt to save unsaved work

SQL Server Tools

[75]

Searchable options
The next usability or productivity enhancement comes via the Visual Studio 2015 Isolated
Shell features. The options menu inside Visual Studio, and SSMS, is jam-packed with
features and functionalities that can be configured. Unfortunately, these options are so
numerous that it can be difficult to navigate and find the option you are interested in. To
aid us in the search for the settings we are interested in, we are now able to quickly search
and filter in the options menu. The ability to quickly search through the options for settings
via a text search without having to memorize where the settings are hidden is shown in
Figure 3.8. Go to Tools | Options and you are then able to type your search string in the
textbox in the top left of the options window. In Figure 3.8, the search term execution has
been entered, filtering the results as the word is typed into the search form.

Figure 3 8 Options window – search/filter

SQL Server Tools

[76]

Enhanced scroll bar
A further improvement that will be used on a much more regular basis is the enhanced
scroll bar in the T-SQL editor tab. In Figure 3.9 we can see an example of a T-SQL stored
procedure that has been opened for editing.

Figure 3 9 SQL Server Management Studio Scroll bar enhancements

The main points to pay attention to are: the margin on the left-hand side of the screen and
the scroll bar on the right-hand side of Management Studio. The enhancement here allows
us to easily identify a few details in our script window.

Green blocks show changes made in the editor have been saved to the file
currently being edited
Yellow blocks show changes that have not yet been saved
Red blocks show code that is invalid or has syntax errors (native IntelliSense
must be enabled for this feature to work)
The blue marker on the scroll bar shows the location of the cursor

These subtle changes are further examples of the Visual Studio base providing us with
further enhancements to make working inside SSMS easier. Knowing what code has been
changed or is defective on a syntax level allows us to quickly navigate through our code
inside SSMS.

SQL Server Tools

[77]

Execution plan comparison
Refactoring and improving the performance of code is a regular occurrence in the working
day of a developer. Being able to identify whether the refactoring of a particular query has
helped improve an execution plan can sometimes be difficult. To help us identify plan
changes, SSMS 2016 now offers the option to compare execution plans.

By saving the execution plan and the T-SQL of our initial query as a .sqlplan file, we can
then run our redesigned query and compare the two plans. In Figure 3.10, we can see how
to initiate a plan comparison.

Figure 3 10 Activating a plan comparison session

Upon activation, we must choose which .sqlplan file we would like to use for the
comparison session. The two execution plans are loaded into a separate Showplan
comparison tab in SSMS and we can evaluate how the plans differ or how they are similar.
In Figure 3.11, we see a plan comparison where there are only slight differences between the
plans.

Figure 3 11 Showplan comparison tab

SQL Server Tools

[78]

The nodes of the execution plans in Figure 3.11 that are similar have a red background,
while nodes that are different have a yellow background.

If we click the nodes inside one of the plans, the matching node in the comparison plan will
be highlighted and we can then investigate how they are similar, and how they differ.

Once we have chosen the node in our execution plan, we will be able to view the properties
of the node we wish to compare, similar to the details shown in Figure 3.12:

Figure 3 12 Showplan comparison – node properties

SQL Server Tools

[79]

The properties tab clearly shows which parts of the node are different. In Figure 3.12, we can
ignore the lower inequality, which is stating the Node ID is different, this will occur
wherever our query has a slightly changed plan. Of interest in this case is the Estimated
Operator Cost property, which is showing a difference. This example is very simple and
the differences are minimal, but we are able to identify differences in a very similar plan
with a few simple clicks. This sort of support is invaluable and a huge time saver, especially
when plans are larger and more complex.

Live Query Statistics
Following on from the plan comparison feature, we have one of the more powerful features
for a developer. Live Query Statistics (LQS) does exactly what the name says—it provides
us with a live view of a query execution so that we can see exactly how data is flowing
through the query plan. In previous versions of SQL Server and SSMS, we have been able to
request a static graphical representation of a query execution plan. There have been
multiple books, blogposts, videos, and training seminars designed and delivered to
thousands of developers and DBAs around the world in an attempt to improve people's
ability to understand these static execution plans. The ability of a developer to read and
interpret the contents of these plans rests largely on these resources. With LQS, we have an
additional tool at our disposal to be able to more easily identify how SQL Server is
consuming and processing the T-SQL query that we have submitted to it. The special sauce
in LQS is that we don't get a static graphical representation, but rather an animation of the
execution. The execution plan is displayed in SSMS and the arrows between the plan nodes
move to show the data flowing between the nodes. In Figure 3.13, we see how to activate
LQS inside SSMS for a particular query tab.

Figure 3 13 Activate Live Query Statistics

SQL Server Tools

[80]

As Live Query Statistics shows a moving image, we are at a distinct disadvantage when
trying to visualize it in a book! However, when we run a query with LQS activated, it is still
possible to show an example of how LQS looks while running, as we can see in Figure 3.14.

Figure 3 14 Live Query Statistics – Query execution

In Figure 3.14, we can see that the execution plan image that we are used to has been
extended slightly. We now see a few extra details. Starting in the top left of this image, we
see an estimated query progress in percent. As with anything to do with query execution
and statistics, SQL Server is always working with estimations that are based on table and
index statistics, which is a topic worthy of an entire book. We also see an execution time
displayed below each node that is still actively processing data. Also below each node is a
display of how many rows are still left to be processed (these are also based on estimations
through statistics). Finally, we see the arrows connecting each node; solid lines are where
execution has completed, dotted lines (which also move during execution), show where
data is still flowing and being processed.

You can try out the same query as shown in Figure 3.14 and see how LQS looks. This is a
long-running query against sys.objects to produce a large enough result set that LQS has
time to capture exhaustion information.

SELECT * FROM
 SYS.OBJECTS AS o1
CROSS JOIN sys.objects AS o2
CROSS JOIN sys.objects AS o3

This sample query should run long enough to allow LQS to display an animated query plan
long enough to understand how LQS makes a query plan easier to understand. It should
also be clear that LQS can only display a useful animation for queries that for run longer
than a few seconds, as the animation only runs for the duration of the query.

SQL Server Tools

[81]

This moving display of data flow allows us as developers to understand how SQL Server is
processing our query. We are able to get a better insight into where execution is spending
the most time and resources and also where we may need to consider re-writing a query or
applying different indexing to achieve better results. LQS, coupled with query plan
comparisons will allow us as developers to design better database solutions and better
understand how SQL Server processes our queries. In particular, how SQL Server must wait
for certain nodes in an execution plan to complete before continuing onto the next node.

However, we must not forget: running LQS, similar to running a trace, requires a certain set
of permissions and also consumes resources on the server. We should approach our queries
with LQS at the development stage and attempt to write optimal code before we deploy it
into production. LQS should therefore be used primarily on your development work in a
test environment and not in your production environment.

SQL Server Data Tools
As with the installation of SSMS, SQL Server Data Tools (SSDT) is also offered as a
separate download. This can be found via the SQL Server setup screen shown at the
beginning of the chapter. Clicking on Install SQL Server Data Tools will launch a web
browser, directing to the download page for SSDT. This download page offers the latest
stable build and also the latest release candidate of the next version of SSDT (with the usual
warning of a release candidate not being production-ready). SSDT is delivered with the
same Visual Studio Integrated Shell as SSMS, and can be installed as a standalone tool.
However, SSDT is aimed at developers and the workflows associated with developing
database solutions as a team member. This includes the processes of source control and the
packaging of project deployments. With this in mind, it is also possible to install SSDT on a
machine which has the full Visual Studio environment installed. Doing so will integrate
SSDT into Visual Studio and incorporate the database development templates and
workflows, allowing Visual Studio to remain the development environment, instead of
adding a separate environment just for database development.

SQL Server Tools

[82]

If Visual Studio is already installed, the SQL Server Data Tools Update can be installed from
inside Visual Studio. To download and install this update, navigate to Tools | Extensions
and Updates and select the node Updates on the left side of the Extensions and Updates
modal window, as shown in the following screenshot:

Figure 3 15 SSDT – Extensions and Updates

Once installed, SSDT (whether installed as a standalone tool or integrated into Visual
Studio) provides four separate project templates to help jump-start development of SQL
Server projects:

Relational databases: This is a template designed for traditional relational
database development and supports SQL Server versions from 2005 to 2016
(although SQL Server 2005 is now a deprecated version). SSDT also supports on-
premises installations and Azure SQL Database projects (the Database as a
Service solution hosted in Microsoft Azure). It is also possible to design queries
(but not full projects) for Azure SQL Data Warehouse (the cloud-based data
warehouse solution, hosted in Microsoft Azure).
Analysis Services models: This template is designed to assist in the design and
deployment of Analysis Services projects and supports SQL Server versions from
2008 to 2016.
Reporting Services reports : This template is designed to assist in the design and
deployment of Reporting Services projects and supports SQL Server versions
2008 until 2016.

SQL Server Tools

[83]

Integration Services packages: This template is designed to assist in the design
and deployment of Integration Services projects and supports SQL Server
versions from 2012 to 2016.

The template choice dictates what files and folders are automatically prepared at project
creation time. Choosing File | New Project presents the new project dialogue shown in the
following screenshot. There are two additions to the project type navigation tree. Business
Intelligence groups Analysis Services, Integration Services, and Reporting
Services projects together. The relational database project type is found under the SQL
Server navigation node.

Figure 3 16 SSDT – New Project Dialogue

SQL Server Tools

[84]

As shown in the preceding screenshot, a project folder is created and the option to add the
project to a source control system is available. Visual Studio offers the option to natively
access the source control system's Visual Studio Team Services (a hosted source control
system from Microsoft) or alternatively to use a local source control system such as Git.
Furthermore, source control systems can be added through the extensive extensions library
offered through Visual Studio and can be accessed through the Tools | Extensions and
Updates menu described earlier in this section.

Working with SSDT and the aforementioned templates should be familiar to any developer
that has used Visual Studio before. Upon creating a project, the next step is to begin by
adding new items (tables, view, stored procedures, and so on). The dialogue for this is
filtered down to the project type and for a SQL Server database project, we have the option
of creating items ranging from Application Roles to XML Schema Collections. Of note is the
ability to create SQL CLR objects (C# based common language runtime objects), which
provide the ability to create more complex calculations that are otherwise not possible (or
perform poorly) in the T-SQL language.

Figure 3 17 Add New SQL CLR C# Aggregate

SQL Server Tools

[85]

The advantages of using SSDT over SSMS for developers is the focus on development
workflows and the integrations in the program: source control integration, project
structuring, and object templates. This developer focus is further strengthened through the
possibility of connecting the source control system to a build system and the option to
extend the build system to include continuous integration/deployment (CI/CD). Both
automated builds and CI/CD have become ubiquitous in applicationdevelopment circles in
the past decade. This area has only seen limited support for database development until
now, because databases also permanently store data. Now that application development
environments have matured, the ability to introduce CI/CD to database projects has become
a reality. Luckily, the foundation for CI/CD has long been laid for application development
and so the work to implement CI/CD into a database project is greatly reduced. SSDT is
therefore fully capable of integrating SQL Server database projects into a source control
system and to extend those projects into automated build, test, and deployment workflows.

There are now a wealth of options to cover CI/CD in the SQL Server world. The tools
TeamCity for continuous integration and Octopus Deploy are two products that have been
proven to work well in conjunction with SSDT to provide a smooth process for CI/CD in
SQL Server projects. An interesting and useful website to visit for more information on
topics on SSDT is the Microsoft SQL Server Data Tools Team Blog at h t t p s ://b l o g s . m s d n . m i

c r o s o f t . c o m /s s d t /.

Tools for developing R code
As you probably already know, SQL Server 2016 brings support for the R language. Of
course, you need to have a development tool for the R code. There is a free version of the
integrated development environment (IDE) tool RStudio IDE that has been available for
quite a long time. This is probably the most popular R tool. In addition, Microsoft
developed R Tools for Visual Studio (RTVS), a plug-in for Visual Studio 2015, which
enables you to develop R code in an IDE and is well-known among developers who use
Microsoft products and languages.

In this section, you will learn about:

RStudio IDE
R Tools for Visual Studio

SQL Server Tools

[86]

RStudio IDE
The first tool you get for writing and executing R code is the R Console. The console uses
the greater than (>) sign as a prompt for the user. In the console, you write commands line
by line, and execute them by pressing the Enter key. You have some limited editing
capabilities in the console. For example, you can use the up and down arrow keys to
retrieve the previous or the next command in the buffer. The following figure shows the
console, with the demo() command executed, which opened an Explorer window with a
list of demo packages.

Because R is a functional package, you close the R Console with the q() function call.
Anyway, you probably want to use a nicer, graphical environment. Therefore, it is time to
introduce the RStudio IDE.

Figure 3 18 R Console

SQL Server Tools

[87]

RStudio is a company that is dedicated to helping the R community with its products
(https://www.rstudio.com/). Their most popular product is the RStudio IDE, or, as most R
developers used to say, just RStudio. RStudio is available in open source and commercial
editions, in both cases, for desktop computers or for servers. The open source desktop
edition, which is described in this section, is very suitable for developing in R. Already, this
edition has built in the majority of features needed for smooth and efficient coding. This
edition is described in this section.

You can download the RStudio IDE from the RStudio company site. The IDE supports
Windows, macOS, and Linux. Once you install it, you can open it through a desktop
shortcut, which points to the C:Program FilesRStudiobinrstudio.exe file, if you used
the defaults during installation.

RStudio screen is, by default, split into four panes when you open an R script file, as Figure
3.19 shows. The open script file is showing the R script used for the demos in Chapter 13,
Supporting R in SQL Server, of this book.

Figure 3 19 RStudio IDE

SQL Server Tools

[88]

The bottom-left pane is the Console pane. It works similarly to the R Console command
prompt utility shipped with the R engine. You can write statements and execute them one
by one, by pressing the Enter key. However, in RStudio, you have many additional
keyboard shortcuts available. One of the most important keyboard shortcuts is the Tab key,
which provides you with the code complete option. You can press the Tab key nearly
anywhere in the code. For example, if you press it when you are writing function
arguments, it gives you a list of possible arguments, or, if you have already started to write
the name of an object, all objects that start with the letters you have already written.

The top-left pane is the Source pane that is, by default, the settings used for the script.
Writing R code line by line in a console is simple, but not very efficient for developing a
script with thousands of lines. The Source pane does not execute your R code line by line.
You highlight portions of your code and execute it by pressing the Ctrl + Enter keys.

The top-right pane is the Environment pane. It shows you the objects in your current
environment, the objects currently loaded in memory. However, this pane has more than
one function. You can see additional tabs at the top of the pane. By default, you see the
History tab, the tab that leads you to the History pane where you can see the history of
previous commands. The history goes beyond the commands in the current session, in the
current console or script.

The bottom-right pane is also a multi-purpose pane. It includes the Help pane, Plots pane,
Files pane, Packages pane, and Viewer pane by default. You can use the Files tab to check
the files you saved in your RStudio account. With the help of the Packages tab, you can get
a list of all R packages you have access to in the current session. The Help tab brings you, of
course, to the R documentation and help system. You can use the Viewer tab to get to the
Viewer pane, where you can see local web content that you can create with some graphical
packages. The Plots pane shows you the plots you created by executing R code either in the
Console or in the Script pane.

Figure 3.20 shows all four panes in action. You can see the usage of the Tab key in the Source
pane to autocomplete the name of the dataset used in the plot() function. The dataset
used is the iris dataset, a very well-known demo dataset in R. You can see the command
echoed in the Console pane. The Environment pane shows details about the iris dataset
that is loaded in memory. The Plots pane shows plots for all of the variables in the demo
iris dataset.

SQL Server Tools

[89]

Figure 3 20 RStudio IDE in action

Note that you can enlarge the plot and save it in different graphical formats from the Plots
pane.

There are literally dozens of keyboard shortcuts. It is impossible to memorize all of them.
Nevertheless, you don't need to know all of the shortcuts before you start writing R code.
You can always get a quick reference of the keyboard shortcuts by pressing the Alt + Shift
+ K keys at the same time. The Keyboard Shortcut Quick Reference cheat sheet appears, as
Figure 3.21 shows. You can get rid of this cheat sheet by pressing the Esc key.

Note that, although exhaustive, even this cheat sheet is not complete. In the top-right corner
of the cheat sheet you can see a link to even more shortcuts. Finally, it is worth mentioning
that you can modify the pre-defined shortcuts and replace them with your own.

SQL Server Tools

[90]

You have access to many of the keyboard shortcut actions through the menus at the top of
the RStudio IDE window. For example, in the Tools menu, you can find the link to the
keyboard shortcuts cheat sheet. In the Help menu, you can also find links to various cheat
sheets, for example, to the complete RStudio IDE cheat sheet, a PDF document you can
download from the RStudio site, besides the help options you would usually expect.

Figure 3 21 RStudio IDE keyboard shortcuts cheat sheet

R Tools for Visual Studio
Microsoft developed R Tools for Visual Studio (RTVS) for those developers who are used
to developing code in the popular Microsoft's IDE, Visual Studio. You can download the
tools from https://www.visualstudio.com/vs/rtvs/.

Once you install RTVS, you open the Visual Studio as you would open it for any other
project. Of course, since SQL Server Data Tools (SSDT) is not a separate product, it is just
another shortcut to the Visual Studio IDE. You can also open SSDT and get the R Tools
menu besides other common Visual Studio menus.

SQL Server Tools

[91]

With RTVS, you get most of the useful panes of the RStudio IDE. You get the Source pane,
the Console pane, which is called R Interactive in RTVS, and the Plots pane. Figure 3.22
shows the RTVS window with the Source, R Interactive, and the Plots pane open, showing
the same plots for the variables from the iris demo dataset, as shown in Figure 3.20 earlier
in this section.

Figure 3 22 R Tools for Visual Studio

If you are familiar with the Visual Studio IDE, then you might want to test RTVS.

Summary
In this chapter, we have taken a look at the new additions in the developer toolset for SQL
Server 2016. There have been some long-awaited improvements made, especially the
separation of SQL Server Management Studio from the release cycle of SQL Server itself.
Many developers are hoping that the release velocity of SSMS will remain as high as it has
been in the months since the SQL Server 2016 release. Almost monthly releases mean we all
have the chance to get extra features and bug fixes much more quickly than in previous
years.

SQL Server Tools

[92]

Some of the feature additions to SSMS are quite powerful and will allow us as developers to
be more efficient. Live Query Statistics provide us with excellent insights into how our
queries are actually processed, removing parts of the “guessing game” when trying to
refactor or tune our queries.

For SQL Server developers, there are two new development environments for developing
the R code. Of course, one of them, the RStudio IDE is well-known among R developers.
Because it is so widely used, it will probably be the first choice when developing R code for
SQL Server developers. Nevertheless, if you are used to the Visual Studio IDE, you might
give R Tools for Visual Studio a try.

After this short excursion into the tools that are delivered with SQL Server 2016, we
continue our journey through the new features and technologies in SQL Server 2016 in
Chapter 4, Transact-SQL Enhancements.

4
Transact-SQL Enhancements

Each new SQL Server version brings numerous extensions and improvements to Transact-
SQL language. Most of them are used to support newly added database engine features, but
some of them address missing functionalities and limitations in previous versions. SQL
Server 2016 comes up with many features that require extensions in Transact-SQL: temporal
tables, JSON support, improvements for memory-optimized tables, columnstore tables and
indexes, new security enhancements, and so on. They will be explored in detail in chapters
dedicated to appropriate features.

This chapter covers small Transact-SQL features that can make developers' work more
productive and enhancements that can increase the availability of database objects and
enlarge the scope of existing functionalities, limited in the previous SQL Server versions.

This chapter is divided into the following three sections:

New and enhanced Transact-SQL functions and expressions
Enhanced DML and DDL statements
New query hints

In the first section, you will see new out-of-the-box functions and expressions that allow
developers string manipulations, compressions with the GZIP algorithm, and playing with
session-scoped variables. In addition, the removal of restrictions or limitations of some
functions makes them more interesting for usage in SQL Server 2016.

The further sections cover enhancements in data manipulation and data definition
statements. The most important one will let you change the data type or other attributes of a
table column, while the table remains available for querying and modifications. This is a
very important feature for systems where continuous availability is required. You will also
be aware of other improvements that let you perform some actions faster or with less
written code.

Transact-SQL Enhancements

[94]

Finally, there will be a demonstration on how to use newly added query hints to improve
query execution and avoid problems caused by the Spool operator or inappropriate
memory grants.

New and enhanced functions and
expressions
SQL Server 2016 introduces several new functions that can help developers to be more
productive and efficient. Additionally, by removing limitations in some existing functions,
their scope of usage has been enlarged. Now, SQL Server contains more than 300 built-in
functions. Here is the list of new or changed functions and expressions in SQL Server 2016:

Two new string functions STRING_SPLIT and STRING_ESCAPE
New date function and new expression DATEFDIFF_BIG and AT TIME ZONE
Four new system functions COMPRESS, DECOMPRESS, SESSION_CONTEXT, and
CURRENT_TRANSACTION_ID

Enhancements in the cryptographic function HASHBYTES
Four JSON-related functions ISSJON, JSON_VALUE, JSON_QUERY, JSON_MODIFY,
and one new rowset function OPENJSON

STRING_SPLIT
Since SQL Server does not support arrays, when multiple values need to be send to it,
developers use a list of values (usually comma-separated ones).

SQL Server 2008 introduced an excellent feature called Table-Valued Parameters (TVP),
which allows you to pack values in a table and transfer them to SQL Server in table format.
On the server, stored procedures, or queries, use this parameter as a table variable and can
leverage set-based operations to improve performance, compared to separate executions
per single parameter value. Thus, from SQL Server 2008, it is strongly recommended to use
TVP instead of a list of values in such cases.

However, lists of values as parameters for stored procedures are still widely used, mainly
for the following two reasons:

Missing support for TVP in JDBC drivers: Therefore, Java applications and
services still have to use comma-separated lists or XML to transfer a list of values
to SQL Server

Transact-SQL Enhancements

[95]

Legacy code: Significant amount of Transact-SQL code from the previous
versions, where TVP was not supported

When a list of values is transferred to SQL Server as a stored procedure parameter in the
stored procedure body, this list should be converted to a table. Until SQL Server 2016, there
was no built-in function that could perform this action. Developers had to write user-
defined functions (UDF) or play with the FOR XML PATH extension for that purpose. An
excellent overview and performance comparison of the existing user-defined functions for
converting a string to a table can be found in the article Split strings the right way – or the next
best way written by Aaron Bertrand. This article is available at
http://sqlperformance.com/2012/07/t-sql-queries/split-strings.

You might ask yourself why companies still have legacy code in
production systems and why they don't migrate the old code so that they
can use the benefits of new features and enhancements. For instance, why
are old implementations with comma-separated lists not replaced by the
recommended TVPs? The migration is an easy task. This is true, the
migration steps are not complex and every developer can perform them.
However, in a medium or large company, developers cannot decide what
should be done. Their responsibility scope is related to how and not to
what. Therefore, in such cases, the developer can suggest the migration to
project managers or product owners and the decision about the priority of
the action is made on the business side. To migrate a comma-separated list
to TVP, you need to change not only the body of the stored procedures,
but also its parameters, and its interface. You also need to change the data
access layer, to touch the application code, unit tests, to compile the
project, to deploy it. Even if your tests are fully automated, this is not a
trivial effort. On the other hand, the migration does not bring significant
improvements for customers. Nowadays, development processes are
mostly based on the agile methodology and features mostly wanted and
appreciated by customers have the highest priority. Therefore, such
migration actions usually remain further down the to-do list, waiting for
a miracle to happen.

Finally, the SQL Server development team added the STRING_SPLIT function into the latest
release. This is a table-valued function and converts a delimited string into a single column
table. The function accepts two input arguments:

String: This is an expression of any nondeprecated string data type that needs to
be split

Transact-SQL Enhancements

[96]

Separator: This is a single character used as a separator in the input string

Since it is a table-valued function, it returns a table. The returned table contains only one
column with the value name and with a data type and length that are the same as that of
the input string.

Here is an example showing how this function can be used to produce a three-row table for
a comma-separated list as input. Execute this code:

USE tempdb;
SELECT value FROM STRING_SPLIT(N'Rapid Wien,Benfica Lisboa,Seattle
Seahawks',',');

The preceding query produces the following output:

value

Rapid Wien
Benfica Lisboa
Seattle Seahawks

The actual execution plan for the preceding query looks as follows:

Figure 4 1 Estimated Number of Rows for the STRING_SPLIT function

Notice that, the Estimated Number of Rows is 50. This is always the case with this function:
the estimated output is 50 rows and it does not depend on the number of string elements.
Even when you specify the OPTION (RECOMPILE) query hint, the estimation remains the
same. In the case of user-defined table-valued functions, the estimated number of rows is
100.

As a table-valued function, STRING_SPLIT can be used not only in the SELECT clause, but
also in FROM, WHERE, and wherever a table expression is supported. To demonstrate its
usage, you will use the new SQL Server sample database WideWorldImporters. The
database is available for download at
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importe

rs-v1.0. The following query extracts stock items having the Super Value tag in the Tags
attribute:

Transact-SQL Enhancements

[97]

USE WideWorldImporters;
SELECT StockItemID, StockItemName, Tags
FROM Warehouse.StockItems
WHERE '"Super Value"' IN (SELECT value FROM
STRING_SPLIT(REPLACE(REPLACE(Tags,'[',''), ']',''), ','));

This query produces the following result:

StockItemID StockItemName Tags
----------- -- ----------------
150 Pack of 12 action figures (variety) ["Super Value"]
151 Pack of 12 action figures (male) ["Super Value"]
152 Pack of 12 action figures (female) ["Super Value"]

The following code example demonstrates how this function can be used to return details
about orders for IDs provided in a comma-separated list.

USE WideWorldImporters;
DECLARE @orderIds AS VARCHAR(100) = '1,3,7,8,9,11';
SELECT o.OrderID, o.CustomerID, o.OrderDate FROM Sales.Orders AS o
INNER JOIN STRING_SPLIT(@orderIds,',') AS x ON x.value= o.OrderID;

This produces the following output:

OrderID CustomerID OrderDate
----------- ----------- ----------
1 832 2013-01-01
3 105 2013-01-01
7 575 2013-01-01
8 964 2013-01-01
9 77 2013-01-01
11 586 2013-01-01

Note that, since the function returns a column of string data type, there is an implicit
conversion between the columns involved in the JOIN clause.

The function returns an empty table if the input string is not provided, as you can see in the
next code example:

DECLARE @input AS NVARCHAR(20) = NULL;
SELECT * FROM STRING_SPLIT(@input,',');

This is the output produced by the preceding command:

value

Transact-SQL Enhancements

[98]

The STRING_SPLIT function requires that the database is in compatibility level 130. If this
is not the case, you will get an error. The next code example demonstrates an attempt to use
this function under compatibility level 120:

USE WideWorldImporters;
ALTER DATABASE WideWorldImporters SET COMPATIBILITY_LEVEL = 120;
GO
SELECT value FROM STRING_SPLIT('1,2,3',',');
/*Result:
Msg 208, Level 16, State 1, Line 65
Invalid object name 'STRING_SPLIT'.
*/
--back to the original compatibility level
ALTER DATABASE WideWorldImporters SET COMPATIBILITY_LEVEL = 130;

This is a handy function and will definitely have its use cases. However, as you will have
already noticed, there are some limitations:

Single character separator: The function accepts only a single character
separator; if you had a separator with more characters, you would still need to
write your own user-defined function.
Single output column: The output is a single column table, without the position
of the string element within the delimited string. Thus, you can only sort the
output by the element name.
String data type: When you use this function to delimit a string of numbers,
although all the values in the output column are numbers, their data type is
string and when you join them to numeric columns in other tables, data type
conversion is required.

If these limitations are acceptable to you, you should use them in future developments. I
would always suggest a built-in function rather than a user-defined one if they are similar
from a performance point of view. It is always predeployed and available in all databases.
Once again, take note that the database must be in the latest compatibility mode (130).

STRING_ESCAPE
The STRING_ESCAPE function is a scalar function and escapes special characters in input
text according to the given formatting rules. It returns input text with escaped characters.
The function accepts the following two input arguments:

Text: This is an expression of any nondeprecated string data type

Transact-SQL Enhancements

[99]

Type: This must have the JSON value, since SQL Server 2016 currently supports
only JSON as the formatting type

The return type of the function is nvarchar(max). The STRING_ESCAPE function is a
deterministic function; it always returns the same result for the same input parameters.

Data types text, ntext, and image are marked as deprecated features in
SQL Server 2005. This means they can be removed in one of the next
versions. The fact that they are still deprecated could mean that they will
still be supported, because of legacy code. Microsoft does not want to take
risks with actions that can cause damaging changes in customer
applications. However, as you can see with these two functions, all new
features, functions, and expressions that manipulate with strings don't
accept these data types. This is an implicit way to force you to use the
recommended data types varchar(max), nvarchar(max), and
varbinary(max) instead of their deprecated counterparts.

JSON's escaping rules are defined in the ECMA 404 standard specification. Table 4.1
provides the list of characters that must be escaped according to this specification and their
JSON conform representation:

Special character JSON conform character

Double quote "

Backspace \b

Solidus \/

Reverse solidus \\

Form feed \f

Tabulation \t

Carriage return \r

New line \n

Table 4 1 JSON escaping rules

In addition to this, all control characters with character codes in the range 0-31 need to be
escaped, too. In JSON output, they are represented in the following format: \u<code>.
Thus, the control character CHAR(0) is escaped as \u0000, while CHAR(31) is represented
by \u001f.

Transact-SQL Enhancements

[100]

The following several examples will be used to demonstrate how this function works.
Suppose you need to escape the following string: a\bc/de"f. According to JSON's
escaping rules, three characters should be escaped: back slash, solidus, and double quote.
You can check it by calling the STRING_ESCAPE function for this string as the input
argument:

SELECT STRING_ESCAPE('a\bc/de"f','JSON') AS escaped_input;

Here is the result returned by the function:

escaped_input

a\\bc\/de"f

The following example demonstrates the escape of the control characters with the code 0, 4,
and 31:

SELECT
 STRING_ESCAPE(CHAR(0), 'JSON') AS escaped_char0,
 STRING_ESCAPE(CHAR(4), 'JSON') AS escaped_char4,
 STRING_ESCAPE(CHAR(31), 'JSON') AS escaped_char31;

This function call produces the following output:

escaped_char0 escaped_char4 escaped_char31
------------- ------------- --------------
\u0000 \u0004 \u001f

The next example shows that the horizontal tab represented by the string and by the code is
escaped with the same sequence:

SELECT
 STRING_ESCAPE(CHAR(9), 'JSON') AS escaped_tab1,
 STRING_ESCAPE(' ', 'JSON') AS escaped_tab2;

Both statements resulted in a \t sequence:

escaped_tab1 escaped_tab2
------------ --------------
\t \t

Transact-SQL Enhancements

[101]

The function returns a NULL value if the input string is not provided. To check this, run the
following code:

DECLARE @input AS NVARCHAR(20) = NULL;
SELECT STRING_ESCAPE(@input, 'JSON') AS escaped_input;

You will get the expected result:

escaped_input

NULL

Escaping occurs both in the names of properties and in their values. Consider the following
example, where one of the keys in the JSON input string contains a special character:

SELECT STRING_ESCAPE(N'key:1, i\d:4', 'JSON') AS escaped_input;

Here is the output:

escaped_input

key:1, i\\d:4

The STRING_ESCAPE function is internally used by the FOR JSON clause to automatically
escape special characters and represents control characters in the JSON output. It can also
be used for formatting paths, especially if you need to run it on UNIX systems (which is
happening with R integration and SQL Server on Linux). Sometimes, a forward slash or
backslash needs to be doubled, and this function is perfect when preparing code for Unix or
CMD commands; a backslash needs to be doubled and converted to a forward slash. Unlike
the STRING_SPLIT function, this function is available in a SQL Server 2016 database, even
in old database compatibility levels.

COMPRESS
The COMPRESS function is a scalar function and compresses the input variable, column, or
expression using the GZIP algorithm. The function accepts an expression, which can be
either string or binary, but again, the deprecated data types text, ntext, and image are not
supported.

The return type of the function is varbinary(max).

Transact-SQL Enhancements

[102]

Use this function with wide text columns, especially when you do not plan to query them
often. For large strings, the compression rate can be significant, particularly when the
original string is an XML. Here is an example of significant compression. The example uses
the output of the system Extended Event session system_health to check the compression
rate when you use the COMPRESS function for the target_data column. Here is the code:

SELECT
 target_name,
 DATALENGTH(xet.target_data) AS original_size,
 DATALENGTH(COMPRESS(xet.target_data)) AS compressed_size,
 CAST((DATALENGTH(xet.target_data) -
DATALENGTH(COMPRESS(xet.target_data)))*100.0/DATALENGTH(xet.target_data) AS
DECIMAL(5,2)) AS compression_rate_in_percent
FROM sys.dm_xe_session_targets xet
INNER JOIN sys.dm_xe_sessions xe ON xe.address = xet.event_session_address
WHERE xe.name = 'system_health';

The following is the output generated by this query on my test server. You might get a
different output, but similar results.

target_name original_size compressed_size compression_rate_in_pct
------------ -------------- ---------------- -----------------------
ring_buffer 8386188 349846 95.83
event_file 410 235 42.68

You can see a quite impressive compression rate of 96%. On the other hand, the compressed
representation of a short string can be even longer than the original. Consider the following
example, where a short string with a size of 30 bytes is used as input:

DECLARE @input AS NVARCHAR(15) = N'SQL Server 2016';
SELECT @input AS input, DATALENGTH(@input) AS input_size, COMPRESS(@input)
AS compressed, DATALENGTH(COMPRESS(@input)) AS comp_size;

The result of this query (with abbreviated compressed value) is:

input input_size compressed comp_size
------------ ----------- --------------------------------- ---------
SQL Server 2016 30 0x1F8B08000000000004000B660864F061 46

The COMPRESS function is not a replacement for row or page compression. It is invoked for
a single expression and additional optimizations are not possible (exactly the same string
tokens exist in some other row or column).

Transact-SQL Enhancements

[103]

To compare compression rates for the Row and Page compression on one side and the
compression by the COMPRESS function on the other side, I have created four clone tables of
the system table sys.messages. I have left one uncompressed and have compressed the
other three with ROW, PAGE, and COMPRESS functions respectively. The complete code for
creating and populating tables, as well as for a comparison between compression methods,
can be found in the code accompanying this book. Figure 4.2 displays the result of this
comparison:

Figure 4 2 Compare compression rates between Row, Page, and Compress

You can see that (slightly) more compression can be achieved using Row and Page
compression, but a notable compression is also obtained using the COMPRESS function.

Use this function when you want to save some storage space or to compress data that needs
to be archived or logged and is thus rarely queried. Since it uses a common and well-known
GZIP algorithm, you can compress/decompress data not only in SQL Server but also in
client applications and tools communicating with SQL Server.

DECOMPRESS
The DECOMPRESS function decompresses the compressed input data in binary format
(variable, column, or expression) using GZIP algorithm.

The return type of the function is varbinary(max). Yes, you read it right—the result of the
decompression is still a varbinary data type and if you want to get the original data type,
you need to cast the result explicitly.

Transact-SQL Enhancements

[104]

Consider the following example, where the input string is first compressed and then
decompressed with the same algorithm:

DECLARE @input AS NVARCHAR(100) = N'SQL Server 2016 Developer''s Guide';
SELECT DECOMPRESS(COMPRESS(@input));

Since the function DECOMPRESS is logically complementary to the COMPRESS function, you
would expect to get the original input string as the result. The result is, however, in the
binary format:

input

0x530051004C002000530065007200760065007200200032003000310036002000440065007
60065006C006F0070006500720027007300200047007500690064006500

To get the input string back, you need to convert the result data type to the initial data type:

DECLARE @input AS NVARCHAR(100) = N'SQL Server 2016 Developer''s Guide';
SELECT CAST(DECOMPRESS(COMPRESS(@input)) AS NVARCHAR(100)) AS input;

Now, you will get the expected result:

input

SQL Server 2016 Developer's Guide

The input parameter for the DECOMPRESS function must have previously
been with the GZIP algorithm compressed binary value. If you provide
any other binary data, the function will return NULL.

Notice an interesting phenomenon if you miss the correct original type and cast to varchar
instead of nvarchar:

DECLARE @input AS NVARCHAR(100) = N'SQL Server 2016 Developer''s Guide';
SELECT CAST(DECOMPRESS(COMPRESS(@input)) AS VARCHAR(100)) AS input;

When you use the Results to Text option to display query results, the following result is
shown in SQL Server Management Studio:

input
--
S Q L S e r v e r 2 0 1 6 D e v e l o p e r ' s G u i d e

Transact-SQL Enhancements

[105]

However, when the Results to Grid option is your choice, the output looks different, as
shown in Figure 4.3:

Figure 4 3 Side effect of an incorrect data type casting

Moreover, if you change the original type and cast to the Unicode data type, the result is
very strange. When you swap the data types in the input string and the casted result, as
shown here:

DECLARE @input AS VARCHAR(100) = N'SQL Server 2016 Developer''s Guide';
SELECT CAST(DECOMPRESS(COMPRESS(@input)) AS NVARCHAR(100)) AS input;

The output looks the same in all display modes, as shown here:

As a comment on this bizarre behavior, keep in mind that it is always good to cast to the
original data type and not to rely on the conversion internals.

CURRENT_TRANSACTION_ID
The CURRENT_TRANSACTION_ID function, as its name suggests, returns the transaction ID
of the current transaction. The scope of the transaction is the current session. It has the same
value as the transaction_id column in the dynamic management view
sys.dm_tran_current_transaction. The function has no input arguments and the
returned value is of type bigint.

Multiple calls of this function will result in different transaction numbers, since every single
call is interpreted as an implicit transaction.

SELECT CURRENT_TRANSACTION_ID();
SELECT CURRENT_TRANSACTION_ID();
BEGIN TRAN
SELECT CURRENT_TRANSACTION_ID();
SELECT CURRENT_TRANSACTION_ID();
COMMIT

Transact-SQL Enhancements

[106]

The result on my machine is (you will definitely get different numbers, but with the same
pattern):

921170382
921170383
921170384
921170384

There is also the SESSION_ID function, which returns the current session ID, but it works
only in Azure SQL Data Warehouse and in Parallel Data Warehouse. When you call it in an
on-premises instance of SQL Server 2016, instead of the current session ID, you will see the
following error message:

Msg 195, Level 15, State 10, Line 1
'SESSION_ID' is not a recognized built-in function name.

You can use the CURRENT_TRANSACTION_ID function to check your transaction in active
transactions as follows:

SELECT * FROM sys.dm_tran_active_transactions WHERE transaction_id =
CURRENT_TRANSACTION_ID();

SESSION_CONTEXT
Using and maintaining session variables or data within a user session in SQL Server is not
so straightforward. With the SET CONTEXT_INFO statement, you can set a 128-bytes long
binary value and you can read it with the CONTEXT_INFO function. However, having one
single value within a scope of the session is a huge limitation. SQL Server 2016 brings more
functionality for playing with session-scope-related data.

The SESSION_CONTEXT function returns the value of the specified key in the current session
context. This value is previously set using the sys.sp_set_session_context procedure.
It accepts the nvarchar data type as an input parameter. Interestingly, the function returns
a value with the sql_variant data type.

Use the following code to set the value for the language key and then call the
SESSION_CONTEXT function to read the value of the session key:

EXEC sys.sp_set_session_context @key = N'language', @value = N'German';
SELECT SESSION_CONTEXT(N'language');

Transact-SQL Enhancements

[107]

The result of this action is shown as follows:

German

As mentioned earlier, the input data type must be nvarchar. An attempt to call the
function with a different data type (including varchar and nchar!) ends up with an
exception.

SELECT SESSION_CONTEXT('language');

You get the following message:

Msg 8116, Level 16, State 1, Line 51
Argument data type varchar is invalid for argument 1 of session_context
function.

The function argument does not need to be a literal; you can put it in a variable, as shown in
the following code example:

DECLARE @lng AS NVARCHAR(50) = N'language';
SELECT SESSION_CONTEXT(@lng);

The size of the key cannot exceed 256 bytes and the limit for the total size of keys and values
in the session context is 256 KB.

The system stored procedure sys.sp_set_session_context and the function
SESSION_CONTEXT allow you to create and maintain session variables within SQL Server
and overcome limitations from previous SQL Server versions. The SESSION_CONTEXT
function is used as a part of the Row-Level Security feature, and it will be explored in more
detail in Chapter 8, Tightening the Security.

DATEDIFF_BIG
The DATEDIFF function returns a number of time units crossed between two specified
dates. The function accepts the following three input arguments:

datepart: This is the time unit (year, quarter, month… second,
millisecond, microsecond, and nanosecond)
startdate: This is an expression of any date data type (date, time,
smalldatetime, datetime, datetime2, and datetimeoffset)
enddate: This is also an expression of any date data type (date, time,
smalldatetime, datetime, datetime2, and datetimeoffset)

Transact-SQL Enhancements

[108]

The return type of the function is int. This means that the maximum returned value is
2,147,483,647. Therefore, if you specify minor units (milliseconds, microseconds, or
nanoseconds) as the first parameter of the function, you can get an overflow exception for
huge date ranges. For instance, this function call will still work, as follows:

SELECT DATEDIFF(SECOND,'19480101','20160101') AS diff;

And it returns this result:

diff

2145916800

However, the following example will not work:

SELECT DATEDIFF(SECOND,'19470101','20160101') AS diff;

The result of this call is the following error message:

Msg 535, Level 16, State 0, Line 392
The datediff function resulted in an overflow. The number of dateparts
separating two date/time instances is too large. Try to use datediff with a
less precise datepart.

Due to the aforementioned data type limit, the maximal date difference that DATEDIFF can
calculate for the second as date part is about 68 years. In Table 4.2, you can find the list of
date part units and the maximum supported date difference for them.

Date part Maximal supported date difference

Hour 250,000 years

Minute 4,086 years

Second 68 years

Millisecond 25 days

Microsecond 36 minutes

Nanosecond 2,14 seconds

Table 4 2 Maximal supported date difference per date part for the function DATEDIFF

In order to cover a greater date range for short date parts, the SQL Server development
team has added a new function in SQL Server 2016 DATEDIFF_BIG.

Transact-SQL Enhancements

[109]

It has exactly the same interface as DATEDIFF, the only difference is its return
type—bigint. This means that the maximal returned value is 9,223,372,036,854,775,807.
With this function, you will not get an overflow even when you specify a huge date range
and choose a minor date part. The following code calculates the difference between the
minimal and maximal value supported by the datetime2 data type in microseconds:

SELECT DATEDIFF_BIG(MICROSECOND,'010101','99991231 23:59:59.999999999') AS
diff;

The following is the very large number representing this difference:

diff

252423993599999999

However, even with the DATEDIFF_BIG function, you can get an exception if you call it for
the same dates and choose the date part nanosecond.

SELECT DATEDIFF_BIG(NANOSECOND,'010101','99991231 23:59:59.999999999') AS
diff;

The maximal value of the bigint data type is not enough to host this difference and to
avoid an overflow:

Msg 535, Level 16, State 0, Line 419
The datediff_big function resulted in an overflow. The number of dateparts
separating two date/time instances is too large. Try to use datediff_big
with a less precise datepart.

Of course, the last two statements are listed just for demonstration purposes; I cannot
imagine a reasonable use case where you will need to represent 10,000 years in
microseconds or nanoseconds. Therefore, you can say that DATEDIFF_BIG meets all the
reasonable requirements related to date difference calculations.

AT TIME ZONE
The AT TIME ZONE expression can be used to represent time in a given time zone. It
converts an input date to the corresponding datetimeoffset value in the target time zone.
It has the following two arguments:

inputdate: This is an expression of the following date data types:
smalldatetime, datetime, datetime2, and datetimeoffset.
timezone: This is the name of the target time zone. The allowed zone names are
listed in the sys.time_zone_info catalog view.

Transact-SQL Enhancements

[110]

The return type of the expression is datetimeoffset in the target time zone.

Use the following code to display local UTC time, and the local time in New York and
Vienna.

SELECT
 CONVERT(DATETIME, SYSDATETIMEOFFSET()) AS UTCTime,
 CONVERT(DATETIME, SYSDATETIMEOFFSET() AT TIME ZONE 'Eastern Standard
Time') AS NewYork_Local,
 CONVERT(DATETIME, SYSDATETIMEOFFSET() AT TIME ZONE 'Central European
Standard Time') AS Vienna_Local;

This query generates the following result:

UTCTime NewYork_Local Vienna_Local
------------------ ------------------- -------------------
2016-06-18 15:09:09.410 2016-06-18 10:09:09.410 2016-06-18 16:09:09.410

As mentioned earlier, the values supported for time zone can be found in a new system
catalog sys.time_zone_info. This is exactly the same list as in the registry:
KEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time

Zones.

The target time zone does not need to be a literal; it can be wrapped in a variable and
parameterized. The following code displays the time in four different time zones:

SELECT name, CONVERT(DATETIME, SYSDATETIMEOFFSET() AT TIME ZONE name) AS
local_time
FROM sys.time_zone_info
WHERE name IN (SELECT value FROM STRING_SPLIT('UTC,Eastern Standard
Time,Central European Standard Time,Russian Standard Time',','));

Note that another new function, STRING_SPLIT, is used in this query. The result of the
previous query is as follows:

name local_time
------------------------------------ -----------------------
Eastern Standard Time 2016-06-18 11:10:46.257
UTC 2016-06-18 15:10:46.257
Central European Standard Time 2016-06-18 17:10:46.257
Russian Standard Time 2016-06-18 18:10:46.257

Transact-SQL Enhancements

[111]

By using AT TIME ZONE, you can convert a simple datetime value without a time zone
offset to any time zone by using its name. What time is it in Seattle when a clock in Vienna
shows 22:33 today (15th August 2016)? Here is the answer:

SELECT CAST('20160815 22:33' AS DATETIME)
AT TIME ZONE 'Central European Standard Time'
AT TIME ZONE 'Pacific Standard Time' AS seattle_time;

Note that you must convert the string value to datetime. Usually, a string literal formatted
as YYYMMDD HH:ss is interpreted as a valid datetime value, but, in this case, you need to
cast it explicitly to datetime data type.

HASHBYTES
The HASHBYTES built-in function is used to hash the string of characters using one of the
seven supported hashing algorithms. The function accepts the following two input
arguments:

algorithm: This is a hashing algorithm for hashing the input. The possible
values are: MD2, MD4, MD5, SHA, SHA1, SHA2_256, and SHA2_512, but only the last
two are recommended in SQL Server 2016.
input: This is an input variable, column, or expression that needs to be hashed.
The data types that are allowed are varchar, nvarchar, and varbinary.

The return type of the function is varbinary (8000).

This function has been available in SQL Server since 2005, but it is enhanced in SQL Server
2016. The most important enhancement is removing the limit for the input size. Prior to SQL
Server 2016, the allowed input values were limited to 8.000 bytes; now, no limit is defined.
In addition to this significant enhancement, five old algorithms MD2, MD4, MD5, SHA, and
SHA1 are marked for deprecation. The SHA2_256 and SHA2_512 algorithms are stronger,
require more storage space, and hash calculation is slower, but the collision probability is
very low.

Transact-SQL Enhancements

[112]

To demonstrate the importance of the removed input limit, the former standard sample
Adventure Works database will be used. Execute the following code in a SQL Server 2014
instance with this sample database installed to calculate a hash value for the XML
representation of the first six orders in the SalesOrderHeader table:

USE AdventureWorks2014;
SELECT HASHBYTES('SHA2_256',(SELECT TOP (6) * FROM Sales.SalesOrderHeader
FOR XML AUTO)) AS hashed_value;

The following hashed value is produced by the previous command:

hashed_value
--
0x26C8A739DB7BE2B27BCE757105E159647F70E02F45E56C563BBC3669BEF49AAF

However, when you want to include the seventh row in the hash calculation, use the
following code:

USE AdventureWorks2014;
SELECT HASHBYTES('SHA2_256',(SELECT TOP (7) * FROM Sales.SalesOrderHeader
FOR XML AUTO)) AS hashed_value;

Instead of the hashed value, this query executed in a SQL Server 2014 instance generates a
very well known and very user-unfriendly error message:

Msg 8152, Level 16, State 10, Line 2
String or binary data would be truncated.

Clearly, the reason for this error is the size of the input string that exceeds the limit of 8,000
bytes. You can confirm this by executing the following query:

SELECT DATALENGTH(CAST((SELECT TOP (7) * FROM Sales.SalesOrderHeader FOR
XML AUTO) AS NVARCHAR(MAX))) AS input_length;

Indeed, the size of the input argument for the HASHBYTES function exceeds 8,000 bytes:

input_length

8754

In SQL Server 2016, this limitation has been removed:

USE AdventureWorks2016CTP3;
SELECT HASHBYTES('SHA2_256',(SELECT TOP (7) * FROM Sales.SalesOrderHeader
FOR XML AUTO)) AS hashed_value;

Transact-SQL Enhancements

[113]

The preceding hash query returns the following result:

hashed_value
--
0x864E9FE792E0E99165B46F43DB43E659CDAD56F80369FD6D2C58AD2E8386CBF3

Prior to SQL Server 2016, if you wanted to hash more than 8 KB of data, you had to split
input data to 8 KB chunks and then combine them to get a final hash for the input entry.
Since the limit does not exist anymore, you can use the entire table as an input parameter
now. You can slightly modify the initial query to calculate the hash value for the entire
order table:

USE AdventureWorks2016CTP3;
SELECT HASHBYTES('SHA2_256',(SELECT * FROM Sales.SalesOrderHeader FOR XML
AUTO)) AS hashed_value;

This generates the following output:

hashed_value
--
0x2930C226E613EC838F88D821203221344BA93701D39A72813ABC7C936A8BEACA

I played around with it and could successfully generate a hash value, even for an
expression with a size of 2 GB. It was slow, of course, but it did not break. I just want to
check the limit; it does not make much sense to use HASHBYTES to detect changes in a large
table.

Note that I have used the old standard SQL Server sample database
Adventure Works. The version for SQL Server 2016 is available under the
name AdventureWorks2016CTP3 at
https://www.microsoft.com/en-us/download/details.aspx?id=49502.
Yes, it contains CTP3 in the name and it seems that it will not be officially
presented as a sample database in SQL Server 2016, but in this example,
we had to use it to compare two identical queries with different behaviors
in the previous and current SQL Server version.

This function can be very useful to check whether relative static tables are changed or to
compare them between two instances. With the following query, you can check the status of
products in the AdventureWorks database:

USE AdventureWorks2016CTP3;
SELECT HASHBYTES('SHA2_256',(SELECT *
 FROM
 Production.Product p
 INNER JOIN Production.ProductSubcategory sc ON p.ProductSubcategoryID =
sc.ProductSubcategoryID

Transact-SQL Enhancements

[114]

 INNER JOIN Production.ProductCategory c ON sc.ProductCategoryID =
c.ProductCategoryID
 INNER JOIN Production.ProductListPriceHistory ph ON ph.ProductID =
p.ProductID
 FOR XML AUTO)) AS hashed_value;

The following is the output generated by this query:

hashed_value
--
0xAFC05E912DC6742B085AFCC2619F158B823B4FE53ED1ABD500B017D7A899D99D

If you want to check whether any of the product attributes defined by the previous
statement are different for two or more instances, you can execute the same query against
the other instances and compare the values only, without loading and comparing the entire
datasets.

With no limit for the input string, you do not need to implement workarounds for large
inputs anymore and the fact that you can easily generate a hash value for multiple joined
tables can increase the number of use cases for the HASHBYTES function.

JSON functions
SQL Server 2016 introduces JSON data support, and in order to implement this support,
four JSON functions have been added to allow manipulation with JSON data:

ISJSON: This checks whether an input string represents valid JSON data.
JSON_VALUE: This extracts a scalar value from a JSON string.
JSON_QUERY: This extracts a JSON fragment from the input JSON string for the
specified JSON path.
JSON_MODIFY: This modifies JSON data: updates the value of an existing
property, adds a new element to an existing array, inserts a new property and its
value, and deletes a property.
OPENJSON: This provides a row set view over a JSON document. This table-value
function converts JSON text in tabular data.

These functions will be explored in more detail in Chapter 5, JSON Support in SQL Server.

Transact-SQL Enhancements

[115]

Enhanced DML and DDL statements
In this section, you will explore enhancements in Data Manipulation Language (DML) and
Data Definition Language (DDL) that are not part of new features or improved features
from previous SQL Server versions.

The section starts with a small syntax extension that you will use often in the code examples
in this book.

The conditional DROP statement (DROP IF
EXISTS)
With a conditional DROP statement, you can avoid getting an exception if the object you
want to drop does not exist. If, for instance, the T1 table has already been removed or it was
not created at all, the following statement will fail:

DROP TABLE dbo.T1;

Here is the error message:

Msg 3701, Level 11, State 5, Line 5
Cannot drop the table 'dbo.T1', because it does not exist or you do not
have permission.

SQL Server 2016 introduces the conditional DROP statement for most of the database objects.
The conditional DROP statement is a DROP statement extended with the IF EXISTS part.
Repeat the preceding command with this extended syntax:

DROP TABLE IF EXISTS dbo.T1;

You can execute this statement any number of times and you will not get an error. To
achieve this prior to SQL Server 2016, you had to check the existence of the object before
you removed it, as shown in this code example:

IF OBJECT_ID('dbo.T1','U') IS NOT NULL
 DROP TABLE dbo.T1;

You had to write one code line more and in addition, it is also error prone—you have to
write the name of the object twice. It's not a big deal, but this new form is shorter and is not
error prone.

Transact-SQL Enhancements

[116]

You can use the following code to remove the stored procedure dbo.P1 from the system:

DROP PROCEDURE IF EXISTS dbo.P1;

As mentioned earlier, you could use the conditional DROP statement in SQL Server 2016 to
remove most of the database objects. The following objects are supported: AGGREGATE,
ASSEMBLY, COLUMN, CONSTRAINT, DATABASE, DEFAULT, FUNCTION, INDEX, PROCEDURE,
ROLE, RULE, SCHEMA, SECURITY POLICY, SEQUENCE, SYNONYM, TABLE, TRIGGER, TYPE,
USER, and VIEW.

If you want, for instance, to remove a partitioned function or schema, DROP IF EXISTS
won't work. The following command will fail:

DROP PARTITION FUNCTION IF EXISTS PartFunc1;

And here is the error message:

Msg 156, Level 15, State 1, Line 1
Incorrect syntax near the keyword 'IF'

To (conditionally) remove a partitioned function, you still need to write your own code to
check the existence of the object.

How does IF EXISTS work? It simply suppresses the error message. This is exactly what
you need if the reason for the error is the nonexistence of the object. However, if the user
who wants to drop the object does not have appropriate permission, you would expect an
error message. The command is executed successfully and the caller does not get an error
regardless of the object's existence and user permissions! Here are the results when a user
wants to drop an object using the conditional DROP statement:

The object exists; user has permissions: When the object is removed, everything
is fine
The object does not exist; user has permissions: There are no error messages
displayed
The object exists; user does not have permissions: When the object is not
removed, no error messages are displayed. The caller does not get that the object
still exists; its DROP command has been executed successfully!
The object does not exist; user does not have permissions: There are no error
messages displayed.

You can read more about this inconsistency in the blog post DROP IF EXISTS aka D.I.E. at
https://milossql.wordpress.com/2016/07/04/drop-if-exists-aka-d-i-e/.

Transact-SQL Enhancements

[117]

This enhancement is handy; it helps you to abbreviate your code and it is intensively used
by consultants, trainers, and conference speakers. They usually create database objects to
demonstrate a feature, code technique, or behavior and then drop them from the system.
And they do this again and again. However, conditional DROP statements will not be used
so often in production systems. How often do you remove database objects from SQL
Server? Very rarely, right? When you perform a cleanup or remove some intermediate
database objects. In most cases, you add new objects or change the existing ones.

Therefore, I would like to see similar a implementation for the object's creation or updating.
To extend Transact-SQL syntax with, for instance, the CREATE OR ALTER or CREATE OR
REPLACE command. This would be more important for script deployment than DROP
statement extensions. If you want to update a stored procedure with the latest version and
you don't know whether the previous version has been installed or not, or you simply
execute the same script twice without errors, the following code must be used:

IF OBJECT_ID(N'dbo.uspMyStoredProc','P') IS NULL
 EXEC('CREATE PROCEDURE dbo.uspMyStoredProc AS SELECT NULL');
GO
ALTER PROCEDURE dbo.uspMyStoredProc
AS...

This piece of code is error prone, awkward and even uses dynamic SQL because CREATE
PROC needs to be the first statement in a batch. CREATE or ALTER PROCEDURE would be
handy. And some other vendors support it.

More often, you use it to create or alter objects than to remove them from a production
system; therefore, it would be more useful to implement this extension. I hope we'll see it in
the next SQL Server version.

CREATE OR ALTER
At the time of writing this chapter, SQL Server 2016 RTM has been released. In the
meantime, Microsoft came with the SQL Server 2016 Service Pack 1. This package not
only includes hotfixes from the RTM version, but also some new features. One of them is
exactly described as the CREATE OR ALTER statement. It creates an object if it does not
exist, or alters it if it is already there. You can use it with stored procedures, functions, view,
and triggers. Here is an example of creating or altering a scalar user-defined function:

CREATE OR ALTER FUNCTION dbo.GetWorldsBestCityToLiveIn()
RETURNS NVARCHAR(10)
AS
BEGIN
 RETURN N'Vienna';

Transact-SQL Enhancements

[118]

END

We were waiting for a long time for this feature and it is most probably the first feature you
will adopt in SQL Server 2016.

Online Alter Column
Sometimes you might need to change the attributes of a table column, for instance, to
increase the column capacity due to changed requirements, increased data amount, or lack
of data capacity planning. Here are the typical actions for altering a column in a SQL Server
table:

Change the data type: This is usually when you come close to the maximum
value supported by the actual data type (typically from smallint to int, or from
int to bigint)
Change the size: This is a common case for poorly planned string columns; the
current column size cannot accept all the required data
Change the precision: This is when you need to store more precise data; usually
due to changed requirements
Change the collation: This is when you have to use a different (usually case
sensitive) collation for a column due to changed requirements
Change the null-ability: This is when the requirements are changed

To demonstrate what happens when you perform an alter column action, you first need to
create a sample table. Run the following code to accomplish this:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.Orders;
CREATE TABLE dbo.Orders(
id INT IDENTITY(1,1) NOT NULL,
custid INT NOT NULL,
orderdate DATETIME NOT NULL,
amount MONEY NOT NULL,
rest CHAR(100) NOT NULL DEFAULT 'test',
CONSTRAINT PK_Orders PRIMARY KEY CLUSTERED (id ASC)
);
GO

Transact-SQL Enhancements

[119]

To populate the table efficiently, you can use the GetNums function created by Itzik Ben-
Gan. The function is available at http://tsql.solidq.com/SourceCodes/GetNums.txt.
Here is the function definition:

-- © Itzik Ben-Gan

CREATE OR ALTER FUNCTION dbo.GetNums(@low AS BIGINT, @high AS BIGINT)
RETURNS TABLE
AS
RETURN
 WITH
 L0 AS (SELECT c FROM (SELECT 1 UNION ALL SELECT 1) AS D(c)),
 L1 AS (SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),
 L2 AS (SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),
 L3 AS (SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),
 L4 AS (SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),
 L5 AS (SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),
 Nums AS (SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS rownum
 FROM L5)
 SELECT TOP(@high - @low + 1) @low + rownum - 1 AS n
 FROM Nums
 ORDER BY rownum;

Now you can run the following code to populate the table with 10 million rows:

INSERT INTO dbo.Orders(custid,orderdate,amount)
SELECT
 1 + ABS(CHECKSUM(NEWID())) % 1000 AS custid,
 DATEADD(minute, -ABS(CHECKSUM(NEWID())) % 5000000, '20160630') AS
orderdate,
 50 + ABS(CHECKSUM(NEWID())) % 1000 AS amount
FROM dbo.GetNums(1,10000000);

Now, once you have created and populated the table, suppose you have a requirement to
change the data type for the column amount to decimal. To see what happens during the
alter column action, you need to open two connections. In the first connection, you will
have the code to change the data type of the column:

ALTER TABLE dbo.Orders ALTER COLUMN amount DECIMAL(10,2) NOT NULL;

Transact-SQL Enhancements

[120]

In the second one, you will simply try to return the last two rows from the table just to
check whether the table is available for querying. Use the following code for the query in
the second connection:

USE WideWorldImporters;
SELECT TOP (2) id, custid, orderdate, amount
FROM dbo.Orders ORDER BY id DESC;

Now, execute the code from the first connection and then from the second. You can see that
both commands are running. Actually, the ALTER COLUMN command is running, while the
second query is simply waiting—it is blocked by the ALTER command. During the change
of the data type, the table is not available for querying. You can see additional details; you
would need to establish a third connection and put the following code there (you need to
replace 66 with the session ID from the second connection) and repeat the previous two
steps by changing the data type of the column amount to money.

SELECT request_mode, request_type, request_status, request_owner_type
FROM sys.dm_tran_locks WHERE request_session_id = 66;

The following is the result of this command:

request_mode request_type request_status request_owner_type
------------ ------------- -------------- ----------------
S LOCK GRANT SHARED_TRANSACTION_WORKSPACE
IS LOCK WAIT TRANSACTION

You can see that the query could not get IS lock because the ALTER column action is
performed as a transaction. Therefore, the table is not available for querying and the query
from the second connection has to wait until the ALTER command is done.

You might think that a query with the NOLOCK hint would return results
even when an alter column action is performed, because NOLOCK
obviously means there is no lock at the table. This is not completely true. It
is true that shared lock or intentional shared lock are not acquired, but
even with NOLOCK statements we need to acquire a stability schema lock.
You can repeat all the three steps with a small modification in the second
query to include the NOLOCK hint and the actions will end up with the
same results and behavior. The only difference is that in the result set of
the third connection, instead of IS the mentioned Sch-S appears.

This behavior is analog to creating nonclustered indexes offline. While creating an index
online has been available since 2005, altering column was the only operation that was
offline until SQL Server 2016.

Transact-SQL Enhancements

[121]

When you specify the ONLINE = ON option, SQL Server 2016 creates a new shadow table
with the requested change, and when it's finished, it swaps metadata with very short
schema locks. This leaves the table available, even for changes, except those which could
create a dependency for the altering column.

Now you will repeat the three steps from the preceding example (assuming the column
amount has money data type), but this time with the ONLINE = ON option. You need to
modify the command from the first connection to the following code:

USE WideWorldImporters;
ALTER TABLE dbo.Orders ALTER COLUMN amount DECIMAL(10,2) NOT NULL WITH
(ONLINE = ON);

The code in the second connection does not need to be changed:

SELECT TOP (2) id, custid, orderdate, amount
FROM dbo.Orders ORDER BY id DESC;

Now, execute the command all over again and then run the query from the second
connection. You can see that the first command is running, and that the query from the
second connection instantly returns results. The table is available for querying although the
data type for one column is being changed. This is a very important feature for systems that
need to be continually available.

Altering online capabilities does not remove the usual limitations for changing column
attributes. If a column is used in an index or expression in a filtered index or filtered
statistics, you still cannot change its data type.

However, with the ONLINE = ON option, you can alter a column even if user-created
statistics on this column exist. This was not possible prior to SQL Server 2016 (and it is still
not possible in the offline mode). To demonstrate this, you will create a user statistic object
on the column amount:

USE WideWorldImporters;
CREATE STATISTICS MyStat ON dbo.Orders(amount);

An attempt to change the data type of the column amount should fail:

ALTER TABLE dbo.Orders ALTER COLUMN amount DECIMAL(10,3) NOT NULL;

Transact-SQL Enhancements

[122]

This command immediately generates the following error message:

Msg 5074, Level 16, State 1, Line 76
The statistics 'MyStat' is dependent on column 'amount'.
Msg 4922, Level 16, State 9, Line 76
ALTER TABLE ALTER COLUMN amount failed because one or more objects access
this column.

However, when you specify the ONLINE = ON option, the same command will work:

ALTER TABLE dbo.Orders ALTER COLUMN amount DECIMAL(10,3) NOT NULL WITH
(ONLINE = ON);

The statistics are available to the query optimizer during the command execution; it is
invalidated after the change is done and it must be updated manually.

Similar to the online index (re)build option, this excellent feature is available in the
Enterprise Edition only.

TRUNCATE TABLE
The TRUNCATE TABLE statement is the most efficient way to remove all rows from a table.
Logically, this statement is identical to the DELETE statement without the WHERE clause, but
unlike the DELETE statement, when the TRUNCATE TABLE has been issued, SQL Server does
not log individual row deletion in the transaction log. Therefore, the TRUNCATE TABLE
statement is significantly faster. This performance difference can be very important with
large tables. However, if you want to enjoy its efficiency, you have to remove all rows from
a table. Even if the table is partitioned, you still need to remove all rows from all the
partitions. Well, unless you have SQL Server 2016.

In SQL Server 2016, the TRUNCATE TABLE statement has been extended so that you can
specify the partitions from which rows have to be removed. You can specify the comma-
separated list or the range of partition numbers. Here is a code example showing how to
remove all rows from the partitions 1, 2, and 4.

TRUNCATE TABLE dbo.T1 WITH (PARTITIONS (1, 2, 4));

In the next example, you will see how to specify the range of partition numbers. From a
table with the maximum number of supported partitions, you want to remove a lot of data,
but not all of it—you want to leave data in partitions 1 and 2. Here is the code that
implements this request:

TRUNCATE TABLE dbo.T2 WITH (PARTITIONS (3 TO 15000));

Transact-SQL Enhancements

[123]

You can also combine two input formats in one expression. The following code removes all
rows from a table with eight partitions, except from the partitions 1 and 3:

TRUNCATE TABLE dbo.T1 WITH (PARTITIONS (2, 4 TO 8));

Specifying partitions in the TRUNCATE TABLE statement is possible even if the database is
not in compatibility level 130.

To simulate truncate table for a specific partition in previous SQL Server versions, you need
to perform the following steps:

Create a staging table with the same indexes as in a partitioned table.1.
Using the SWITCH PARTITION statement to move data from the partitioned to2.
the staging table.
Removing the staging table from the system.3.

Now, you need a single and very efficient statement—a nice and handy feature.

Maximum key size for nonclustered indexes
In previous SQL Server versions, the total size of all index keys could not exceed the limit of
900 bytes. You were actually allowed to create a nonclustered index, even if the sum of the
maximum length of all its key columns exceeded this limit. The limit affects only columns
used as index keys; you can use very large columns in a nonclustered index as included
columns.

To demonstrate this, we will create a sample table. Note that this code should be executed
in a SQL Server 2014/2012/2008 instance:

USE tempdb;
CREATE TABLE dbo.T1(id INT NOT NULL PRIMARY KEY CLUSTERED, c1 NVARCHAR(500)
NULL, c2 NVARCHAR(851) NULL);

As you can see in the code, the maximal data length of the column c1 is 1000 bytes. Let's
now try to create a nonclustered index on this column:

CREATE INDEX ix1 ON dbo.T1(c1);

Since the table is empty, the command has been executed successfully with no errors, but
with the following warning message:

Warning! The maximum key length is 900 bytes. The index 'ix1' has maximum
length of 1000 bytes. For some combination of large values, the
insert/update operation will fail

Transact-SQL Enhancements

[124]

As the message says, you can live with the index in harmony if the size of the actual data in
the index columns does not exceed the limit of 900 bytes. The query optimizer will even use
it in execution plans and it will behave as a normal index. Adding a row with data within
the maximum key length will be successful, as shown in the following code:

INSERT INTO dbo.T1(id,c1, c2) VALUES(1, N'Mila', N'Vasilije');

However, when you try to insert or update a row with data longer than the key size limit,
the statement will fail:

INSERT INTO dbo.T1(id,c1, c2) VALUES(2,REPLICATE('Mila',113), NULL);

This action in SQL Server 2014 ends up with an error message and the INSERT statement
fails, as follows:

Msg 1946, Level 16, State 3, Line 7
Operation failed. The index entry of length 904 bytes for the index 'ix1'
exceeds the maximum length of 900 bytes.

In SQL Server 2016, the behavior remains the same with the difference that the maximum
index key size for nonclustered indexes has been increased from 900 to 1,700 bytes. Let's
repeat the previous steps, but this time in an instance running SQL Server 2016.

DROP TABLE IF EXISTS dbo.T1;
CREATE TABLE dbo.T1(id INT NOT NULL PRIMARY KEY CLUSTERED, c1 NVARCHAR(500)
NULL, c2 NVARCHAR(851) NULL);
GO
CREATE INDEX ix1 ON dbo.T1(c1);

There is no warning after this action, since the new limit is 1,700 bytes. However, when you
add an index on the c2 column using this code:

CREATE INDEX ix2 ON dbo.T1(c2);

You get the well-known warning message, but with a different limit:

Warning! The maximum key length for a nonclustered index is 1700 bytes. The
index 'ix2' has maximum length of 1702 bytes. For some combination of large
values, the insert/update operation will fail.

As you can see, the only difference is the different maximum number of bytes.

The maximum key size for clustered indexes remains 900 bytes. For
memory-optimized tables, the limit is 2,500 bytes.

Transact-SQL Enhancements

[125]

Now, you can index wider columns than you could in previous versions. For instance, a text
column with 500 Unicode characters can be used as a key in a nonclustered index in SQL
Server 2016.

New query hints
The SQL Server Query Optimizer does an amazing job of execution plan generation. Most
of the time, for most queries, it generates an optimal execution plan. And this is not easy at
all. There is a lot of potential to get a suboptimal plan: wrong server configuration, poorly
designed databases, missing and suboptimal indexes, suboptimal written queries,
nonscalable solutions, and so on. And the query optimizer should work for all those
workloads, all over the world, all the time.

Depending on data constellation, it generates suboptimal execution plans sometimes. If the
execution of the queries is very important from a business point of view, you have to do
something to try to achieve at least an acceptable execution plan. One of the weapons you
have for this is hints to the query optimizer. With hints, which are actually instructions, you
instruct the query optimizer how to generate the execution plan. You take responsibility or
you take part of the responsibility for the execution plan generation.

There are three types of hints: table, join, and query hints. You use them if you cannot
enforce the required execution plan with other actions. Hints should be considered as a last
resort in query tuning. You should use them if you don't know another way to get a desired
plan, when you have tried all that you know, or when you are under time pressure and
have to fix a query as soon as possible. For instance, if you suddenly encounter a problem
on the production system on the weekend or during the night, you can use the hint as a
temporary solution or a workaround and then look for a definitive solution without time or
operative pressures. Literally said, you can use query hints if you know what you are doing.
However, you should not forget that the hint and the plan remain forever and you need to
periodically evaluate whether the plan is still adequate. In most cases, developers forget
about plans with hints as soon as the performance problem is gone.

SQL Server 2016 brings three new query hints to address problems related to memory
grants and performance spools:

NO_PERFORMANCE_SPOOL

MAX_GRANT_PERCENT

MIN_GRANT_PERCENT

Transact-SQL Enhancements

[126]

NO_PERFORMANCE_SPOOL
The new query hint NO_PERFORMANCE_SPOOL has been added to SQL Server 2016 to allow
users to enforce an execution plan, which does not contain a spool operator.

A spool operator in an execution plan does not mean that the plan is suboptimal; it is
usually a good choice of query optimizer. However, in some cases, it can reduce the overall
performance. This happens, for instance, when a query or a stored procedure whose
execution plan contains a spool operator is executed by numerous parallel connections.
Since the Spool operator uses tempdb, this can lead to tempdb contention when many
queries are running at the same time. Using this hint, you can avoid this issue.

To demonstrate the use of this query hint, you will once again use the new
WideWorldImporters sample database. Assume that you need to display order details for
orders picked up by the sales persons provided in an input list. To ensure that the execution
plan contains a spool operator, this example uses a user-defined function and not the new
SQL Server 2016 function STRING_SPLIT. Use the following code to create the function and
filter orders with the sales persons from the list.

USE WideWorldImporters;
GO
CREATE OR ALTER FUNCTION dbo.ParseInt
(
 @List VARCHAR(MAX),
 @Delimiter CHAR(1)
)
RETURNS @Items TABLE
(
 Item INT
)
AS
BEGIN
 DECLARE @Item VARCHAR(30), @Pos INT;
 WHILE LEN(@List)>0
 BEGIN
 SET @Pos = CHARINDEX(@Delimiter, @List);
 IF @Pos = 0 SET @Pos = LEN(@List)+1;
 SET @Item = LEFT(@List, @Pos-1);
 INSERT @Items SELECT CONVERT(INT, LTRIM(RTRIM(@Item)));
 SET @List = SUBSTRING(@List, @Pos + LEN(@Delimiter), LEN(@List));
 IF LEN(@List) = 0 BREAK;
 END
 RETURN;
END
GO
DECLARE @SalesPersonList VARCHAR(MAX) = '3,6,8';

Transact-SQL Enhancements

[127]

SELECT o.*
FROM Sales.Orders o
INNER JOIN dbo.ParseInt(@SalesPersonList,',') a ON a.Item =
o.SalespersonPersonID
ORDER BY o.OrderID;

When you observe the execution plan for this query, you can see the Table Spool operator
in it, as Figure 4.4 shows:

Figure 4 4 Execution plan with the Table Spool operator

When you execute exactly the same query, but with the query hint OPTION
(NO_PERFORMANCE_SPOOL), you get a different execution plan, without the Spool operator,
as shown in Figure 4.5:

Figure 4 5 Execution plan without the Table Spool operator

Transact-SQL Enhancements

[128]

By observing the execution plan, you can see that the spool operator has disappeared from
it. You can also see that the Estimated Subtree Cost is about 10% higher for the plan without
the hint (by comparing the yellow SELECT property boxes); therefore, the query optimizer
has chosen the original plan with the Spool operator. Here, you used the hint just for
demonstration purposes to show that you can enforce another plan, without the spool
operator.

You have to create a user-defined function in this example because this
query with a new STRING_SPLIT function has an execution plan without
the Spool operator.

However, if the Spool operator is required in an execution plan to enforce the validity and
correctness, the hint will be ignored. To demonstrate this behavior, you will use the next
example. First, you need to create a sample table and insert two rows into it:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.T1
CREATE TABLE dbo.T1(
id INT NOT NULL,
c1 INT NOT NULL,
);
GO
INSERT INTO dbo.T1(id, c1) VALUES(1, 5),(1, 10);

Now, assume that you want to add some of the existing rows into the table, say the rows
where ID has value less than 10. At this point, only one row qualifies for this insert. The
following query implements this requirement:

INSERT INTO dbo.T1(id, c1)
SELECT id, c1 FROM dbo.T1
WHERE id < 10;

The execution plan for this query is shown in Figure 4.6:

Figure 4 6 Execution plan for INSERT statement with the Table Spool operator

Transact-SQL Enhancements

[129]

When you observe it, you can see the Table Spool operator proudly staying in the middle
of the execution plan. However, when you execute the same statement with the
NO_PERFORMANCE_SPOOL hint, you get an identical execution plan; the query hint is simply
ignored. The reason for this decision by the query optimizer is that the spool operator in
this plan is used not for optimization, but to guarantee the correctness of the result. To
demonstrate this, execute these two statements:

INSERT INTO dbo.T1(id, c1)
SELECT id, c1 FROM dbo.T1
WHERE id < 10;

INSERT INTO dbo.T1(id, c1)
SELECT id, c1 FROM dbo.T1
WHERE id < 10
OPTION (NO_PERFORMANCE_SPOOL);

Figure 4.7 shows both plans and it is obvious that this is the same execution plan:

Figure 4 7 Execution plans showing that the hint NO_PERFORMANCE_SPOOL is ignored

Use the query hint NO_SPOOL_OPERATOR when:

You want to avoid the spool operator in the execution object
You know that this is a good idea (performance issue is caused by the Spool
operator)
You cannot achieve this, with a reasonable effort otherwise

Transact-SQL Enhancements

[130]

MAX_GRANT_PERCENT
The MIN_GRANT_PERCENT and MAX_GRANT_PERCENT hints were first introduced in the SQL
Server 2012 SP3 and now in SQL Server 2016 RTM (they are still not available in SQL Server
2014). They address the problem of inappropriate memory grant for query execution.

Memory grant is a memory associated for the execution of queries whose execution plan
contains operators that need to store temporary row data while sorting and joining rows
(Sort, Hash Join, and so on). The value for memory grant depends on SQL Server's
Estimated Number of Rows that should be processed by memory operators. If the estimated
number of rows significantly differs from the actual, the memory grant is overestimated or
underestimated.

To demonstrate an overestimated memory grant, use the following code that generates a
10M row large table:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.T1;
CREATE TABLE dbo.T1(
id INT NOT NULL,
c1 INT NOT NULL,
c2 TINYINT NOT NULL DEFAULT 1,
c3 CHAR(100) NOT NULL DEFAULT 'test',
CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (id ASC)
);
GO
INSERT INTO dbo.T1(id, c1)
SELECT
 n AS id,
 1 + ABS(CHECKSUM(NEWID())) % 10000 AS c1
FROM dbo.GetNums(10000000);
GO
CREATE INDEX ix1 ON dbo.T1(c2);
GO

Note that the c2 column has a value 1 for all the rows in the table. Also, note that the code
sample uses the GetNums function introduced at the beginning of this chapter. Assume that
your task is to return rows from the T1 table, where the c2 column has value the 0 or 2. The
query is very simple:

SELECT * FROM dbo.T1 WHERE c2 IN (0, 2) ORDER BY c1;

Transact-SQL Enhancements

[131]

The query returns no rows (as mentioned, c2 = 1 for all rows in the table). The execution
plan is simple too: Clustered Index Scan followed by the Sort operator. The plan is
shown in Figure 4.8:

Figure 4 8 Execution plan with an overestimated memory grant

You can see that the query optimizer has significantly overestimated the number of rows for
the Sort operator. Therefore, it is the most expensive part of the execution plan, even in
concurrency with the Clustered Index Scan of a 10M row table. Actually, the result of the
query is an empty set, but SQL Server thinks that all rows from the table will be returned.
This is a bug with new cardinality in SQL Server 2014 and it is not fixed in SQL Server 2016.
Since the Sort operator requires memory, this query needs a memory grant. With the mouse
over the Select operator, you can see that the memory granted for this query is 1.9 GB. More
details about memory grant are available in the XML representation of the execution plan,
as shown in Figure 4.9:

Figure 4 9 Memory Grant information in the XML representation of the execution plan

Transact-SQL Enhancements

[132]

For the execution of a single query that returns no rows, about 2 GB memory is granted! If
this query was executed by 100 concurrent sessions, almost 200 GB of memory would be
granted for its execution.

As mentioned earlier, query hints should be used as a last resort for performance tuning.
For demonstration purposes, you will use the MAX_ GRANT_PERCENT query hint to limit
the amount of memory granted.

The MAX_GRANT_PERCENT query hint defines the maximum memory grant size as a
percentage of available memory. It accepts float values between 0.0 and 100.0. Granted
memory cannot exceed this limit, but can be lower if the resource governor setting is lower
than this. Since you know that you have no rows in the output, you can use a very low
value in the query hint:

SELECT * FROM dbo.T1 WHERE c2 IN (0, 2) ORDER BY c1 OPTION
(MAX_GRANT_PERCENT=0.001);

When you observe the execution plan shown in Figure 4.10, you can see that the plan
remains the same, only the memory grant value has dropped to 512 KB!

Figure 4 10 Execution plan with the query hint MAX_GRANT_PERCENT

With the memory grant hint, you cannot change the execution plan, but you can
significantly reduce the amount of memory granted.

Transact-SQL Enhancements

[133]

All execution plans shown in this section were generated by a database
engine with the SQL Server 2016 RTM installed on it. If you have installed
SQL Server 2016 Service Pack 1, you will see a new “Excessive Grant”
warning in the SELECT property box, indicating a discrepancy between
granted and used memory for the query execution. You can find more
details about this warning at
https://support.microsoft.com/en-us/help/3172997.

You can see that the applied query hint saved 2 GB of memory. The query hint
MAX_GRANT_PERCENT should be used when:

You don't know how to trick the optimizer into coming up with the appropriate
memory grant
You want to fix the problem immediately and to buy time to search for a final
solution

Here, you have used the query hint just for demonstration purposes, the correct way to fix a
query is to understand why the estimated and actual number of rows are so discrepant and
to then try to rewrite the query. As mentioned earlier, in this case, the problem is caused by
the change in the Cardinality Estimator (CE) in the SQL Server 2014 and the query works
well under the old CE. Use the following query to force SQL Server to use the old CE using
the trace flag 9481, as shown in the following query:

SELECT * FROM dbo.T1 WHERE c2 IN (0, 2) ORDER BY c1 OPTION (QUERYTRACEON
9481);

This generates the execution plan displayed in Figure 4.11:

Figure 4 11 Execution plan where the old cardinality estimator is enforced

Transact-SQL Enhancements

[134]

You can see the expected Nested Loop Join operator and a symbolic memory grant of 1
MB. The old CE estimates one row to be returned, while the new CE estimates the whole
table. These very different assumptions lead to completely different execution plans and
memory grants.

Another option to fix this problem is to rewrite the query to use UNION ALL instead of the
IN operator. Let's rewrite our original query:

SELECT * FROM dbo.T1 WHERE c2 = 0
UNION ALL
SELECT * FROM dbo.T1 WHERE c2 = 2
ORDER BY c1;

Figure 4.12 shows the execution plan for the preceding query:

Figure 4 12 Execution plan for the rewritten query

You can see that the plan is a double of the old CE but significantly better than the initial
one. With the MAX_GRANT_PERCENT query hint, you have successfully reduced the amount
of granted memory. However, as demonstrated, you could even improve the initial
execution plan by using other techniques. Therefore, use the query hint only when you
don't know how to instruct the query optimizer to generate a better estimation.

Transact-SQL Enhancements

[135]

MIN_GRANT_PERCENT
Similar to the previous example, in the event of a memory underestimation, you can force
the optimizer to guarantee a minimum memory grant for a query execution using the
MIN_GRANT_PERCENT query hint. It also accepts float values between 0.0 and 100.0. Be very
careful with this hint, since if you specify 100 percent as the minimum grant, the whole
resource governor memory will be granted to a single query execution. If you specify more
memory than is available, the query will simply wait for memory grant.

Summary
This chapter explored new Transact-SQL elements, extensions, and hints. Some of them are
small enhancements that make a developer's life easier and increase her/his productivity.
There are also significant operational extensions that increase the availability and
deployment of solutions. Finally, two newly added query hints address some rare but
serious performance problems caused by incorrect query optimizer estimations and
assumptions, where it is hard to find a workaround in previous SQL Server versions.

5
JSON Support in SQL Server

In the last few years, JSON has been established as a standard format for data exchange
among applications and services. XML is still the exchange standard (and will be), but
many applications communicate by exchanging JSON data instead of XML documents.
Therefore, the most important relational database management system products need to
support JSON.

Two release cycles after the feature was requested by the community, Microsoft has
implemented built-in JSON support in SQL Server 2016. The support is not as
comprehensive as for XML, but for most databases and workloads, it will be quite fine.

This chapter explores how SQL Server stores and processes JSON data with a
comprehensive comparison between JSON and XML support in SQL Server.

The most important actions related to JSON data in SQL Server are demonstrated in detail:

Formatting and exporting JSON data from SQL Server
Converting JSON data to a tabular format
Importing JSON data to SQL Server
Validating, querying, and modifying JSON data

Finally, you will be made aware of limitations caused by missing JSON data types and
indexes, and given advice on how you can improve the performance of JSON queries
despite these limitations.

JSON Support in SQL Server

[137]

Why JSON?
Microsoft Connect site is the place where you can leave your feedback, suggestions, and
wishes for Microsoft products. The most popular feature request for SQL Server is one for
JSON support. It was created in June 2011 and got more than 1,100 votes. The request is still
open (July 2016) and interestingly it is shown at the very top of the most voted items list,
even though the second item in the list has more votes, as you can see in Figure 5.1:

Figure 5 1 Highly ranked requests for SQL Server on the Microsoft Connect site (July 2016)

What arguments are used by community members to justify the request?

JSON is already standard, and it should be supported, similar to XML
Other vendors support it (Oracle, PostgreSQL, and so on)
Due to the lack of JSON support, my customers want to move from SQL Server to
other database systems supporting JSON

JSON Support in SQL Server

[138]

As always with vox populi, some of the arguments and given examples represent
development and business needs. Some of them, however, are very personal, sometimes
guided by passion. But there is one thing upon which they agree and which is common
in almost all comments: a serious relational database management system should have significant
support for JSON. Almost 5 years after the item was created, Microsoft added JSON support
in SQL Server 2016.

Of course, the number of votes on the Microsoft Connect site is not the only reason for this
feature. Other competitors (PostgreSQL, Oracle, DB2, and MySQL) have already introduced
support for JSON; some of them, like PostgreSQL, very seriously and robustly. And if you
still want to be a respectable vendor, you need to come up with JSON support.

What is JSON?
JavaScript Object Notation (JSON) is an open standard format for data exchange between
applications and services. JSON objects are human readable lists of key-value pairs.
Although its name suggests differently, JSON is language-independent. It is specified in the
ECMA-404 standard
(http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf).

Ecma International is an industry association founded in 1961 and
dedicated to the standardization of Information and Communication
Technology (ICT) and Consumer Electronics (CE). You can find more
info about it at https://www.ecma-international.org.

JSON is very simple and very popular. It is commonly used in Ajax applications,
configurations, RESTful web services, apps from social media, and NoSQL database
management systems such as MongoDB and CouchDB. Many developers prefer JSON to
XML because they see JSON as less verbose and easier to read.

JSON Support in SQL Server

[139]

Why is it popular?
JSON is a simple data format, but its simplicity is not the only thing that makes it a leading
standard for exchanging data among web services and applications. The most important
reason for its popularity is the fact that the JSON format is native for many programming
languages, such as JavaScript. They can generate and consume JSON data natively, without
serialization. One of the biggest problems in software development in recent years is object-
relational impedance. The JSON data format is flexible and self-describing and allows you
to use it effectively without defining a strict schema for data, which XML might need. This
allows the quick integration of data.

JSON versus XML
Both JSON and XML are simple, open, and interoperable. Since JSON usually contains less
data, by using JSON, less data traverses through the network. Both formats are human
readable; JSON is a bit cleaner, since it contains less text. This is because the number of data
formats supported by JSON is much less than with XML.

JSON is handy for sharing data. Data in JSON is stored in arrays and objects
while XML documents form a tree structure. Therefore, data transfer is easier
with JSON and native for many programming languages: JavaScript, Python,
Perl, Ruby, and so on. On the other hand, XML can store more data types (JSON
does not even have a data type for date); it can include photos, videos, and other
binary files. XML is more robust and is better suited for complex documents.
XML also offers options for data representation, while JSON just transfers data,
without suggesting or defining how to display it.
Generally, JSON is better as a data exchange format, while XML is more
convenient as a document exchange format.

JSON objects
According to the ECMA specification, a JSON text is a sequence of tokens formed
of Unicode code points that conforms to the JSON value grammar. A JSON value can be:

Primitive: This is a string, number, true/false, or null value
Complex: This is an object or an array

JSON Support in SQL Server

[140]

JSON object
A JSON object is a collection of zero or more key-value pairs called object members. The
collection is wrapped in a pair of curly brackets. The key and value are separated by a
single colon, while object members are separated with a comma character. The key is a
string. The value can be any primitive or complex JSON data type. The structure of a JSON
object is shown in Figure 5.2:

Figure 5 2 JSON object data type

The member name within a JSON object does not need to be unique. The following strings
show a JSON text representing an object:

{
"Name":"Mila Radivojevic",
"Age":12,
"Instrument": "Flute"
}
{}
{
"Song":"Echoes",
"Group":"Pink Floyd",
"Album":{
"Name":"Meddle",
"Year":1971
}
}
{
"Name":"Tom Waits",
"Name":"Leonard Cohen"
}

JSON Support in SQL Server

[141]

Since the value can be any data type, including an object or an array, you can have many
nested layers. This makes JSON a good choice for even complex data. Note that whitespaces
are allowed between the key and the value.

JSON array
A JSON array is an ordered list of zero or more values separated by commas and
surrounded by square brackets. The structure is shown in Figure 5-3:

Figure 5 3 JSON array data type

Unlike JSON objects, here, the order of values is significant. Values can have different data
types.

The following strings are JSON conform arrays:

["Benfica","Juventus","Rapid Vienna","Seattle Seahawks"]
["LYVTA",3, "Käsekrainer", "political correctness", true, null]

Primitive JSON data types
JSON is designed to be lightweight and supports only four primitive data types:

Numbers: This is a double-precision float
String: Unicode text surrounded by double quotes
True/false: Boolean values; they must be written in lowercase
Null: This represents a null value

As you can see, there is no date data type. Dates are represented and processed as strings.
A JSON string is a sequence of Unicode code points wrapped with quotation marks. All
characters may be placed within the quotation marks, except for the characters that must be
escaped. Table 5.1 provides the list of characters that must be escaped according to this
specification and their JSON conform representation:

JSON Support in SQL Server

[142]

Special character JSON conform character

Double quote "

Solidus /

Reverse solidus

Backspace b

Form feed f

New line n

Carriage return r

Tabulation t

Table 5 1 JSON escaping rules

In addition to this, all control characters with character codes in the range 0-31 need to be
escaped too. In JSON output, they are represented in the following format: u<code>. Thus,
the control character CHAR(0) is escaped as u0000, while CHAR(31) is represented by
u001f.

The structure of a JSON string is shown in Figure 5.4:

Figure 5 4 JSON string data type

JSON Support in SQL Server

[143]

JSON in SQL Server prior to SQL Server
2016
JSON has established itself as a respectable and important data exchange format in the last
5-6 years. You read that JSON support in SQL Server was requested 5 years ago. Since this
support was not provided prior to SQL Server 2016, developers had to implement their own
solutions. They had to use either CLR or Transact-SQL to process and manipulate JSON
data in SQL Server. This section will briefly mention a few solutions.

JSON4SQL
JSON4SQL is a commercial CLR-based solution (with a trial version). It provides a fast,
feature-rich binary JSON type for SQL Server. JSON4SQL stores JSON in a binary format
ported from the JSONB format used in the PostgreSQL database. It is available at the
following web address: http://www.json4sql.com.

JSON.SQL
JSON.SQL is a CLR-based JSON serializer/deserializer for SQL Server written by Bret
Lowery, available at this address:
http://www.sqlservercentral.com/articles/SQLCLR/74160/. It uses a popular JSON
framework—Json.NET.

Transact-SQL-based solution
There is also a Transact-SQL only solution that does not use .NET functionality at all. It is
written by Phil Factor and described in two articles:

Consuming JSON Strings in SQL Server: You can find this article at
https://www.simple-talk.com/sql/t-sql-programming/consuming-json-strin
gs-in-sql-server/

Producing JSON Documents from SQL Server queries via TSQL: The article is
available at
https://www.simple-talk.com/sql/t-sql-programming/producing-json-docum
ents-from-sql-server-queries-via-tsql/

Since it processes text with Transact-SQL only, the solution is not performant, but it can be
used to process small or moderate JSON documents.

JSON Support in SQL Server

[144]

Retrieving SQL Server data in the JSON
format
This section explores JSON support in SQL Server with a very common action: formatting
tabular data as JSON. In SQL Server 2016, the clause FOR JSON can be used with the
SELECT statement to accomplish this. It is analogous to formatting relational data as XML
by using the FOR XML extension.

When you use the FOR JSON clause, you can choose between two modes:

FOR JSON AUTO: The JSON output will be formatted by the structure of the
SELECT statement automatically.
FOR JSON PATH: The JSON output will be formatted by the structure explicitly
defined by you. With JSON PATH, you can create a more complex output (nested
objects and properties).

In both modes, SQL Server extracts relational data defined by the SELECT statement,
converts SQL Server data types to appropriate JSON types, implements escaping rules, and
finally formats the output according to explicitly or implicitly defined formatting rules.

FOR JSON AUTO
Use FOR JSON AUTO when you want to let SQL Server format query results for you. When
you specify this mode, the JSON format is controlled by how the SELECT statement is
written.

FOR JSON AUTO requires a table; you cannot use it without a database table or view. For
instance, the following query will fail:

SELECT GETDATE() AS today FOR JSON AUTO;

Here is the error message:

Msg 13600, Level 16, State 1, Line 13
FOR JSON AUTO requires at least one table for generating JSON objects. Use
FOR JSON PATH or add a FROM clause with a table name.

JSON Support in SQL Server

[145]

To demonstrate how SQL Server automatically generates JSON data, use the new SQL
Server 2016 sample database WideWorldImporters. Consider the following query that
returns the first three rows from the Application.People table:

USE WideWorldImporters;
SELECT TOP (3) PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People ORDER BY PersonID ASC;

Here is the result in tabular format:

First, you will recall how SQL Server converts this data automatically to XML. To generate
an XML, you can use the FOR JSON AUTO extension:

SELECT TOP (3) PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People ORDER BY PersonID ASC FOR XML AUTO;

Here is the portion of XML generated by the previous query:

<Application.People PersonID="1" FullName="Data Conversion Only" />
<Application.People PersonID="2" FullName="Kayla Woodcock"
EmailAddress="kaylaw@wideworldimporters.com" PhoneNumber="(415) 555-0102"
/>
<Application.People PersonID="3" FullName="Hudson Onslow"
EmailAddress="hudsono@wideworldimporters.com" PhoneNumber="(415) 555-0102"
/>

Analogous to this, the simplest way to convert the result in JSON format is to put the FOR
JSON AUTO extension at the end of the query:

SELECT TOP (3) PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People ORDER BY PersonID ASC FOR JSON AUTO;

The result is an automatically formatted JSON text. By default, it is a JSON array with
objects:

[{"PersonID":1,"FullName":"Data Conversion
Only"},{"PersonID":2,"FullName":"Kayla
Woodcock","EmailAddress":"kaylaw@wideworldimporters.com","PhoneNumber":"(41

JSON Support in SQL Server

[146]

5) 555-0102"},{"PersonID":3,"FullName":"Hudson
Onslow","EmailAddress":"hudsono@wideworldimporters.com","PhoneNumber":"(415
) 555-0102"}]

As you can see, in SQL Server Management Studio (SSMS), the JSON result is prepared in
a single line. This is hard to follow and observe from a human-readable point of view.
Therefore, you would need a JSON formatter. In this book, JSON output generated in SSMS
is formatted by using the JSON formatter and validator that is available at
https://jsonformatter.curiousconcept.com. The previous result looks better after
additional formatting:

[
 {
 "PersonID":1,
 "FullName":"Data Conversion Only"
 },
 {
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 },
 {
 "PersonID":3,
 "FullName":"Hudson Onslow",
 "EmailAddress":"hudsono@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 }
]

As you can see, for each row from the original result set, one JSON object with a flat
property structure is generated. Compared to XML, you see less text since the table name
does not appear in the JSON output.

The difference in size is significant when you compare JSON with XML generated by using
the ELEMENTS option instead of default RAW. To illustrate this, you can use the following
code; it compares the data length (in bytes) of XML- and JSON-generated output for all
rows in the Sales.Orders table:

USE WideWorldImporters;
SELECT
 DATALENGTH(CAST((SELECT * FROM Sales.Orders FOR XML AUTO) AS
NVARCHAR(MAX))) AS xml_raw_size, DATALENGTH(CAST((SELECT * FROM
Sales.Orders FOR XML AUTO, ELEMENTS) AS NVARCHAR(MAX))) AS
xml_elements_size, DATALENGTH(CAST((SELECT * FROM Sales.Orders FOR JSON
AUTO) AS NVARCHAR(MAX))) AS json_size;

JSON Support in SQL Server

[147]

The preceding query generates the following results:

xml_raw_size xml_elements_size json_size
-------------------- -------------------- --------------------
49161702 81161852 49149364

You can see that the XML representation of data when columns are expressed as XML
elements is about 65% larger than the JSON representation. When they are expressed as
XML attributes, JSON and XML output have approximately the same size.

The FOR JSON AUTO extension creates a flat structure with single-level properties. If you
are not satisfied with the automatically created output and want to create a more complex
structure, you should use the FOR JSON PATH extension.

FOR JSON PATH
To maintain full control over the format of the JSON output, you need to specify the PATH
option with the FOR JSON clause. The PATH mode lets you create wrapper objects and nest
complex properties. The results are formatted as an array of JSON objects.

The FOR JSON PATH clause will use the column alias or column name to determine the key
name in the JSON output. If an alias contains dots, the FOR JSON PATH clause will create a
nested object.

Assume you want to have more control over the output generated by FOR JSON AUTO in
the previous subsection, and instead of a flat list of properties you want to represent
EmailAddress and PhoneNumbers as nested properties of a new property named
Contact. Here is the required output for the PersonID property with a value of 2:

{
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "Contact":
{
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
}
 },

JSON Support in SQL Server

[148]

To achieve this, you simply add an alias to columns that need to be nested. In the alias, you
have to use a dot syntax, which defines a JSON path to the property. Here is the code that
implements the previous request:

SELECT TOP (3) PersonID, FullName,
EmailAddress AS 'Contact.Email', PhoneNumber AS 'Contact.Phone'
FROM Application.People ORDER BY PersonID ASC FOR JSON PATH;

Here is the expected result:

[
 {
 "PersonID":1,
 "FullName":"Data Conversion Only"
 },
 {
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "Contact":{
 "Email":"kaylaw@wideworldimporters.com",
 "Phone":"(415) 555-0102"
 }
 },
 {
 "PersonID":3,
 "FullName":"Hudson Onslow",
 "Contact":{
 "Email":"hudsono@wideworldimporters.com",
 "Phone":"(415) 555-0102"
 }
 }
]

By default, null values are not included in the output as you can see in the first array
element; it does not contain the Contact property.

FOR JSON PATH does not require a database table. The following statement, which was not
allowed in the AUTO mode, works in the PATH mode:

SELECT GETDATE() AS today FOR JSON PATH;

It returns:

[{"today":"2016-07-26T09:13:32.007"}]

JSON Support in SQL Server

[149]

If you reference more than one table in the query, the results are represented as a flat list,
and then FOR JSON PATH nests each column using its alias. JSON PATH allows you to
control generated JSON data and to create nested documents.

FOR JSON additional options
In both modes of the FOR JSON clause, you can specify additional options to control the
output. The following options are available:

Adding a root node: The JSON output will be formatted by the structure of the
SELECT statement automatically.
Including null values: The JSON output will be formatted by the structure
explicitly defined by you. With JSON PATH, you can create a more complex
output (nested objects and properties).
Removing array wrapper: The JSON output will be formatted by the structure
explicitly defined by you. With JSON PATH, you can create a more complex
output (nested objects and properties).

Adding a root node to the JSON output
By specifying the ROOT option in the FOR JSON query, you can add a single, top-level
element to the JSON output. The following code shows this:

SELECT TOP (3) PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People ORDER BY PersonID ASC FOR JSON AUTO,
ROOT('Persons');

Here is the result:

{
 "Persons":[
 {
 "PersonID":1,
 "FullName":"Data Conversion Only"
 },
 {
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 },
 {
 "PersonID":3,

JSON Support in SQL Server

[150]

 "FullName":"Hudson Onslow",
 "EmailAddress":"hudsono@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 }
]
}

By specifying the root element, you have converted the outer array to a single complex
property named Persons.

Including null values in the JSON output
As you can see in the preceding example, the JSON output does not map a column to a
JSON property if the column value is NULL. To include null values in the JSON output, you
can specify the INCLUDE_NULL_VALUES option. Let's apply it to our initial example:

SELECT TOP (3) PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People ORDER BY PersonID ASC FOR JSON AUTO,
INCLUDE_NULL_VALUES;

Let's observe the result:

[
 {
 "PersonID":1,
 "FullName":"Data Conversion Only",
 "EmailAddress":null,
 "PhoneNumber":null
 },
 {
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 },
 {
 "PersonID":3,
 "FullName":"Hudson Onslow",
 "EmailAddress":"hudsono@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 }
]

Now each element has all properties listed even if they don't have a value. This option is
similar to the XSINIL option used with the ELEMENTS directive in the case of FOR XML
AUTO.

JSON Support in SQL Server

[151]

Formatting a JSON output as a single object
The default JSON output is enclosed within square brackets, which means the output is an
array. If you want to format it as a single object instead of an array, use the
WITHOUT_ARRAY_WRAPPER option.

Even if a query returns only one row, SQL Server will format it by default as a JSON array,
as in the following example:

SELECT PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People WHERE PersonID = 2 FOR JSON AUTO;

Although only one row is returned, the output is still an array (with a single element):

[
 {
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
 }
]

To return a single object instead of an array, you can specify the WITHOUT_ARRAY_WRAPPER
option:

SELECT PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People WHERE PersonID = 2 FOR JSON AUTO,
WITHOUT_ARRAY_WRAPPER;

The output looks more convenient now:

{
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
}

Removing square brackets from the output allows us to choose between an object and array
in the output JSON. However, only square brackets guarantee that the output is JSON
conforming. Without the brackets, JSON text will be valid only if the underlined query
returns a single row or no rows at all.

JSON Support in SQL Server

[152]

To demonstrate this, include PersonID with a value of 3 in your initial query:

SELECT PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People WHERE PersonID IN (2, 3) FOR JSON AUTO,
WITHOUT_ARRAY_WRAPPER;

The output is expected, but invalid; there is no parent object or array:

{
 "PersonID":2,
 "FullName":"Kayla Woodcock",
 "EmailAddress":"kaylaw@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
},
{
 "PersonID":3,
 "FullName":"Hudson Onslow",
 "EmailAddress":"hudsono@wideworldimporters.com",
 "PhoneNumber":"(415) 555-0102"
}

But, wait! By specifying the ROOT option, you can wrap the output in an object, can't you?
You saw this demonstrated earlier in this chapter. You can add a no-name root element to
the preceding output:

SELECT PersonID, FullName, EmailAddress, PhoneNumber
FROM Application.People WHERE PersonID IN (2, 3) FOR JSON AUTO,
WITHOUT_ARRAY_WRAPPER, ROOT('');

This should add a top-level element, and with that change, the JSON output should be
valid. Check this out in the output:

Msg 13620, Level 16, State 1, Line 113
ROOT option and WITHOUT_ARRAY_WRAPPER option cannot be used together in FOR
JSON. Remove one of these options.

A bitter disappointment! You cannot combine these two options! Therefore, use this option
with caution; be aware that the JSON could be invalid.

JSON Support in SQL Server

[153]

Converting data types
As mentioned earlier, JSON does not have the same data types as SQL Server. Therefore,
when JSON text is generated from relational data, a data type conversion is performed. The
FOR JSON clause uses the following mapping to convert SQL Server data types to JSON
types in the JSON output:

SQL Server data type JSON data type

Char, Varchar, Nchar, NVarchar, Text, Ntext, Date, DateTime,
DateTime2, DateTimeOffset, Time, UniqueIdentifier,
Smallmoney, Money, XML, HierarchyId, Sql_Variant

string

Tinyint, Smallint, Int, Bigint, Decimal, Float, Numeric number

Bit true or false

Binary, Varbinary, Image, Rowversion, Timestamp encoded string
(BASE 64)

Table 5 2 Conversion between SQL Server and JSON data types

The following data types are not supported: geography, geometry, and CLR-based user-
defined data types. Thus, you cannot generate JSON output from tabular data if it includes
columns of the aforementioned data types. For instance, the following query will fail:

SELECT * FROM Application.Cities FOR JSON AUTO;

Instead of returning a JSON output, it will generate an error with the following error
message:

Msg 13604, Level 16, State 1, Line 282
FOR JSON cannot serialize CLR objects. Cast CLR types explicitly into one
of the supported types in FOR JSON queries.

The reason for the error is the Location column in the Cities table. Its data type is
geography.

User-defined data types (UDT) are supported and will be converted following the same
rules as underlined data types.

JSON Support in SQL Server

[154]

Escaping characters
Another action that is automatically performed when JSON is generated by using FOR
JSON clause is escaping special characters from text columns according to JSON's escaping
rules. The rules are explained in detail in the Primitive JSON data types section earlier in this
chapter.

Converting JSON data in a tabular format
Nowadays, JSON is a recognized format for data representation and exchange. However,
most of the existing data still resides in relational databases and you need to combine them
to process and manipulate them together. In order to combine JSON with relational data or
to import it in relational tables, you need to map JSON data to tabular data, that is, convert
it into a tabular format. In SQL Server 2016, you can use the OPENJSON function to
accomplish this.

OPENJSON is a newly added rowset function. A rowset function is a table-valued
function and returns an object that can be used as if it were a table or a view. Just
as OPENXML provides a rowset view over an XML document, OPENJSON gives a
rowset over JSON data. The OPENJSON function converts JSON objects and
properties to table rows and columns respectively.
It accepts two input arguments:

Expression: JSON text in the Unicode format.
Path: This is an optional argument. It is a JSON path expression
and you can use it to specify a fragment of the input expression.

The function returns a table with a default or user-defined schema.

To use the OPENJSON function, the database must be in compatibility level 130. If it is not,
you will get the following error:

Msg 208, Level 16, State 1, Line 78
Invalid object name 'OPENJSON'.

As mentioned, the returned table can have an implicit (default) schema or an explicit one,
defined by the user. In the next two sections, both schemas will be explored in more detail.

JSON Support in SQL Server

[155]

OPENJSON with the default schema
When you don't specify a schema for returned results, the OPENJSON function returns a
table with three columns:

Key: This is the name of a JSON property or the index of a JSON element. The
data type of the column is nvarchar, the length is 4,000, collation is
Latin1_General_BIN2, and the column does not allow null values.
Value: This is the value of the property or index defined by the key column. The
data type of the column is nvarchar(max), it inherits collation from the input
JSON text, and nulls are allowed.
Type: The JSON data type of the value. The data type of the column is tinyint.
Table 5.3 lists the possible values for this column and appropriate descriptions:

Type column value JSON data type

0 null

1 string

2 number

3 true/false

4 array

5 object

Table 5 3 OPENJSON mapping of JSON data types

OPENJSON returns only one table; therefore only first-level properties are returned as rows.
It returns one row for each JSON property or array element. To demonstrate the different
results provided by the OPENJSON function, use the following JSON data with the
information about the album Wish You Were Here by the British band Pink Floyd. You will
provide JSON data as an input string and call the function without specifying an optional
path argument:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Songs":[{"Title":"Shine On You Crazy Diamond","Authors":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Authors":"Waters"},
{"Title":"Welcome to the Machine","Authors":"Waters"},

JSON Support in SQL Server

[156]

{"Title":"Wish You Were Here","Authors":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
SELECT * FROM OPENJSON(@json);

The function has been invoked without the path expression, simply to convert the whole
JSON document into a tabular format. Here is the output of this action:

Key Value Type

Album Wish you Were Here 1

Year 1975 2

IsVinyl true 3

Songs [{"Title":"Shine On You Crazy
Diamond","Writers":"Gilmour, Waters, Wright" ...]

4

Members {"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick
Mason"}

5

As you can see, five rows were generated (one row for each JSON property), property
names are shown in the key column and their values in the value column.

The input JSON expression must be well formatted; otherwise, an error occurs. In the
following code, a leading double quote for the Year property is intentionally omitted:

DECLARE @json NVARCHAR(500) = '{
"Album":"Wish You Were Here",
Year":1975,
"IsVinyl":true
}';
SELECT * FROM OPENJSON(@json);

Of course, the optimizer does not forgive this small mistake and its reaction is very
conservative:

Msg 13609, Level 16, State 4, Line 23
JSON text is not properly formatted. Unexpected character 'Y' is found at
position 34.

JSON Support in SQL Server

[157]

As already mentioned and demonstrated, only first-level properties are returned with the
OPENJSON function. To return properties within complex values of a JSON document
(arrays and objects), you need to specify the path argument. In this example, assume you
want to return the Songs fragment from the initial Wish You Were Here JSON string:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Songs":[{"Title":"Shine On You Crazy Diamond","Authors":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Authors":"Waters"},
{"Title":"Welcome to the Machine","Authors":"Waters"},
{"Title":"Wish You Were Here","Authors":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
SELECT * FROM OPENJSON(@json,'$.Songs');

The $ path expression represents the context item and $.Songs refers to the Songs
property and actually extracts this fragment from the JSON document. The rest of the
document must be valid; otherwise, the path expression cannot be evaluated.

Here is the result:

Key Value Type

0 {"Title":"Shine On You Crazy Diamond","Writers":"Gilmour,
Waters, Wright"}

5

1 {"Title":"Have a Cigar","Writers":"Waters"} 5

2 {"Title":"Welcome to the Machine","Writers":"Waters"} 5

3 {"Title":"Wish You Were Here","Writers":"Gilmour, Waters"} 5

You can see four entries for four elements in the JSON array representing songs from this
album. Since they contain objects, their values are still in the JSON format in the column
value.

When you do the same for the Members property, you get a nice list of properties with their
names and values:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Songs":[{"Title":"Shine On You Crazy Diamond","Authors":"Gilmour, Waters,

JSON Support in SQL Server

[158]

Wright"},
{"Title":"Have a Cigar","Authors":"Waters"},
{"Title":"Welcome to the Machine","Authors":"Waters"},
{"Title":"Wish You Were Here","Authors":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
SELECT * FROM OPENJSON(@json,'$.Members');

Here is the result:

key value type

Guitar David Gilmour 1

Bass Guitar Roger Waters 1

Keyboard Richard Wright 1

Drums Nick Mason 1

Note that the returned type this time is 1 (string), while in the previous example it was 5
(object).

The function returns an error if the JSON text is not properly formatted. To demonstrate
this, the initial string has been slightly changed: a leading double quote has been omitted
for the element Drums (value Nick Mason). Therefore, the string is not JSON valid. Invoke
the OPENJSON function for such a string:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish you Were Here",
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":Nick Mason", "Vocal":"Syd
Barrett"}
}';
SELECT * FROM OPENJSON (@json,'$.Members');

JSON Support in SQL Server

[159]

Here is the result:

Msg 13609, Level 16, State 4, Line 15
JSON text is not properly formatted. Unexpected character 'N' is found at
position 417.

key value type

Guitar David Gilmour 1

Bass Guitar Roger Waters 1

Keyboard Richard Wright 1

You can see an error message, but also the returned table. The table contains three rows,
since the first three properties of the complex Member property are JSON conforming.
Instead of a fourth row, an error message has been generated and the fifth row is not shown
either, although it is well-formatted.

What would happen if the JSON path expression points to a scalar value or to a non-
existing property? In the default JSON path mode (lax), the query would return an empty
table; and when you specify strict mode, in addition to an empty table, an error message is
shown (a batch-level exception is raised), as shown in the following examples:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish you Were Here",
"Year":1975,
"IsVinyl":true,
"Songs" :[{"Title":"Shine On You Crazy Diamond","Writers":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Writers":"Waters"},
{"Title":"Welcome to the Machine","Writers":"Waters"},
{"Title":"Wish You Were Here","Writers":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
SELECT * FROM OPENJSON(@json, N'$.Members.Guitar');
SELECT * FROM OPENJSON(@json, N'$.Movies');

Both queries return an empty table:

key value type

The same calls with the strict option end up with error messages:

SELECT * FROM OPENJSON(@json, N'strict $.Members.Guitar');

JSON Support in SQL Server

[160]

The result for the preceding query is the first error message:

Msg 13611, Level 16, State 1, Line 12
Value referenced by JSON path is not an array or object and cannot be
opened with OPENJSON.

The second query from the preceding example:

SELECT * FROM OPENJSON(@json, N'strict $.Movies');

The result for the preceding query is the second error message:

Msg 13608, Level 16, State 3, Line 13
Property cannot be found on the specified JSON path.

You can use OPENJSON not only to convert JSON data into a tabular format but also to
implement some non-JSON related tasks.

Processing data from a comma-separated list of values
The following code example demonstrates how to use the OPENJSON rowset function to
return the details of orders for IDs provided in a comma-separated list:

USE WideWorldImporters;
DECLARE @orderIds AS VARCHAR(100) = '1,3,7,8,9,11';
SELECT o.OrderID, o.CustomerID, o.OrderDate
FROM Sales.Orders o
INNER JOIN (SELECT value FROM OPENJSON('[' + @orderIds + ']')) x ON
x.value= o.OrderID;

Here is the list of orders produced by the preceding query:

OrderID CustomerID OrderDate
----------- ----------- ----------
1 832 2013-01-01
3 105 2013-01-01
7 575 2013-01-01
8 964 2013-01-01
9 77 2013-01-01
11 586 2013-01-01

In this example, the input argument is wrapped with square brackets to create a proper
JSON text and the OPENJSON function is invoked without the path argument. OPENJSON
created one row for each element from the JSON array and that is exactly what you needed.

JSON Support in SQL Server

[161]

Returning the difference between two table rows
Another example where you can use OPENJSON is to return the difference between two
rows in a table. For instance, when you put application settings for different environments
in a database table, you might need to know what is different in the settings between the
two environments. You can accomplish this task by comparing values in each column, but
this can be annoying and error prone if the table has many columns.

The following example returns the difference for database settings in the master and model
database in an instance of SQL Server 2016:

SELECT
 mst.[key],
 mst.[value] AS mst_val,
 mdl.[value] AS mdl_val
FROM OPENJSON ((SELECT * FROM sys.databases WHERE database_id = 1 FOR JSON
AUTO, WITHOUT_ARRAY_WRAPPER)) mst
INNER JOIN OPENJSON((SELECT * FROM sys.databases WHERE database_id = 3 FOR
JSON AUTO, WITHOUT_ARRAY_WRAPPER)) mdl
ON mst.[key] = mdl.[key] AND mst.[value] <> mdl.[value];

Here is the list showing columns that have different values for these two databases:

key mst_val mdl_val

name master model

database_id 1 3

compatibility_level 120 130

snapshot_isolation_state 1 0

snapshot_isolation_state_desc ON OFF

recovery_model 3 1

recovery_model_desc SIMPLE FULL

is_db_chaining_on true false

This is very handy and efficient; you don't need to know or write a lot of OR statements with
column names. For instance, in the system view used in this example (sys.databases),
there are 78 columns and you would need to include them all in the WHERE clause in a
relational Transact-SQL statement.

JSON Support in SQL Server

[162]

OPENJSON with an explicit schema
If you need more control over formatting when it is offered by default, you can explicitly
specify your own schema. The function will still return a table but with the columns defined
by you. To specify the resultant table schema, use the WITH clause of the OPENJSON
function. Here is the syntax for the OPENJSON function with an explicit schema:

OPENJSON(jsonExpression [, path])
[
 WITH (
 column_name data_type [column_path] [AS JSON]
 [, column_name data_type [column_path] [AS JSON]]
 [, . . . n]
)
]

When you use the WITH clause, you need to specify at least one column. For each column,
you can specify the following attributes:

column_name: This is the name of the output column.
data_type: This is the data type for the output column.
column_path: This is the value for the output column specified with the JSON
path expression (it can be a JSON property or value of an array element). This
argument is optional.
AS JSON: Use this to specify that the property referenced in the column path
represents an object or array. This argument is optional.

The best way to understand how the function works is to look at examples. The following
code shows how to extract JSON properties as columns and their values as rows for JSON
primitive data types:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Songs" :[{"Title":"Shine On You Crazy Diamond","Writers":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Writers":"Waters"},
{"Title":"Welcome to the Machine","Writers":"Waters"},
{"Title":"Wish You Were Here","Writers":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
SELECT * FROM OPENJSON(@json)
WITH

JSON Support in SQL Server

[163]

(
 AlbumName NVARCHAR(50) '$.Album',
 AlbumYear SMALLINT '$.Year',
 IsVinyl BIT '$.IsVinyl'
);

The result of the previous action is a table defined with the WITH statement:

AlbumName AlbumYear IsVinyl

Wish You Were Here 1975 1

You can add a fourth column to show band members. Here is the code:

SELECT * FROM OPENJSON(@json)
WITH
(
 AlbumName NVARCHAR(50) '$.Album',
 AlbumYear SMALLINT '$.Year',
 IsVinyl BIT '$.IsVinyl',
 Members VARCHAR(200) '$.Members'
);

And the resultant table:

AlbumName AlbumYear IsVinyl Members

Wish You Were Here 1975 1 NULL

The result might be unexpected, but the value for the Members property is an object, and
therefore the function returns NULL since the JSON path is in default lax mode. If you
specified the strict mode, the returned table would be empty and an error would be raised.
To solve the problem and show the value of the Members property you need to use the AS
JSON option to inform SQL Server that the expected data is properly JSON-formatted:

SELECT * FROM OPENJSON(@json)
WITH
(
 AlbumName NVARCHAR(50) '$.Album',
 AlbumYear SMALLINT '$.Year',
 IsVinyl BIT '$.IsVinyl',
 Members VARCHAR(MAX) '$.Members' AS JSON

);

JSON Support in SQL Server

[164]

Now it should return the expected result, but it returns an error:

Msg 13618, Level 16, State 1, Line 70
AS JSON option can be specified only for column of nvarchar(max) type in
WITH clause.

As the error message clearly says, the AS JSON option requires a column with the
nvarchar(max) data type. Finally, here is the code that works and returns the expected
result:

SELECT * FROM OPENJSON(@json)
WITH
(
 AlbumName NVARCHAR(50) '$.Album',
 AlbumYear SMALLINT '$.Year',
 IsVinyl BIT '$.IsVinyl',
 Members NVARCHAR(MAX) '$.Members' AS JSON

);

AlbumName AlbumYear IsVinyl Members

Wish You
Were Here

1975 1 {"Guitar":"David Gilmour","Bass
Guitar":"Roger
Waters","Keyboard":"Richard
Wright","Drums":"Nick Mason"}

To combine property values from different levels and convert them to a tabular format, you
would need to have multiple calls of the OPENJSON function. The following example lists all
songs and authors and shows the appropriate album name:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Songs" :[{"Title":"Shine On You Crazy Diamond","Writers":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Writers":"Waters"},
{"Title":"Welcome to the Machine","Writers":"Waters"},
{"Title":"Wish You Were Here","Writers":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
SELECT s.SongTitle, s.SongAuthors, a.AlbumName FROM OPENJSON(@json)
WITH
(
 AlbumName NVARCHAR(50) '$.Album',

JSON Support in SQL Server

[165]

 AlbumYear SMALLINT '$.Year',
 IsVinyl BIT '$.IsVinyl',
 Songs NVARCHAR(MAX) '$.Songs' AS JSON,
 Members NVARCHAR(MAX) '$.Members' AS JSON

) a
CROSS APPLY OPENJSON(Songs)
WITH
(
 SongTitle NVARCHAR(200) '$.Title',
 SongAuthors NVARCHAR(200) '$.Writers'
)s;

This time the result meets expectations. No hidden catch!

SongTitle SongAuthors AlbumName

Shine On You Crazy Diamond Gilmour, Waters, Wright Wish You Were Here

Have a Cigar Waters Wish You Were Here

Welcome to the Machine Waters Wish You Were Here

Wish You Were Here Gilmour, Waters Wish You Were Here

Import the JSON data from a file
Importing JSON data from a file and converting it into a tabular format is straightforward
in SQL Server 2016. To import data from a filesystem (local disk or network location) into
SQL Server, you can use the OPENROWSET (BULK) function. It simply imports the entire file
content in a single-text value.

To demonstrate this, use your knowledge from the previous section and generate content
for a JSON file. Use the following query to create JSON data from the
Application.People table:

USE WideWorldImporters;
SELECT PersonID, FullName, PhoneNumber, FaxNumber, EmailAddress, LogonName,
IsEmployee, IsSalesperson FROM Application.People FOR JSON AUTO;

You then save the resulting JSON text in a file named app.people.json in the C:Temp
directory. Now import this JSON file into SQL Server.

JSON Support in SQL Server

[166]

By using the OPENROWSET function, the file is imported in a single-text column. Here is the
code:

SELECT BulkColumn
FROM OPENROWSET (BULK 'C:Tempapp.people.json', SINGLE_CLOB) AS x;

Figure 5.5 shows the result of this import action. The entire file content is available in the
single-text column named BulkColumn.

Figure 5 5 Import JSON file into SQL Server by using OPENROWSET function

To represent a JSON file content in a tabular format, you can combine the OPENROWSET
function with the OPENJSON function. The following code imports JSON data and displays
it with the default schema (columns key, value and type).

SELECT [key], [value], [type]
FROM OPENROWSET (BULK 'C:Tempapp.people.json', SINGLE_CLOB) AS x
CROSS APPLY OPENJSON(BulkColumn);

The result is shown in Figure 5.6. You can see one row for each element of a JSON array in
the file.

Figure 5 6 Importing a JSON file into SQL Server and combining with OPENJSON with the default schema

JSON Support in SQL Server

[167]

Finally, this code example shows the code that can be used to import a JSON file and
represent its content in tabular format, with a user-defined schema:

SELECT PersonID, FullName,PhoneNumber, FaxNumber, EmailAddress,LogonName,
IsEmployee, IsSalesperson
FROM OPENROWSET (BULK 'C:Tempapp.people.json', SINGLE_CLOB) as j
CROSS APPLY OPENJSON(BulkColumn)
WITH
(
 PersonID INT '$.PersonID',
 FullName NVARCHAR(50) '$.FullName',
 PhoneNumber NVARCHAR(20) '$.PhoneNumber',
 FaxNumber NVARCHAR(20) '$.FaxNumber',
 EmailAddress NVARCHAR(256) '$.EmailAddress',
 LogonName NVARCHAR(50) '$.LogonName',
 IsEmployee BIT '$.IsEmployee',
 IsSalesperson BIT '$.IsSalesperson'
);

Figure 5.7 shows the result of this import procedure:

Figure 5 7 Importing a JSON file into SQL Server and combining with OPENJSON with an explicit schema

As expected, the structure is identical to the one generated by the simple SELECT statement
against the Application.People table.

JSON storage in SQL Server 2016
As XML support was introduced in SQL Server 2005, the native XML data type has been
implemented as well. SQL Server 2016 introduces built-in support for JSON but unlike
XML, there is no native JSON data type. Here are the reasons that the Microsoft team
exposed for not introducing a new data type:

JSON Support in SQL Server

[168]

Migration: Prior to SQL Server 2016, developers already had to deal with JSON
data
Cross feature compatibility: The data type nvarchar is supported in all SQL
Server components, so JSON will also be supported everywhere (memory-
optimized tables, temporal tables, and Row-Level Security)
Client-side support: Even if a new data type were introduced, most of the client
tools would still represent it outside SQL Server as a string

They also noted that, if you believe that the JSON binary format from PostgreSQL, or
a compressed format, such as zipped JSON text is a better option, you can parse JSON text
in UDT, store it as JSONB in a binary property of CLR UTD, and create member methods
that can use properties from that format. You can find more details about their decision at
https://blogs.msdn.microsoft.com/jocapc/2015/05/16/json-support-in-sql-server-2

016.

Although these arguments make sense, a native JSON data type would be better, especially
from a performance point of view. However, this will require more effort and longer time
frames for development and the time between the release of new features is shorter than
that. This should also be taken into account when you judge the feature. JSON support in
SQL Server 2016 would be complete with a native data type, but built-in support is a
respectable implementation and this is a very useful feature.

Since there is no JSON data type, JSON data is stored as text in NVARCHAR columns. You can
use the newly added COMPRESS function to compress JSON data and convert it to a binary
format.

Validating JSON data
To validate JSON, you can use the ISJSON function. This is a scalar function and checks
whether the input string is valid JSON data. The function has one input argument:

string: This is an expression of any string data type, except text and ntext

The return type of the function is int, but only three values are possible:

1 if the input string is JSON conforming
0 if the input string is not valid JSON data
NULL if the input expression is NULL

JSON Support in SQL Server

[169]

The following statement checks whether the input variable is JSON valid:

SELECT
 ISJSON ('test'),
 ISJSON (''),
 ISJSON ('{}'),
 ISJSON ('{"a"}'),
 ISJSON ('{"a":1}'),
 ISJSON ('{"a":1"}');

Here is the output:

------ ------ ------ ------ ------ ------
0 0 1 0 1 0

ISJSON does not check the uniqueness of keys at the same level. Therefore, this JSON data
is valid:

SELECT ISJSON ('{"id":1, "id":"a"}') AS is_json;

It returns:

is_json

1

Since there is no JSON data type and data must be stored as text, the ISJSON function is
important for data validation before the text is saved into a database table. To ensure that a
text column stores only JSON conforming data, you can use the ISJSON function in the
check constraint. The following code creates a sample table with a JSON column and an
appropriate check constraint:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.Users;
CREATE TABLE dbo.Users(
id INT IDENTITY(1,1) NOT NULL,
username NVARCHAR(50) NOT NULL,
user_settings NVARCHAR(MAX) NULL CONSTRAINT CK_user_settings CHECK
(ISJSON(user_settings) = 1),
CONSTRAINT PK_Users PRIMARY KEY CLUSTERED (id ASC)
);

JSON Support in SQL Server

[170]

To test the constraint, you will have to insert two rows in the table. The first INSERT
statement contains a well-formatted JSON text, while in the second the value for the last
property is omitted; thus the JSON text is invalid. Now, execute the statements:

INSERT INTO dbo.Users(username, user_settings) VALUES(N'vasilije', '{"team"
: ["Rapid", "Bayern"], "hobby" : ["soccer", "gaming"], "color" : "green"
}');

INSERT INTO dbo.Users(username, user_settings) VALUES(N'mila', '{"team" :
"Liverpool", "hobby" }');

The first statement has been executed successfully, but the second, as expected, generated
the following error message:

Msg 547, Level 16, State 0, Line 12
The INSERT statement conflicted with the CHECK constraint
"CK_user_settings". The conflict occurred in database "WideWorldImporters",
table "dbo.Users", column 'user_settings'.
The statement has been terminated.

Ensure that you have dropped the table used in this example:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.Users;

Extracting values from a JSON text
As mentioned earlier in this chapter, JSON has four primitive types (string, number,
Boolean, and null) and two complex (structure) types: object and array. SQL Server 2016
offers two functions to extract values from a JSON text:

JSON_VALUE: This is used to extract values of primitive data types
JSON_QUERY: This is used to extract a JSON fragment or to get a complex value
(object or array)

JSON Support in SQL Server

[171]

JSON_VALUE
The JSON_VALUE function extracts a scalar value from a JSON string. It accepts two input
arguments:

Expression: This is JSON text in the Unicode format.
Path: This is an optional argument. It is a JSON path expression and you can use
it to specify a fragment of the input expression.

The return type of the function is nvarchar(4000), with the same collation as in the input
expression. If the extracted value is longer than 4,000 characters, the function returns NULL
provided the path is in lax mode or an error message in the case of strict mode.

If either the expression or the path is not valid, the JSON_VALUE function returns an error
explaining that the JSON text is not properly formatted.

The following example shows the JSON_VALUE function in action. It is used to return values
for properties and an array element:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
SELECT
 JSON_VALUE(@json, '$.Album') AS album,
 JSON_VALUE(@json, '$.Year') AS yr,
 JSON_VALUE(@json, '$.IsVinyl') AS isVinyl,
 JSON_VALUE(@json, '$.Members[0]') AS member1;

Here is the result of the previous query:

album yr isVinyl member1
------------------- ----- ------ --------
Wish You Were Here 1975 true Gilmour

Note that all returned values are strings; as already mentioned, the data type of the
returned value is nvarchar.

The aim of the function is to extract scalar values. Therefore, it won't work if the JSON path
specifies an array or an object. The following call with the JSON string in the previous
example will return a NULL value:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",

JSON Support in SQL Server

[172]

"Year":1975,
"IsVinyl":true,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
SELECT
 JSON_VALUE(@json, '$.Members') AS member;

The JSON path $.members specifies an array and the function expects a scalar value. A null
value will be returned even if the property specified with the path expression does not exist.
As mentioned earlier, the JSON path expression has two modes: lax and strict. In the default
lax mode, errors are suppressed and functions return NULL values or empty tables, while
every unexpected or non-existing path raises a batch-level exception. The same call with the
JSON path in strict mode would end up with an error:

SELECT
 JSON_VALUE(@json, 'strict $.Members') AS member;

Here is the error message:

Msg 13623, Level 16, State 1, Line 75
Scalar value cannot be found in the specified JSON path.

If the length of a JSON property value or string element is longer than 4,000, the function
returns NULL. The next example demonstrates this by using two very long strings as values
for two properties. The first one has 4,000 characters and the second is one character longer:

DECLARE @json NVARCHAR(MAX) = CONCAT('{"name":"', REPLICATE('A',4000),
'",}'),
@json4001 NVARCHAR(MAX) = CONCAT('{"name":"', REPLICATE('A',4001), '",}')
SELECT
 JSON_VALUE(@json, '$.name') AS name4000,
 JSON_VALUE(@json4001, '$.name') AS name4001;

The abbreviated result is here:

Name4000 name4001
------------------- ---------
AAAAAAAAAAAAAAAA... NULL

You can see that 4001 is too much for JSON_VALUE, and the function returns NULL. If you
specify strict in the previous example, the function returns an error:

DECLARE @json4001 NVARCHAR(MAX) = CONCAT('{"name":"', REPLICATE('A',4001),
'",}')
SELECT
 JSON_VALUE(@json4001, ' strict $.name') AS name4001;

JSON Support in SQL Server

[173]

Here is the error message:

Msg 13625, Level 16, State 1, Line 65
String value in the specified JSON path would be truncated.

This is a typical change in function behavior regarding the JSON path mode. Lax mode
usually returns NULL and does not break the code, while strict mode raises a batch-level
exception.

JSON_VALUE can be used in SELECT, WHERE, and ORDER clauses. In the following example, it
is used in all three clauses:

SELECT
 PersonID,
 JSON_VALUE(UserPreferences, '$.timeZone') AS TimeZone,
 JSON_VALUE(UserPreferences, '$.table.pageLength') AS PageLength
FROM Application.People
WHERE JSON_VALUE(UserPreferences, '$.dateFormat') = 'yy-mm-dd'
 AND JSON_VALUE(UserPreferences, '$.theme') = 'blitzer'
ORDER BY JSON_VALUE(UserPreferences, '$.theme'), PersonID;

One important limitation of the JSON_VALUE function is that a variable as a second
argument (JSON path) is not allowed. For instance, the following code won't work:

DECLARE @jsonPath NVARCHAR(10) = N'$.Album';
DECLARE @json NVARCHAR(200) = N'{
"Album":"Wish You Were Here",
"Year":1975
}';
SELECT
 JSON_VALUE(@json, @jsonPath) AS album;

The query fails with the following error message:

Msg 13610, Level 16, State 1, Line 137
The argument 2 of the "JSON_VALUE or JSON_QUERY" must be a string literal

This is a significant limitation; you need to provide the JSON path as a static value in
advance and you cannot add or change it dynamically. If you think that this function would
be more useful without this limitation, then you can vote for the related item Don't restrict
JSON_VALUE and JSON_QUERY to string literals only for the path at the following web
address: h t t p s ://c o n n e c t . m i c r o s o f t . c o m /S Q L S e r v e r /F e e d b a c k /D e t a i l s /2235470.

JSON Support in SQL Server

[174]

JSON_QUERY
The JSON_QUERY function extracts a JSON fragment from the input JSON string for the
specified JSON path. It returns a JSON object or an array; therefore, its output is JSON
conforming. This function is complementary to the JSON_VALUE function.

JSON_QUERY always returns JSON conforming text. Thus, if you want to suggest to SQL
Server that the string is JSON formatted, you should wrap it with this function.

The function has two input arguments:

Expression: This is a variable or column containing JSON text.
Path: This is a JSON path that specifies the object or the array to extract. This
parameter is optional. If it's not specified, the whole input string will be returned.

The return type of the function is nvarchar(max) if the input string is defined as
(n)varchar(max); otherwise, it is nvarchar(4000). As already mentioned, the function
always returns a JSON conforming string.

If either the expression or the path is not valid, JSON_QUERY returns an error message
saying that the JSON text or JSON path is not properly formatted.

In the following self-explanatory examples, how to use this function with different JSON
path expressions is demonstrated:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Songs" :[{"Title":"Shine On You Crazy Diamond","Writers":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Writers":"Waters"},
{"Title":"Welcome to the Machine","Writers":"Waters"},
{"Title":"Wish You Were Here","Writers":"Gilmour, Waters"}],
"Members":{"Guitar":"David Gilmour","Bass Guitar":"Roger
Waters","Keyboard":"Richard Wright","Drums":"Nick Mason"}
}';
--get Songs JSON fragment (array)
SELECT JSON_QUERY(@json,'$.Songs');
--get Members SON fragment (object)
SELECT JSON_QUERY(@json,'$.Members');
--get fourth Song JSON fragment (object)
SELECT JSON_QUERY(@json,'$.Songs[3]');

JSON Support in SQL Server

[175]

Here is the result of these invocations:

[{"Title":"Shine On You Crazy Diamond","Writers":"Gilmour, Waters,
Wright"},
{"Title":"Have a Cigar","Writers":"Waters"},
{"Title":"Welcome to the Machine","Writers":"Waters"},
{"Title":"Wish You Were Here","Writers":"Gilmour, Waters"}]
{"Guitar":"David Gilmour","Bass Guitar":"Roger Waters","Keyboard":"Richard
Wright","Drums":"Nick Mason"}
{"Title":"Wish You Were Here","Writers":"Gilmour, Waters"}

You can see that the returned values are JSON objects and arrays. However, if you specify a
value that is not an array or object, the function returns NULL in lax mode and an error in
strict mode:

--get property value (number)
SELECT JSON_QUERY(@json,'$.Year');
--get property value (string)
SELECT JSON_QUERY(@json,'$.Songs[1].Title');
--get value for non-existing property
SELECT JSON_QUERY(@json,'$.Studios');

All three calls return NULL, whereas strict mode raises a batch-level exception:

SELECT JSON_QUERY(@json,'strict $.Year');
/*Result:
Msg 13624, Level 16, State 1, Line 54
Object or array cannot be found in the specified JSON path.
*/
--get value for non-existing property
SELECT JSON_QUERY(@json,'strict $.Studios');
/*Result:
Msg 13608, Level 16, State 5, Line 60
Property cannot be found on the specified JSON path
*/

You can also use JSON_QUERY to ensure data integrity of JSON data in a table column. For
instance, the following check constraint ensures that all persons in the People table have
the OtherLanguages property within the CustomFields column if this column has a
value:

USE WideWorldImporters;
ALTER TABLE Application.People
ADD CONSTRAINT CHK_OtherLanguagesRequired
CHECK (JSON_QUERY(CustomFields, '$.OtherLanguages') IS NOT NULL OR
CustomFields IS NULL);

JSON Support in SQL Server

[176]

JSON_QUERY has the same restriction for the path argument as JSON_VALUE; only literals
are allowed.

Modifying JSON data
You might sometimes need to update only a part of JSON data. In SQL Server 2016, you can
modify JSON data using the JSON_MODIFY function. It allows you to:

Update the value of an existing property
Add a new element to an existing array
Insert a new property and its value
Delete a property based on a combination of modes and provided values

The function accepts three mandatory input arguments:

Expression: This is a variable or column name containing JSON text
Path: This is the JSON path expression with an optional modifier append
new_value: This is the new value for the property specified in the path
expression

The JSON_MODIFY function returns the updated JSON string. In the next subsections, you
will see this function in action.

Adding a new JSON property
In the following code example, you add a new property named IsVinyl with the value
true:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975
}';
PRINT JSON_MODIFY(@json, '$.IsVinyl', CAST(1 AS BIT));

JSON Support in SQL Server

[177]

You need to cast the value explicitly to the BIT data type; otherwise it will be surrounded
by double quotas and interpreted as a string. Here is the result of the modification:

{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true
}

Note that the JSON path expression is in default lax mode. By specifying strict mode, the
function will return an error:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975
}';
PRINT JSON_MODIFY(@json, 'strict $.IsVinyl', CAST(1 AS BIT));

Strict mode always expects the property specified with the JSON path expression to exist. If
it does not exist, it returns the following error message:

Msg 13608, Level 16, State 2, Line 34
Property cannot be found on the specified JSON path.

Be aware when you add a value that it is already JSON formatted. In the next example,
assume you want to add a new property named Members and you have already prepared
the whole JSON array:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true
}';
DECLARE @members NVARCHAR(500) = N'["Gilmour","Waters","Wright","Mason"]';
PRINT JSON_MODIFY(@json, '$.Members', @members);

A new Members property has been added to the input JSON data, but our JSON conform
value has been interpreted as text and therefore all special characters are escaped. Here is
the modified input string:

{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Members":"["Gilmour","Waters","Wright","Mason"]"
}

JSON Support in SQL Server

[178]

To avoid the escaping of JSON conforming text, you need to tell the function that the text is
already JSON and escaping should not be performed. You can achieve this by wrapping the
new value with the JSON_QUERY function:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true
}';
DECLARE @members NVARCHAR(500) = N'["Gilmour","Waters","Wright","Mason"]';
PRINT JSON_MODIFY(@json, '$.Members', JSON_QUERY(@members));

As mentioned in the previous section, the JSON_QUERY function returns JSON conforming
text and now SQL Server knows that escaping is not required. Here is the expected result:

{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":true,
"Members":["Gilmour","Waters","Wright","Mason"]
}

This is a drawback of the missing JSON data type. If you had it, it wouldn't be necessary to
use JSON_QUERY and SQL Server would distinguish between JSON and string.

Updating the value for a JSON property
In the next examples, you will update the value of an existing property. You will start
by updating the Year property from 1973 to 1975. Here is the code:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1973
}';
PRINT JSON_MODIFY(@json, '$.Year', 1975);
PRINT JSON_MODIFY(@json, 'strict $.Year', 1975);

You invoked the function twice, to demonstrate using both JSON path modes: lax and strict.
Here are the output strings:

{
"Album":"Wish You Were Here",
"Year":1975
}
{
"Album":"Wish You Were Here",

JSON Support in SQL Server

[179]

"Year":1975
}

You can see that there is no difference between lax and strict mode if the property specified
with the path exists.

The following example demonstrates how to update a value of an array element within a
JSON text. Assume you want to replace the first element of the Members array (Gilmour)
with the value (Barrett):

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(@json, '$.Members[0]', 'Barrett');

Here is the expected result:

{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Barrett","Waters","Wright","Mason"]
}

If you want to add a new element to an array, you have to use append. In the following
example, you simply add another element in the Members array:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(@json, 'append $.Members', 'Barrett');

Here is the result:

{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason","Barrett"]
}

JSON Support in SQL Server

[180]

If you specify an index that is out of range or if the array does not exist, you will get:

Strict mode: This shows an error message and no return value (batch level
exception)
Lax mode: This shows no error; the original input string is returned

To update a value of a JSON property to NULL, you have to use a JSON path in strict mode.
Use the following code to update the Year property from the input JSON string to a NULL
value:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(@json, 'strict $.Year', NULL);

Here is the output.

{
"Album":"Wish You Were Here",
"Year":null,
"Members":["Gilmour","Waters","Wright","Mason"]
}

Removing a JSON property
To remove a property from the input JSON string, you have to use a JSON path expression
in lax mode. You will repeat the preceding code, but this time in lax mode:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(@json, '$.Year', NULL);

When you observe the result of this action, you can see that the Year property does not
exist anymore:

{
"Album":"Wish You Were Here",
"Members":["Gilmour","Waters","Wright","Mason"]
}

JSON Support in SQL Server

[181]

By taking this approach, you can remove only properties and their values. You cannot
remove an array element. The following code will not remove the Waters element from the
JSON array property Members; it will actually update it to NULL:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(@json, '$.Members[1]', NULL);

As you can see in the result:

{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour",null,"Wright","Mason"]
}

If you want to remove the Waters element, you can use the following code:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(@json, '$.Members',
JSON_QUERY('["Gilmour","Wright","Mason"]'));

And finally, the expected result:

{
"Album":"Wish You Were Here",
"Year":1975,
"Members":["Gilmour","Wright","Mason"]
}

Multiple changes
You can change only one property at a time; for multiple changes you need multiple calls.
In this example, you want to update the IsVinyl property to false, add a new property
Recorded, and add another element called Barrett to the Members property:

DECLARE @json NVARCHAR(MAX) = N'{
"Album":"Wish You Were Here",
"Year":1975,

JSON Support in SQL Server

[182]

"IsVinyl":true,
"Members":["Gilmour","Waters","Wright","Mason"]
}';
PRINT JSON_MODIFY(JSON_MODIFY(JSON_MODIFY(@json, '$.IsVinyl', CAST(0 AS
BIT)), '$.Recorded', 'Abbey Road Studios'), 'append $.Members', 'Barrett');

Here is the output:

{
"Album":"Wish You Were Here",
"Year":1975,
"IsVinyl":false,
"Members":["Gilmour","Waters","Wright","Mason","Barrett"],
"Recorded":"Abbey Road Studios"
}

Performance considerations
One of the main concerns about JSON in SQL Server 2016 is performance. As mentioned,
unlike XML, JSON is not fully supported; there is no JSON data type. Data in XML columns
is stored as binary large objects (BLOBs). SQL Server supports two types of XML indexes
that avoid parsing the whole data at runtime to evaluate a query and allow efficient query
processing. Without an index, these BLOBs are shredded at runtime to evaluate a query. As
mentioned several times, there is no JSON data type; JSON is stored as simple Unicode text
and the text has to be interpreted at runtime to evaluate a JSON query. This can lead to slow
reading and writing performance for large JSON documents. The primary XML index
indexes all tags, values, and paths within the XML instances in an XML column. The
primary XML index is a shredded and persisted representation of the XML BLOBs in the
XML data type column. For each XML BLOB in the column, the index creates several rows
of data. The number of rows in the index is approximately equal to the number of nodes in
the XML BLOB.

Since JSON is stored as text, it will always be interpreted. On JSON columns that are not
larger than 1,700 bytes, you could create a non-clustered index, or use them as an included
column without the limit.

Without a dedicated data type and storage, performance and options for JSON query
improvements in SQL Server 2016 are limited: you can use computed columns and create
indexes on them, or use the benefits of full-text indexes. However, you can expect
performance problems during the processing of large amounts of JSON data in SQL Server
2016.

JSON Support in SQL Server

[183]

Indexes on computed columns
The following code example creates a sample table with a JSON column and populates it
with values from the Application.People table:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.T1;
CREATE TABLE dbo.T1(
id INT NOT NULL,
info NVARCHAR(2000) NOT NULL,
CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED(id)
);

INSERT INTO dbo.T1(id, info)
SELECT PersonID, info FROM Application.People t1
CROSS APPLY(
 SELECT (
 SELECT t2.FullName, t2.EmailAddress, t2.PhoneNumber, t2.FaxNumber
FROM Application.People t2 WHERE t2.PersonID = t1.PersonID FOR JSON
AUTO, WITHOUT_ARRAY_WRAPPER
) info
) x

Assume you want to return rows that have the Vilma Niva value for the FullName
property. Since this is a scalar value, you can use the JSON_VALUE function. Before you
execute the code, ensure that the actual execution plan will be displayed as well (on the
Query menu, click on Include Actual Execution Plan, or click on the Include Actual
Execution Plan toolbar button). Now execute the following code:

SELECT id, info
FROM dbo.T1
WHERE JSON_VALUE(info,'$.FullName') = 'Vilma Niva';

The execution plan for the query is shown in Figure 5.8:

Figure 5 8 Execution plan without computed columns

JSON Support in SQL Server

[184]

The plan shows that a Clustered Index Scan is performed; SQL Server was not able to
search for full names within the JSON column in an efficient manner.

To improve the performance of the query, you can create a computed column by using the
same expression as in its WHERE clause and then a non-clustered index on it:

ALTER TABLE dbo.T1 ADD FullName AS CAST(JSON_VALUE(info, '$.FullName') AS
NVARCHAR(200));
CREATE INDEX IX1 ON dbo.T1(FullName);

When you execute the same query again, the execution plan is changed:

SELECT id, info
FROM dbo.T1
WHERE JSON_VALUE(info,'$.FullName') = 'Vilma Niva';

A newly created index is used and the plan is more efficient, as shown in Figure 5.9:

Figure 5 9 Execution plan using the index on the computed column

Of course, this will work only for a particular JSON path, in this case for the FullName
property only. For the other properties, you would need to create additional computed
columns and indexes on them. In the case of XML indexes, all nodes and values are
covered; they are not related to particular values.

An important feature of JSON indexes is that they are collation-aware. The result of the
JSON_VALUE function is a text value that inherits its collation from the input expression.
Therefore, values in the index are ordered using the collation rules defined in the source
columns.

By using indexes on computed columns, you can improve performance for frequently used
queries.

JSON Support in SQL Server

[185]

Full-text indexes
One of the advantages of the fact that JSON data is stored as text in SQL Server is that you
can use full-text search features. With computed columns, as demonstrated in the previous
section, you can index only one property. To index all JSON properties (actually, to
simulate this) you can use full-text indexes.

To demonstrate how full-text searching can improve JSON query performance, you first
create a full-text catalog and index it in the sample table that you created earlier in this
section:

USE WideWorldImporters;
CREATE FULLTEXT CATALOG ftc AS DEFAULT;
CREATE FULLTEXT INDEX ON dbo.T1(info) KEY INDEX PK_T1 ON ftc;

Now, after you have created a full-text index, you can execute JSON queries to check
whether they can use full-text index benefits. You need to use the CONTAINS predicate; it
can identify rows where a word is near another word. Here is the query:

SELECT id, info
FROM dbo.T1
WHERE CONTAINS(info,'NEAR(FullName,"Vilma")');

The execution plan for the query shown in Figure 5.10 clearly demonstrates that full-text
index was helpful for this query.:

Figure 5 10 Execution plan with full-text index on the FullName property

JSON Support in SQL Server

[186]

To ensure that the same index can improve performance for JSON queries searching the
other JSON properties and not only FullName (as in the case of the index on the computed
column), let us execute another query that searches the PhoneNumber property:

SELECT id, info
FROM dbo.T1
WHERE CONTAINS(info,'NEAR(PhoneNumber,"(209) 555-0103")');

The execution plan is the same as for the previous query, as you can see in Figure 5.11:

Figure 5 11 Execution plan with full-text index on the PhoneNumber property

The same index covers both queries. Unfortunately, JSON path expressions are not
supported in the CONTAINS predicate; you can only search for property values, but it is
better than scanning the whole table.

You can store and process small and moderate amounts of JSON data within SQL Server
with good support of JSON functions and acceptable performance. However, if your JSON
documents are large and you need to search them intensively, you should use a NoSQL
solution, such as DocumentDB.

Ensure that you have dropped the table used in this example:

USE WideWorldImporters;
DROP TABLE IF EXISTS dbo.T1;

JSON Support in SQL Server

[187]

Summary
This chapter explored JSON support in SQL Server 2016. It is not as robust and deep as is
the case with XML—there is no native data type, no optimized storage, and therefore you
cannot create JSON indexes to improve performance. Thus, we are talking about built-in
and not native JSON support.

However, even with built-in support, it is easy and handy to integrate JSON data in SQL
Server. For most of JSON data processing, it would be acceptable. For large JSON
documents stored in large database tables, it would be more appropriate to use
DocumentDB or other NoSQL based solutions.

In this chapter, you learned the following topics:

SQL Server 2016 brings built-in support for JSON data; unlike XML, there is no
native data type
Use the FOR JSON extension to generate JSON from data in a tabular format
Converting JSON data into a tabular format by using the OPENJSON rowset
function
Parsing, querying, and modifying JSON data with a function
Improving the performance of JSON data processing by using indexes on
computed columns and full-text indexes
Limitations of JSON implementation in SQL Server 2016

6
Stretch Database

Stretch Database (Stretch DB) is a new feature in SQL Server 2016 that allows you to move
data or a portion of data transparently and securely from your local database to the cloud
(Microsoft Azure). All you need to do is mark the tables that you want to migrate, and the
data movement is done transparently and securely. The intention of this feature is to let
companies store their old or infrequently used data on the cloud. Companies need to store
data locally and operate with active data only, thus reducing the cost and using their
resources more effectively. This feature is great and very promising, but there are many
limitations that reduce its usability.

In this chapter, we will cover the following points:

Stretch DB architecture
How to enable Stretch DB
How to select tables or part of tables for migration
Managing and troubleshooting Stretch DB
When and under what circumstances should you use Stretch DB?

Stretch Database architecture
When you enable Stretch Database for an on-premise SQL Server 2016 database, SQL Server
automatically creates a new Stretch Database in MS Azure SQL Database as an external
source and a remote endpoint for the database.

Stretch Database

[189]

When you query the database, the SQL Server database engine runs the query against the
local or remote database, depending on the data location. Queries against Stretch-enabled
tables return both local and remote data by default. This is completely transparent to the
database user. This means that you can use Stretch DB without changing Transact-SQL code
in your queries, procedures, or applications. You can stretch an entire table or a portion of
table data. The data migration is done asynchronously and transparently. In addition,
Stretch Database ensures that no data is lost if a failure occurs during migration. It also has
retry logic to handle connection issues that may occur during migration. Figure 6.1
illustrates the Stretch DB architecture:

Figure 6 1 Stretch DB architecture

Data can be in three stages:

Local data: Local data is data in the table that remains in the on-premise instance.
This is usually frequently used or hot data.
Staging (eligible data): Eligible data is data marked for migration but not
migrated yet.
Remote data: Remote data is data that has already been migrated. This data
resides in Microsoft Azure SQL Database and is rarely used.

Stretch Database does not support stretching to another SQL Server instance. You can
stretch a SQL Server database only to Azure SQL Database.

Is this for you?
When SQL Server 2016 RTM was released, you could use the tool Stretch Database Advisor to
identify databases and tables that were candidates for the Stretch DB feature. It was a
component of the SQL Server 2016 Upgrade Advisor, and by using it, you were also able to
identify constraints and blocking issues that prevented the use of the feature.

Stretch Database

[190]

However, this tool does not exist anymore and it has been replaced by the Microsoft® Data
Migration Assistant. But why I am mentioning this deprecated tool? The Stretch Database
Advisor checks all tables in the database and creates a report showing the stretching
capabilities of each table. I have used it to check which tables in the Microsoft sample SQL
Server database AdventureWorks are ready for stretching. The results might look
disappointing: there is not a single table that you can stretch! However, as you will see later
in this chapter, the Stretch DB feature is not designed for all tables; it is for special ones.

Data Migration Assistant does not have a separate functionality for Stretch DB advises. It
analyzes your database and helps you to upgrade it to a new SQL Server version or to
Azure SQL Database by detecting compatibility issues that can impact database
functionality on your new database version. It also recommends performance and reliability
improvements for your target environment. Stretch DB is only one of the storage
improvements. You can download Data Migration Assistant v3.0 from h t t p s ://w w w . m i c r o

s o f t . c o m /e n - u s /d o w n l o a d /d e t a i l s . a s p x ?i d =53595.

Using Data Migration Assistant
In this section, you will use Data Migration Assistant to see what you should expect for
your databases when you migrate them to SQL Server 2016 or Azure SQL Database. This is
a standalone program and you can run it by executing the Dma.exe file in the default install
directory C:Program FilesMicrosoft Data Migration Assistant. When you start
the tool, you should see an intro screen, as shown in Figure 6.2:

Figure 6 2 Data Migration Assistant introduction screen

Stretch Database

[191]

To start a project, you need to click on the + symbol and the new project form appears. On
the new project screen, choose Assessment as Project type, type AdvWorks_StretchDB in
the Project name field, and choose SQL Server as Target server type (Source server type is
preselected to SQL Server), as displayed in Figure 6.3:

Figure 6 3 Data Migration Assistant New Project

Stretch Database

[192]

After you are done, click on the Create button and you will see the next screen, similar to
the one shown in Figure 6.4:

Figure 6 4 Data Migration Assistant Select target version

On this screen, you can choose the target SQL Server version. In the dropdown, all versions
from 2012 are available; you should, of course, choose SQL Server 2016. In addition to this,
you can select the report type. This time you will choose New features' recommendation
since you want to see which new features Data Migration Assistant recommends to you and
not potential compatibility issues.

You then need to click on the Next button, connect to a SQL Server 2014 instance, and select
the desired databases. In this example, I have selected the Microsoft former standard
sample databases AdventureWorks and AdventureWorksDW that I have restored. If you
don't have these two databases, you can choose any other database, but you will most
probably end up with different results.

Stretch Database

[193]

After you have established the connection with the SQL Server 2014 instance, you need to
choose the databases that should be analyzed by Data Migration Assistant. As mentioned,
choose AdventureWorks2014 and AdventureWorksDW2014. You should see a screen
similar to the one shown in Figure 6.5:

Figure 6 5 Data Migration Assistant; choose databases for analyzing

Stretch Database

[194]

When you click on the Add button, the selected databases are added to the sources
collection. You'll get another screen, where you can start the assessment by clicking on the
Start Assessment button. The analysis takes less than a minute, and Figure 6.6 shows its
results for the AdventureWorks2014 database:

Figure 6 6 Data Migration Assistant Review results for the AdventureWorks2014 database

Stretch DB-related recommendations are located under the Storage tab. In the case of the
AdventureWorks2014 database, two tables are listed as tables that would benefit from
using the Stretch DB feature: Sales.SalesOrderDetail and
Production.TransactionHistory.

Stretch Database

[195]

However, both of them have properties that prevent the use of Stretch DB, so you can
conclude that this feature is irrelevant for the AdventureWorks2014 database. The result of
the analysis for the AdventureWorksDW2014 looks better. It is shown in Figure 6.7:

Figure 6 7 Data Migration Assistant Review results for the AdventureWorksDW2014 database

Data Migration Assistant has found one table (dbo.FactProductInventory) that is ready
to use the Stretch Database feature. It does not mention the other tables in the report—just
three tables from two selected databases. At this point, I need to mention again that the
same action with the deprecated tool Stretch Database Advisor reported that not a single
table (out of 70 tables) in the AdventureWorks2014 database is ready for using the Stretch
DB feature, although some of them are very simple and have only a few rows. However, in
data warehouse databases, tables seem to be more stretch-friendly.

Stretch Database will give you benefits with your data warehouse databases, especially
with historical data that is taking up space and is rarely used. On the other hand, this
feature might not be eligible for your OLTP system due to the table limitations that your
OLTP system has. Now, it is finally time to see in detail what these limitations are.

Stretch Database

[196]

Limitations of using Stretch Database
As you saw in the previous section, there are many limitations when you work with Stretch
Database. You can distinguish between limitations that the prevent usage of Stretch
Database and limitations in database tables that are enabled for stretching.

Limitations that prevent you from enabling the
Stretch DB feature for a table
In this section, you will see the limitations that prevent you from using Stretch DB. They can
be divided into table, column, and index limitations.

Table limitations
You cannot enable the Stretch DB feature for any SQL Server table. A table should have
Stretch DB-friendly properties. The following list shows the table properties that prevent
the use of the Stretch DB feature:

It is a memory-optimized table
It is a file table
It contains FILESTREAM data
It uses Change Data Capture or Change Tracking features
It has more than 1,023 columns or more than 998 indexes
Tables referenced with a foreign key
It is referenced by indexed views
It contains full-text indexes

The list is not so short, but let's see how huge these limitations are in practice. Despite their
power and a completely new technology stack behind them, memory-optimized tables are
still not in use intensively. From my experience, I can say that most companies still don't
use memory-optimized tables in production environments due to the lack of use cases for
them, hardware resources, or even the knowledge required for their implementation and
configuration. In addition to this, memory-optimized tables usually store hot data, data that
is frequently needed and whose content is not intended to be sent to the cloud. Therefore,
you cannot say that the first limitation is a huge one. You will spend more time on memory-
optimized tables later in this book (in Chapter 11, Introducing SQL Server In-Memory
OLTP and Chapter 12, In-Memory OLTP Improvements in SQL Server 2016).

Stretch Database

[197]

File Table and FILESTREAM tables appear frequently in the list of limitations for new
SQL Server features. The same is true for tables using Change Data Capture or Change
Tracking features. They are simply not compatible with many other features since they
address specific use cases. Therefore, I am not surprised to see them in this list. Full-text
indexes and indexed views also prevent Stretch DB usage. From my experience, in
companies that I have worked with or where I was involved as a consultant, less than 10%
of tables belong to these categories. According to all of these limitations, I would say that
the potential of Stretch DB is slightly reduced, but not significantly. However, the most
important limitation is that a table cannot be referenced with a foreign key. This is an
implementation of database integrity and many tables are and should be referenced with
foreign keys. Therefore, this is a serious limitation for Stretch DB usage and significantly
reduces the number of potential tables that can be stretched.

You should not disable foreign key relationships in order to use the
Stretch DB feature! I would never suggest removing any database object or
attribute that implements data integrity to gain performance or storage
benefits.

However, this is just the beginning; more limitations will come in the next subsection.

Column limitations
Even if your table does not violate constraints from the preceding table of limitations, it is
still far away from fulfilling the conditions for stretching. The following properties and
characteristics of table columns don't support the Stretch DB feature:

Unsupported data types: Deprecated large data types (text, ntext, and image),
XML, timestamp, sql_variant, spatial data types (geometry and geography),
hierarchyId, user-defined CLR data types
Computed columns
Default constraints
Check constraints

Let's repeat a similar analysis of the reduced potential of Stretch DB for the items from this
list. I think that Microsoft has a balanced approach with deprecated data types; they are not
removed in order to prevent the breaking of changes in legacy code, but all new features
don't support them. This is completely correct and it should not be considered a limitation.

Stretch Database

[198]

The other unsupported data types are used rarely and do not represent a huge limitation.

You can find user-defined CLR data types in a list of limitations for almost
all SQL Server features in recent releases. This is also one of the reasons
they are not so popular or frequently used.

However, the most important limitation in this list is that a table column in a Stretch
Database cannot have a default or check constraint. This is a huge limitation and
significantly reduces the usage and importance of the Stretch DB feature!

Also, as mentioned before, you should not remove database objects created to implement
database integrity just to enable Stretch DB. Default constraints and foreign keys are the
reasons why there is not a single table in the AdventureWorks2014 database that is ready
for stretching.

Limitations for Stretch-enabled tables
If your table survives these limitations and you have enabled it for stretching, you should
be aware of these additional constraints:

Uniqueness is not enforced for UNIQUE constraints and PRIMARY KEY constraints
in the Azure table that contains the migrated data.
You cannot UPDATE or DELETE rows that have been migrated or rows that are
eligible for migration in a Stretch-enabled table or in a view that includes Stretch-
enabled tables.
You cannot INSERT rows into a Stretch-enabled table on a linked server.
You cannot create an index for a view that includes Stretch-enabled tables.
Filters on SQL Server indexes are not propagated to the remote table.
These limitations are not unexpected; the Azure portion of data is automatically
managed and it should be protected from direct access and changes. Therefore,
these limitations are acceptable, especially compared to all those listed in the
previous sections.

Stretch Database

[199]

Use cases for Stretch Database
With so many limitations, finding use cases for Stretch DB does not seem to be an easy task.
You would need tables without constraints and rare data types that are not involved in
relations with other tables and that don't use some special SQL Server features. Where to
find them? As potential candidates for stretching, you should consider historical or auditing
and logging tables.

Archiving of historical data
Historical or auditing data is commonly produced automatically by database systems and
does not require constraints to guarantee data integrity. In addition to this, it is usually in
large data sets. Therefore, historical and auditing data can be a candidate for using the
Stretch DB feature. SQL Server 2016 introduced support for system-versioned temporal
tables. They are implemented as a pair of tables: a current and a historical table. One of the
requirements for historical tables is that they cannot have any constraints. Therefore,
historical tables used in system-versioned temporal tables are ideal candidates for
stretching. Temporal tables are covered in Chapter 7, Temporal Tables.

Archiving of logging tables
Sometimes, developers decide to store application and service logging information in
database tables. Such tables usually have no constraints, since writing to log must be as fast
as possible. They are also possible candidates for using the Stretch DB feature.

Testing Azure SQL database
Small or medium companies that are considering whether to use the cloud or to move data
completely to it can use Stretch DB to start using Azure SQL database. They can learn about
data management in Azure and collect experience and then decide whether they need to
delegate more or their entire data to the cloud.

Stretch Database

[200]

Enabling Stretch Database
Before you select some tables for stretching, you need to enable the feature on the instance
level. Like many other new features, it is disabled by default. To enable it, you need to
execute the following statements:

EXEC sys.sp_configure N'remote data archive', '1';
RECONFIGURE;
GO

Actually, you have to allow remote data archiving; there is no enabling Stretch Database
option. Anyway, after enabling it on the instance level, you can choose a database and
enable the feature at the database level.

Enabling Stretch Database at the database level
If the feature is enabled at the instance level and you have enough database permissions
(db_owner or CONTROL DATABASE), the next step is to enable Stretch DB at the database
level. Of course, before you enable it, you need to have a valid Azure account and
subscription. You also need to create and configure firewall rules to allow your Azure
database to communicate with your local server. In this section, you will enable the Stretch
DB feature for a new database. Use this code to create a database named Mila:

DROP DATABASE IF EXISTS Mila; --Ensure that you create a new, empty
database
GO
CREATE DATABASE Mila;
GO

Since the database is new and has no tables, it does not violate the limitations listed in the
previous section. You can enable the Stretch Database feature at the database level by using
wizard or with Transact-SQL.

Stretch Database

[201]

Enabling Stretch Database by using wizard
You can use the Enable Database for Stretch wizard to configure a database for Stretch
Database. To launch it, you need to right-click on the newly created Mila database in SQL
Server Management Studio (SSMS), and from the right-click context menu, select
Tasks | Stretch | Enable respectively. When you launch the wizard, you should get the
screen shown in Figure 6.8:

Figure 6 8 Enable Database for Search Wizard – Introduction Page

Stretch Database

[202]

You can see an intro screen that describes what you can achieve with the Stretch Database
feature and what you need to use it. Since your database has no tables, the second section of
the wizard is Configure Azure. You are asked to enter your Azure credentials and to
connect to Azure. The screen is shown in Figure 6.9:

Figure 6 9 Enable Database for Search Wizard – Configure Azure page

Stretch Database

[203]

After signing in to Azure, you should select one of your Azure subscriptions and an
appropriate Azure region. Create a new or choose an existing Azure server, as shown in
Figure 6.10:

Figure 6 10 Enable Database for Search Wizard – sign in to Azure and select subscription and server

Stretch Database

[204]

The next part of the wizard is Secure credentials. The wizard lets you create a database
master key (if your database does not have one) in order to protect the database credentials
and connection information stored in your SQL Server database. Database security is
covered in detail in Chapter 8, Tightening the Security. The appropriate screen is shown in
Figure 6.11:

Figure 6 11 Enable Database for Search Wizard – Secure credentials

Stretch Database

[205]

As already mentioned, you need to create Azure firewall rules to let your Azure SQL
database communicate with your local SQL Server database. You can define a range of IP
addresses with the Enable Database for Stretch wizard's page Select IP address, as shown
in Figure 6.12:

Figure 6 12 Enable Database for Search Wizard – Select IP address

Stretch Database

[206]

And the tour is almost done. The next screen is Summary and it displays what you have
already selected and entered, but it also provides an estimated price for the Stretch DB
setup. Figure 6.13 shows the Summary screen:

Figure 6 13 Enable Database for Search Wizard – Summary

Stretch Database

[207]

As you can see, the Summary screen brings one very important piece of information to you:
the estimated price for enabling the Stretch DB feature. The Estimated Pricing section in the
summary report is a bit strange: it shows two prices: $61 USD per TB per month and 1,825
USD per month. If you enable Stretch DB for your database with no tables, you would need
to pay at least 1,825 USD per month! It does not seem to be cheap at all for an empty
database. However, there is also a third piece of information in that section—a link to the
pricing page at Microsoft Azure—and you can find more details about pricing there. The
pricing is covered later in this chapter, in the SQL Server Stretch Database pricing section. For
now, it is enough to know that you don't need to pay a full month's cost if you remove your
database from the cloud before that. The minimum period for payment is 1 hour.

However, this is not immediately clear, and even if you want to just try or play with the
feature to find out how it works or to explore it, you need to pay for this or apply for a trial
subscription (which involves giving credit card details). I expected a non-complicated trial
version with limited functionalities but without required registration and payment data,
where I can check and learn about the feature. Stretch DB as a new and promising feature
should be easy to try. Now it is time to click on the Finish button to instruct the wizard to
perform the final step in the process of enabling the Stretch DB feature. After the last wizard
action is done, the stretch database is created in Azure. You can use SSMS to see that the
action was successful. When you choose the database Mila, you will see a different icon
near to the database name, as displayed in Figure 6.14:

Figure 6 14 Database in SSMS with enabled Stretch DB feature

Stretch Database

[208]

After the feature is enabled for your sample database, you should not expect anything, since
there are no tables in it. You will create a table and continue to play with stretching later in
this chapter.

Enabling Stretch Database by using Transact-SQL
You can enable the Stretch DB feature by using Transact-SQL only. As you saw in the
previous section, to enable Stretch DB, you need to create and secure communication
infrastructure between our local database and the Azure server. Therefore, you need to
accomplish the following three tasks:

Create a database master key to protect server credentials
Create a database credential
Define the Azure server

The following code creates a database master key for the sample database Mila:

USE Mila;
CREATE MASTER KEY ENCRYPTION BY PASSWORD='<very secure password>'; --you
need to put your password here

Next, we create a credential. This is saved authentication information that is required to
connect to external resources. You need a credential for only one database; therefore you
should create a database-scoped credential:

CREATE DATABASE SCOPED CREDENTIAL MilaStretchCredential
WITH
IDENTITY = 'Vasilije',
SECRET = '<very secure password>'; --you need to put your password here

Now you can finally enable the Stretch DB feature by using the ALTER DATABASE
statement. You need to set REMOTE_DATA_ARCHIVE and define two parameters: Azure
server and just created database scoped credential. Here is the code that can be used to
enable the Stretch DB feature for the database Mila:

ALTER DATABASE Mila
 SET REMOTE_DATA_ARCHIVE = ON
 (
 SERVER = '<address of your Azure server>,
 CREDENTIAL = [MilaStretchCredential]
);

Stretch Database

[209]

With this action, you have created an infrastructure, necessary for communication between
your local database and the Azure server that will hold the stretched data. Note that this
action can take a few minutes. When I executed the command, it took about 3 minutes, as
shown in Figure 6.15:

Figure 6 15 Enabling Stretch Database by Using Transact-SQL

The next and final step is to select and enable tables for stretching.

Stretch Database

[210]

Enabling Stretch Database for a table
To enable Stretch DB for a table, you can also choose between the wizard and Transact-SQL.
You can migrate an entire table or just part of a table. If your cold data is stored in a
separated table, you can migrate the entire table; otherwise you must specify a filter
function to define which rows should be migrated. To enable the Stretch DB feature for a
table, you must be a member of the db_owner role. In this section, you will create a new
table in the Mila database, populate it with a few rows, and enable it for stretching. Use this
code to create and populate the table:

USE Mila;
CREATE TABLE dbo.T1(
id INT NOT NULL,
c1 VARCHAR(20) NOT NULL,
c2 DATETIME NOT NULL,
CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (id)
);
INSERT INTO dbo.T1 (id, c1, c2) VALUES
 (1, 'Benfica Lisbon','20160515'),
 (2, 'Manchester United','20160602'),
 (3, 'Rapid Vienna','20160528'),
 (4, 'Juventus Torino','20160625'),
 (5, 'Red Star Belgrade','20160625');

In the next sections, you will enable and use the Stretch DB feature for the T1 table. Assume
that you want to move all rows from this table with a value in the c2 column that is older
than 1st June 2016 to the cloud.

Stretch Database

[211]

Enabling Stretch DB for a table by using wizard
You can create a new table with the Stretch DB feature enabled or enable it for an existing
table using the Enable Table for Stretch wizard. To launch it, you need to navigate to the
T1 table under the database Mila in SQL Server Management Studio (SSMS). Then, after
right-clicking, you need to select the option Tasks/Stretch/Enable respectively. You should
get a screen as shown in Figure 6.16:

Figure 6 16 Enable Table for Stretch Wizard – Select tables

Stretch Database

[212]

As you can see, T1 can be selected for stretching, since it meets the Stretch DB requirements
discussed in the previous sections. You can choose to migrate the entire table or (by clicking
on the link Entire Table) only a part of it. When you click on the link, you'll get a screen
similar to the one shown in Figure 6.17:

Figure 6 17 Enable Table for Stretch Wizard – Select rows to stretch

Stretch Database

[213]

You see a query builder that can help you to write the correct filter function. Filter function
is used to define which rows have to be migrated to the cloud. In this example, you are
going to return all rows from the T1 table, where the value in the c2 column is less than
2016/06/01.

However, developers find query builders a bit clumsy, and most of them prefer to work
with Transact-SQL. In the next section, you will see how to use Transact-SQL to configure
Stretch DB.

Enabling Stretch Database for a table by using
Transact-SQL
In order to support table stretching, the CREATE and ALTER TABLE statements have been
extended in SQL Server 2016. Here is the syntax extension for the ALTER TABLE statement
that supports the Stretch DB feature:

<stretch_configuration> ::=
 {
 SET (
 REMOTE_DATA_ARCHIVE
 {
 = ON (<table_stretch_options>)
 | = OFF_WITHOUT_DATA_RECOVERY (MIGRATION_STATE = PAUSED)
 | (<table_stretch_options> [, ...n])
 }
)
 }
<table_stretch_options> ::=
 {
 [FILTER_PREDICATE = { null | table_predicate_function } ,]
 MIGRATION_STATE = { OUTBOUND | INBOUND | PAUSED }
 }

You can specify the following options to enable Stretch DB:

REMOTE_DATA_ARCHIVE is required and can have these values: ON,
OFF_WITHOUT_DATA_RECOVERY or no value.
MIGRATION_STATE is also mandatory and can have one of the following values:
OUTBOUND, INBOUND, or PAUSED.
FILTER_PREDICATE is optional and is used to define the part of the data that
needs to be migrated. If it's not specified, the entire table will be moved.

Stretch Database

[214]

If your table contains both hot and cold data, you can specify a filter predicate to select the
rows that should be migrated. The filter predicate is an inline table-valued function. Its
parameters are identifiers for stretch table columns. At least one parameter is required.
Here is the function syntax:

CREATE FUNCTION dbo.fn_stretchpredicate(@column1 datatype1, @column2
datatype2 [, ...n])
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS is_eligible
 WHERE <predicate>

The function returns either a non-empty result or no result set. In the first case, the row is
eligible to be migrated, otherwise it remains in the local system.

Note that the function is defined with the SCHEMABINDING option to
prevent columns that are used by the filter function from being dropped
or altered.

The <predicate> can consist of one condition, or of multiple conditions joined with the
AND logical operator.

<predicate> ::= <condition> [AND <condition>] [...n]

Each condition in turn can consist of one primitive condition, or of multiple primitive
conditions joined with the OR logical operator. You cannot use subqueries or non-
deterministic functions. For a detailed list of limitations, please visit this page in the SQL
Server Books Online: h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /m t 613432. a s p x .

The following code example shows how to enable the Stretch DB feature for the T1 table in
the database Mila:

USE Mila;
CREATE FUNCTION dbo.StretchFilter(@col DATETIME)
RETURNS TABLE
WITH SCHEMABINDING
AS
 RETURN SELECT 1 AS is_eligible
WHERE @col < CONVERT(DATETIME, '01.06.2016', 104);
GO
ALTER TABLE dbo.T1
 SET (
 REMOTE_DATA_ARCHIVE = ON (
 FILTER_PREDICATE = dbo.StretchFilter(c2),

Stretch Database

[215]

 MIGRATION_STATE = OUTBOUND
)
);

After executing the preceding commands, Stretch DB is enabled for T1 table. Figure 6.18
shows the SSMS screen immediately after the execution:

Figure 6 18 Enabling table for stretch by using Transact-SQL

The Stretch DB feature is enabled, but you can also see a warning message that informs you
that although your T1 table has a primary key constraint, it will not be enforced! Thus, you
can have multiple rows in your table with the same ID, just because you have enabled the
Stretch DB. This schema and integrity change silently implemented as part of Stretch DB
enabling can be dangerous; some developers will not be aware of it, since the information is
delivered through a message warning.

When you ignore this problem, the rest of the action looks correct. After the table is enabled
for stretching, you can expect three rows to remain in the local database (they have a value
in the c2 column greater than 1 June). Two rows should be moved to the Azure SQL
database. You will confirm this by querying stretch tables, but before that you will learn a
tip about the creation of a filter predicate with sliding window.

Stretch Database

[216]

Filter predicate with sliding window
As mentioned earlier, you cannot call a non-deterministic function in a filter predicate. If
you, for instance, want to migrate all rows older than 1 month (where a date column has a
value older than 1 month), you cannot simply use the DATEADD function in the filter
function because DATEADD is a non-deterministic function.

In the previous example, you created the filter function to migrate all rows older than 1 June
2016. Assume that you want to send all rows older than 1 month to the cloud. Since the
function must be deterministic and you cannot alter the existing one because it is defined
with SCHEMABINDING attribute, you need to create a new function with the literal date
again. For instance, on 1 August, you would need a function that instructs the system to
migrate rows older than 1 July:

CREATE FUNCTION dbo.StretchFilter20160701(@col DATETIME)
RETURNS TABLE
WITH SCHEMABINDING
AS
 RETURN SELECT 1 AS is_eligible
WHERE @col < CONVERT(DATETIME, '01.07.2016', 104);

Now you can assign the newly created function to the T1 table:

ALTER TABLE dbo.T1
SET (REMOTE_DATA_ARCHIVE = ON
 (FILTER_PREDICATE = dbo.StretchFilter20160701(c2),
 MIGRATION_STATE = OUTBOUND
)
);

Finally, you should remove the old filter function:

DROP FUNCTION IF EXISTS dbo.StretchFilter;

Querying Stretch Databases
When you query a Stretch Database, the SQL Server Database Engine runs the query
against the local or remote database depending on data location. This is completely
transparent to the database user. When you run a query that returns both local and remote
data, you can see the Remote Query operator in the execution plan. The following query
returns all rows from the stretch T1 table:

USE Mila;
SELECT * FROM dbo.T1;

Stretch Database

[217]

As expected, it returns five rows:

id c1 c2
----------- -------------------- -----------------------
2 Manchester United 2016-06-02 00:00:00.000
4 Juventus Torino 2016-06-25 00:00:00.000
5 Red Star Belgrade 2016-06-25 00:00:00.000
1 Benfica Lisbon 2016-05-15 00:00:00.000
3 Rapid Vienna 2016-05-28 00:00:00.000

You are surely much more interested in how the execution plan looks. It is shown in Figure
6.19:

Figure 6 19 Execution plan for query with stretch tables

You can see that the Remote Query operator operates with an Azure database and that its
output is concatenated with the output of the Clustered Index Scan that collected data from
the local SQL Server instance. Note that the property window for the Remote Query
operator has been shortened to show only context-relevant information.

What does SQL Server do when only local rows are returned? To check this, run the
following code:

SELECT * FROM dbo.T1 WHERE c2 >= '20160601';

Stretch Database

[218]

The query returns three rows, as expected:

id c1 c2
----------- -------------------- -----------------------
2 Manchester United 2016-06-02 00:00:00.000
4 Juventus Torino 2016-06-25 00:00:00.000
5 Red Star Belgrade 2016-06-25 00:00:00.000

And the execution plan is shown in Figure 6.20:

Figure 6 20 Execution plan for query with stretch tables returning local data only

The plan looks good; it checks only the local database and there is no connection to Azure.
Finally, you will check the plan for a query that logically returns remote data only. Here is
the query:

SELECT * FROM dbo.T1 WHERE c2 < '20160601';

You will again get the expected result:

id c1 c2
----------- -------------------- -----------------------
1 Benfica Lisbon 2016-05-15 00:00:00.000
3 Rapid Vienna 2016-05-28 00:00:00.000

Figure 6.21 shows the execution plan:

Figure 6 21 Execution plan for query with stretch tables returning remote data only

You probably did not expect both operators here… only Remote Query should be shown.

Stretch Database

[219]

However, even if the returned data resides in the Azure SQL database only, both operators
should be used since data can be in an eligible state, which means that it has not yet been
moved to Azure.

Querying stretch tables is straightforward; you don't need to change anything in your
queries. One of the most important things about Stretch Databases is that the entire
execution is transparent to the user and you don't need to change your code when working
with stretch tables.

However, you should not forget that enabling Stretch DB can suspend primary key
constraints in your stretched tables. You have defined a primary key constraint in the T1
table; thus you expect that the next statement will fail (T1 already has a row with an ID with
a value of 5):

INSERT INTO dbo.T1 (id, c1, c2) VALUES (5, Red Star Belgrade,'20170101');

However, the statement has been executed successfully even though an entry with the same
ID already exists. You can confirm this by checking the rows in the T1 table.

SELECT * FROM dbo.T1 WHERE c2 >= '20160601';

The query returns four rows, and you can see two rows with the same ID (5):

id c1 c2
----------- -------------------- -----------------------
2 Manchester United 2016-06-02 00:00:00.000
4 Juventus Torino 2016-06-25 00:00:00.000
5 Red Star Belgrade 2016-06-25 00:00:00.000
5 Red Star Belgrade 2017-01-01 00:00:00.000

This is probably something that you would not expect, therefore, you should be aware of it
when you enable the Stretch DB feature for a database table.

Querying and updating remote data
As mentioned earlier, queries against Stretch-enabled tables return both local and remote
data by default. You can manage the scope of queries by using the system stored procedure
sys.sp_rda_set_query_mode to specify whether queries against the current Stretch-
enabled database and its tables return both local and remote data or local data only. The
following modes are available:

LOCAL_AND_REMOTE (queries against Stretch-enabled tables return both local and
remote data). This is the default mode.
LOCAL_ONLY (queries against Stretch-enabled tables return only local data).

Stretch Database

[220]

DISABLED (queries against Stretch-enabled tables are not allowed).

When you specify the scope of queries against the Stretch database, this is applied to all
queries for all users. However, there are additional options at the single query level for an
administrator (member of db_owner group). As administrator, you can add the query hint
WITH (REMOTE_DATA_ARCHIVE_OVERRIDE = value) to the SELECT statement to
specify data location. The option REMOTE_DATA_ARCHIVE_OVERRIDE can have one of the
following values:

LOCAL_ONLY (query returns only local data)
REMOTE_ONLY (query returns only remote data)
STAGE_ONLY (query returns eligible data)

The following code returns eligible data for the T1 table:

USE Mila;
SELECT * FROM dbo.T1 WITH (REMOTE_DATA_ARCHIVE_OVERRIDE = STAGE_ONLY);

Here is the output:

id c1 c2 batchID--581577110
---------- -------------------- ----------------------- ------------------
1 Benfica Lisbon 2016-05-15 00:00:00.000 1
3 Rapid Vienna 2016-05-28 00:00:00.000 1

Run this code to return data from the T1 table already moved to Azure:

SELECT * FROM dbo.T1 WITH (REMOTE_DATA_ARCHIVE_OVERRIDE = REMOTE_ONLY);

Here is the output:

id c1 c2 batchID--581577110
-------- ------------- ---------------------- ------------------
1 Benfica Lisbon 2016-05-15 00:00:00.000 1
3 Rapid Vienna 2016-05-28 00:00:00.000 1

Finally, this code returns data in the T1 table from the local database server:

SELECT * FROM dbo.T1 WITH (REMOTE_DATA_ARCHIVE_OVERRIDE = LOCAL_ONLY);

Stretch Database

[221]

As you expected, three rows are returned:

id c1 c2
----------- -------------------- -----------------------
2 Manchester United 2016-06-02 00:00:00.000
4 Juventus Torino 2016-06-25 00:00:00.000
5 Red Star Belgrade 2016-06-25 00:00:00.000

By default, you can't update or delete rows that are eligible for migration or rows that have
already been migrated in a Stretch-enabled table. When you have to fix a problem, a
member of the db_owner role can run an UPDATE or DELETE operation by adding the
preceding hint and will be able to update data in all locations.

SQL Server Stretch Database pricing
You can see price details on the h t t p s ://a z u r e . m i c r o s o f t . c o m /e n - u s /p r i c i n g /d e t a i l s

/s q l - s e r v e r - s t r e t c h - d a t a b a s e / page. Stretch Database bills compute and storage
separately. Compute usage is represented by Database Stretch Unit (DSU) and customers
can scale up and down the level of performance/DSUs they need at any time. The prices
given here reflect general availability pricing, which goes into effect on September 1, 2016:

Table 6 1 StretchDB price list

Stretch Database

[222]

Database sizes are limited to 240 TB. Monthly price estimates are based on 744 hours per
month at constant DSU levels. Stretch DB is generally available in all regions except India
South, China North, Brazil South, US North Central, India West, Australia, Japan, and US
Gov.

Data storage is charged based on $0.16/GB/month. Data storage includes the size of your
Stretch DB and backup snapshots. All Stretch databases have 7 days of incremental backup
snapshots.

You can also use the Azure Pricing calculator to estimate expenses for your planned Azure
activities. It is available at h t t p s ://a z u r e . m i c r o s o f t . c o m /e n - u s /p r i c i n g /c a l c u l a t o r /?s

e r v i c e =s q l - s e r v e r - s t r e t c h - d a t a b a s e . You can choose the Azure region and specify the
time period, data storage, and DSU, as shown in Figure 6.22:

Figure 6 22 Azure Pricing calculator – Calculating price for Stretch DB

This screen shows the price you would pay when you play with the Stretch DB feature for
two hours in a database with less than 1 GB of data and with 100 DSU using Azure database
in Western Europe.

Stretch Database

[223]

It is also possible to try the feature for free. You can apply for it at h t t p s ://a z u r e . m i c r o s o

f t . c o m /e n - u s /f r e e /. When you do this, you'll see a screen as shown in Figure 6.23:

Figure 6 23 Create free Azure account

It is good that you can try the new feature for free, but in this case you must also give your
payment details, which could reduce the number of developers who will try the feature.

Stretch DB management and
troubleshooting
To monitor stretch-enabled databases and data migration, you can use the Stretch Database
Monitor feature, the sys.remote_data_archive_databases and
sys.remote_data_archive_tables catalog views, and the
sys.dm_db_rda_migration_status dynamic management view.

Stretch Database

[224]

Monitoring Stretch Database
To monitor stretch-enabled databases and data migration, use the Stretch Database Monitor
feature. It is part of SQL Server Management Studio and you open it when you select your
database and then choose Tasks/Stretch/Monitor, as shown in Figure 6.24:

Figure 6 24 Open Stretch Database Monitor in SSMS

Stretch Database

[225]

The top portion of the monitor displays general information about both the Stretch-enabled
SQL Server database and the remote Azure database, while the status of data migration for
each Stretch-enabled table in the database is shown in the bottom part of the screen, as
shown in Figure 6.25:

Figure 6 25 Stretch Database Monitoring

You can also use the dynamic management view sys.dm_db_rda_migration_status to
check the status of migrated data (how many batches and rows of data have been
migrated). It contains one row for each batch of migrated data from each Stretch-enabled
table on the local instance of SQL Server. Figure 6.26 shows the result generated by
executing this view:

Stretch Database

[226]

Figure 6 26 Checking migration status by using DMV sys dm_db_rda_migration_status

The sys.remote_data_archive_databases and sys.remote_data_archive_tables
catalog views give information about the status of migration at the table and database level.
Figures 6.27 shows archive database information:

Figure 6 27 Checking archive databases

Details about archive tables on the Azure side are shown in Figure 6.28:

Figure 6 28 Checking archive tables

Stretch Database

[227]

Finally, to see how much space a stretch-enabled table is using in Azure, run the following
statement:

USE Mila;
EXEC sp_spaceused 'dbo.T1', 'true', 'REMOTE_ONLY';

The result of this command is shown in Figure 6.29:

Figure 6 29 Space used by stretch table in Azure SQL Database

In the next sections, you will see how to pause or disable the Stretch DB feature.

Pause and resume data migration
To pause data migration for a table, choose the table in SSMS and then select the option
Stretch | Pause. You can achieve the same with the following Transact-SQL command; it
temporarily breaks the data migration for the T1 table:

USE Mila;
ALTER TABLE dbo.T1 SET (REMOTE_DATA_ARCHIVE (MIGRATION_STATE = PAUSED));

To resume data migration for a table, choose the table in SSMS and then select the
Stretch/Resume option or write the Transact-SQL code, similar to the following one:

USE Mila;
ALTER TABLE dbo.T1 SET (REMOTE_DATA_ARCHIVE (MIGRATION_STATE = OUTBOUND));

To check whether migration is active or paused, you can open Stretch Database Monitor in
SQL Server Management Studio and check the value of the Migration State or column
check the value of the flag is_migration_paused in the system catalog view
sys.remote_data_archive_tables.

Stretch Database

[228]

Disable Stretch Database
Disabling Stretch Database for a database and tables stops data migration immediately and
queries don't include remote data anymore. You can copy the already migrated data back to
the local system, or you can leave it in Azure. As with Stretch Database enabling, you can
disable it for tables and databases using SSMS and Transact-SQL. In order to disable Stretch
Database for a database, you have to disable it for tables involved in stretching.

Disable Stretch Database for tables by using SSMS
To disable Stretch DB for a table, you need to select it in SQL Server Management Studio
(SSMS); right-click on it and select the option Stretch. Then, go to one of the following
options:

Disable | Bring data back from Azure to copy remote data for the table to the
local system and then disable the Stretch DB feature
Disable | Leave data in Azure to disable the Stretch DB feature immediately,
without transferring it back to the local system (data remains in Azure)

Be aware that the first option includes data transfer costs! When you choose the second
option, you don't have transfer costs, but the data remains in Azure and you still need to
pay for storage. You can remove it through the Azure management portal. Figure 6.30
shows the screen after the Stretch DB feature has been disabled for the T1 table:

Figure 6 30 Disable Stretch DB for a table

Stretch Database

[229]

Disable Stretch Database for tables using Transact-SQL
You can use Transact-SQL to perform the same action. The following code example
instructs SQL Server to disable Stretch DB for the stretch table T1 but to transfer the already
migrated data for the table to the local database first:

USE Mila;
ALTER TABLE dbo.T1 SET (REMOTE_DATA_ARCHIVE (MIGRATION_STATE = INBOUND));

If you don't need the already migrated data (or you want to avoid data transfer costs), use
the following code:

USE Mila;
ALTER TABLE dbo.T1 SET (REMOTE_DATA_ARCHIVE = OFF_WITHOUT_DATA_RECOVERY
(MIGRATION_STATE = PAUSED));

Disable Stretch Database for a database
After you have disabled Stretch DB for all stretch tables in a database, you can disable it for
the database. You can do this by selecting the database in SSMS and choosing the
Task/Stretch/Disable option in the database context menu.

Alternatively, you can use Transact-SQL to achieve the same:

ALTER DATABASE Mila SET (REMOTE_DATA_ARCHIVE = OFF_WITHOUT_DATA_RECOVERY
(MIGRATION_STATE = PAUSED));

You can check if the action was successful by using this query:

SELECT * FROM sys.remote_data_archive_tables;

You should get an empty set as the result of this query. As already mentioned for stretch
tables, disabling Stretch DB does not drop a database remotely. You need to drop it by
using the Azure management portal.

Stretch Database

[230]

Backup and restore Stretch-enabled databases
Since you have delegated a part of your database to the remote Azure instance, when you
perform a database backup, only local and eligible data will be backed up; remote data is
the responsibility of the Azure service. By default, Azure automatically creates storage
snapshots at least every 8 hours and retains them for 7 days so that you can restore data to a
point in time (by default, 21 points). You can change this behavior and increase the number
of hours or backup frequency by using the system stored procedure
sys.sp_rda_set_rpo_duration. Since the Azure service is not free, this can have
additional costs.

As expected, to remotely restore a database you have to log in to the Azure portal. How to
restore a live Azure database to an earlier point in time using the Azure portal is shown in
Figure 6.31.

Figure 6 31 Restore Azure database to an earlier point in time

Stretch Database

[231]

To restore your Azure database to an earlier point in time, you need to perform the
following steps:

Log in to the Azure portal.1.
On the left-hand side of the screen, select BROWSE and then select SQL2.
Databases.
Navigate to your database and select it.3.
At the top of the database blade, click on Restore.4.
Specify a new Database name, select a Restore Point, and then click on5.
Create.
The database restore process will begin and can be monitored using6.
NOTIFICATIONS.

After you restore the local SQL Server database, you have to run the
sys.sp_rda_reauthorize_db stored procedure to re-establish the connection between
the Stretch-enabled SQL Server database and the remote Azure database. The same action is
required if you restore the Azure database with a different name or in a different region.
You can also restore a deleted database up to 7 days after dropping it. The SQL Server
Stretch Database service on Azure takes a database snapshot before a database is dropped
and retains it for 7 days.

Summary
Stretch DB allows the moving of historical or less frequently needed data dynamically and
transparently to Microsoft Azure. Data is always available and online, and you don't need
to change queries in your solutions; SQL Server takes care of the location of data and
combines retrieving data from the local server and remote Azure location. Therefore, you
can completely delegate your cold data to Azure and reduce storage, maintenance, and
implementation costs of an on-premise solution for cold data storage and availability.
However, there are many limitations of using Stretch DB and most OLTP tables cannot be
stretched to the cloud—at least not without schema and constraint changes. Stretch
Database brings maximum benefits to tables with historical data that is rarely used. You can
calculate the price for data storage and querying against the Azure database and decide
whether you would benefit from using the Stretch DB feature.

7
Temporal Tables

Databases that serve business applications often support temporal data. For example,
suppose a contract with a supplier is valid for a limited time only. It can be valid from a
specific point in time onward, or it can be valid for a specific time interval—from a starting
time point to an ending time point. In addition, on many occasions, you need to audit all
changes in one or more tables. You might also need to be able to show the state in a specific
point in time, or all changes made to a table in a specific period of time. From a data
integrity perspective, you might need to implement many additional temporal-specific
constraints.

This chapter introduces temporal problems, deals with manual solutions, shows out-of-the-
box solutions in SQL Server 2016, and deals with the following topics:

Defining temporal data
Using temporal data in SQL Server before version 2016
System-versioned tables in SQL Server 2016
What kind of temporal support is still missing in SQL Server 2016?

What is temporal data?
In a table with temporal support, the header represents a predicate with at least one time
parameter that represents when the rest of the predicate is valid—the complete predicate is
therefore a timestamped predicate. Rows represent timestamped propositions, and
the valid time period of a row is expressed with one of two attributes: since (for semi
temporal data), or during (for fully temporal data); the latter attribute is usually
represented with two values, from and to.

Temporal Tables

[233]

The following shows the original and two additional timestamped versions of an exemplary
Suppliers table.

Figure 7 1 Original Suppliers table and two tables with temporal support

From the original table header, you can read a predicate saying that a supplier with
identification supplierid, named companyname, having contact contactname, and so on,
is currently our supplier, or is currently under contract. You can pretend that this supplier
is the supplier forever, from the beginning of time until the end of time. The
Suppliers_Since table header has this predicate modified with a time parameter: a
supplier with the identification supplierid, named companyname, having contact
contactname, and so on, is under contract since a specific point in time. In the
Suppliers_FromTo table, the header has this predicate modified with an even more
specific time attribute: a supplier with ID supplierid, named companyname, having
contact contactname, and so on, is (or was, or will be, depending on the current time)
under contract from a specific point in time to another point in time.

There is no need to implement semi-temporal tables. You can simply use the maximal
possible date and time for the to time point. Therefore, the rest of the chapter focuses on
fully temporal data only.

In this section, you will learn about:

Types of temporal tables
Temporal data algebra
Temporal constraints
Temporal data implementation in SQL Server before version 2016
Optimization of temporal queries

Temporal Tables

[234]

Types of temporal table
You might have noticed during the introduction part at the beginning of this chapter that
there are two kinds of temporal issues. The first one is the validity time of the
proposition—in which period the proposition that a timestamped row in a table represents
was actually true. For example, a contract with a supplier was valid only from time point 1
to time point 2. This kind of validity time is meaningful to people, meaningful for the
business. The validity time is also called application time or human time. We can have
multiple valid periods for the same entity. For example, the aforementioned contract that
was valid from time point 1 to time point 2 might also be valid from time point 7 to time
point 9.

The second temporal issue is the transaction time. A row for the contract mentioned above
was inserted in time point 1 and was the only version of the truth known to the database
until somebody changed it, or even till the end of time. When the row is updated at time
point 2, the original row is known as being true to the database from time point 1 to time
point 2. A new row for the same proposition is inserted with time valid for the database
from time point 2 to the end of the time. The transaction time is also known as system time
or database time.

Database management systems can, and should, maintain transaction times automatically.
The system has to insert a new row for every update and change the transaction validity
period in the original row. The system also needs to allow the querying of the current and
historical data, and show the state at any specific point in time. There are not many
additional issues with the transaction time. The system has to take care that the start time of
the database time period is lower than the end time, and that two periods in two rows for
the same entity don't overlap. The database system has to know a single truth at a single
point in time. Finally, the database does not care about the future. The end of the database
time of the current row is actually the end of time. Database time is about present and past
states only.

Implementing the application time might be much more complex. Of course, you might
have validity time periods that end, or even begin, in the future. Database management
systems can't take care of future times automatically, or check whether they are correct.
Therefore, you need to take care of all the constraints you need. The database management
system can only help you by implementing time-aware objects, such as declarative
constraints. For example, a foreign key from the products to the suppliers table, which
ensures that each product has a supplier, could be extended to check not only whether the
supplier for the product exists, but also whether the supplier is a valid supplier at the time
point when the foreign key is checked.

Temporal Tables

[235]

So far, I've talked about time as though it consists of discrete time points; I used the term
time point as if it represented a single, indivisible, infinitely small point in time. Of course,
time is continuous. Nevertheless, in common language, we talk about time as though it
consists of discrete points. We talk in days, hours, and other time units; the granularity we
use depends on what we are talking about. The time points we are talking about are
actually intervals of time; a day is an interval of 24 hours, an hour is an interval of 60
minutes, and so on.

So, what is the granularity level of the time points for the system and application intervals?
For the system times, the decision is simple: use the lowest granularity level that a system
supports. In SQL Server, with the datetime2 data type, you can support 100 nanoseconds
granularity. For the application time, the granularity depends on the business problem. For
example, for a contract with a supplier, the day level could work well. For measuring the
intervals when somebody is using a service, such as a mobile phone service, granularity of a
second may be more appropriate. This looks very complex. However, you can make a
generalized solution for the application times. You can translate time points to integers, and
then use a lookup table that gives you the context and gives meaning to the integer time
points.

Of course, you can also implement both application and system-versioned tables. Such
tables are called bitemporal tables.

Allen's interval algebra
The theory for the temporal data in a relational model started to evolve more than thirty
years ago. I will define quite a few useful Boolean operators and a couple of operators that
work on intervals and return an interval. These operators are known as Allen's operators,
named after J. F. Allen, who defined a number of them in a 1983 research paper on temporal
intervals. All of them are still accepted as valid and needed. A database management
system could help you when dealing with application times by implementing these
operators out-of-the-box.

Temporal Tables

[236]

Let me first introduce the notation I will use. I will work on two intervals, denoted i1 and i2.
The beginning time point of the first interval is b1, and the end is e1; the beginning time point
of the second interval is b2 and the end is e2. Allen's Boolean operators are defined in the
following table:

Name Notation Definition

Equals (i1 = i2) (b1 = b2) AND (e1 = e2)

Before (i1 before i2) (e1 < b2)

After (i1 after i2) (i2 before i1)

Includes (i1 ⊇ i2) (b1 ≤ b2) AND (e1 ≥ e2)

Properly includes (i1 ⊃ i2) (i1 ⊇ i2) AND (i1 ≠ i2)

Meets (i1 meets i2) (b2 = e1 + 1) OR (b1 = e2 + 1)

Overlaps (i1 overlaps i2) (b1 ≤ e2) AND (b2 ≤ e1)

Merges (i1 merges i2) (i1 overlaps i2) OR (i1 meets i2)

Begins (i1 begins i2) (b1 = b2) AND (e1 ≤ e2)

Ends (i1 ends i2) (e1 = e2) AND (b1 ≥ b2)

In addition to Boolean operators, there are three of Allen's operators that accept intervals as
input parameters and return an interval. These operators constitute simple interval algebra.
Note that those operators have the same name as relational operators you are probably
already familiar with: Union, Intersect, and Minus. However, they don't behave exactly like
their relational counterparts. In general, using any of the three interval operators, if the
operation would result in an empty set of time points or in a set that cannot be described by
one interval, then the operator should return NULL. A union of two intervals makes sense
only if the intervals meet or overlap. An intersection makes sense only if the intervals
overlap. The Minus interval operator makes sense only in some cases. For example, (3:10)
Minus (5:7) returns NULL because the result cannot be described by one interval. The
following table summarizes the definition of the operators of interval algebra:

Name Notation Definition

Union (i1 union i2) (Min(b1, b2) : Max(e1, e2)), when (i1merges i2);
NULL otherwise

Intersect (i1 intersect i2) (Max(b1, b2) : Min(e1, e2)), when (i1overlaps i2);
NULL otherwise

Temporal Tables

[237]

Minus (i1 minus i2) (b1: Min(b2– 1, e1)), when (b1 < b2) AND (e1≤ e2);
(Max(e2 + 1, b1) : e1), when (b1≥ b2) AND (e1> e2);
NULL otherwise

The following figure shows the interval algebra operators graphically:

Figure 7 2 Interval algebra operators

Temporal Tables

[238]

Temporal constraints
Depending on the business problem you are solving, you might need to implement many
temporal constraints. Remember that for the application time, SQL Server does not help you
much. You need to implement the constraints in your code using SQL Server declarative
constraints where possible. However, most of the constraints you need to implement
through custom code, either in triggers or in stored procedures, or even in the application
code.

Imagine the Suppliers table example. One supplier can appear multiple times in the table
because the same supplier could be under contract for separate periods of time. For
example, you could have two tuples like this in the relation with the shortened header
Suppliers (supplierid, companyname, from, to):

{2, Supplier VHQZD, d05, d07}
{2, Supplier VHQZD, d12, d27}

Here are some possible constraints you might need to implement:

To should never be less than from
Two contracts for the same supplier should not have overlapping time intervals
Two contracts for the same supplier should not have abutting time intervals
No supplier can be under two distinct contracts at the same point in time
There should be no supplies from a supplier at a point in time when the supplier
was not under a contract

You might find even more constraints. Anyway, SQL Server 2016 brings support for the
system-versioned tables only. To maintain the application validity times, you need to
develop code by yourself.

Temporal data in SQL Server before 2016
As mentioned, in SQL Server versions before 2016, you need to take care of temporal data
by yourself. Even in SQL Server 2016, you still need to take care of the human, or
application times. The following code shows an example of how to create a table with
validity intervals expressed with the b and e columns, where the beginning and the end of
an interval are represented as integers. The table is populated with demo data from the
WideWorldImporters.Sales.OrderLines table. Note that there are multiple versions of
the WideWorldImporters database, so you might get slightly different results.

Temporal Tables

[239]

I used the WideWorldImporters-Standard.bak backup file from
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importe

rs-v1.0 to restore this demo database on my SQL Server instance.

USE tempdb;
GO
SELECT OrderLineID AS id,
 StockItemID * (OrderLineID % 5 + 1) AS b,
 LastEditedBy + StockItemID * (OrderLineID % 5 + 1) AS e
INTO dbo.Intervals
FROM WideWorldImporters.Sales.OrderLines;
-- 231412 rows
GO
ALTER TABLE dbo.Intervals ADD CONSTRAINT PK_Intervals PRIMARY KEY(id);
CREATE INDEX idx_b ON dbo.Intervals(b) INCLUDE(e);
CREATE INDEX idx_e ON dbo.Intervals(e) INCLUDE(b);
GO

Please also note the indexes created. The two indexes are optimal for searches at the
beginning of an interval or at the end of an interval. You can check the minimal begin and
maximal end of all intervals with the following code:

SELECT MIN(b), MAX(e)
FROM dbo.Intervals;

You can see in the results that the minimal beginning time point is 1 and maximal ending
time point is 1155. Now you need to give the intervals some time context. In this case, a
single time point represents a day. The following code creates a date lookup table and
populates it. Note that the starting date is July 1, 2014.

CREATE TABLE dbo.DateNums
 (n INT NOT NULL PRIMARY KEY,
 d DATE NOT NULL);
GO
DECLARE @i AS INT = 1,
 @d AS DATE = '20140701';
WHILE @i <= 1200
BEGIN
INSERT INTO dbo.DateNums
 (n, d)
SELECT @i, @d;
SET @i += 1;
SET @d = DATEADD(day,1,@d);
END;
GO

Temporal Tables

[240]

Now you can join the dbo.Intervals table to the dbo.DateNums table twice, to give the
context to the integers that represent the beginning and the end of the intervals:

SELECT i.id,
 i.b, d1.d AS dateB,
 i.e, d2.d AS dateE
FROM dbo.Intervals AS i
 INNER JOIN dbo.DateNums AS d1
 ON i.b = d1.n
 INNER JOIN dbo.DateNums AS d2
 ON i.e = d2.n
ORDER BY i.id;

The abbreviated result from the previous query is:

id b dateB e dateE
-- --- ---------- --- ----------
1 328 2015-05-24 332 2015-05-28
2 201 2015-01-17 204 2015-01-20
3 200 2015-01-16 203 2015-01-19

Now you can see which day is represented by which integer.

Optimizing temporal queries
The problem with temporal queries is that when reading from a table, SQL
Server can use only one index, and successfully eliminate rows that are not
candidates for the result from one side only, and then scan the rest of the
data. For example, you need to find all intervals in the table which overlap
with a given interval. Remember, two intervals overlap when the
beginning of the first one is lower or equal to the end of the second one,
and the beginning of the second one is lower or equal to the end of the
first one, or mathematically, when (b1 ≤ e2)AND (b2 ≤ e1).

The following query searched for all of the intervals that overlap with the interval (10, 30).
Note that the second condition (b2 ≤ e1) is turned around to (e ≥ b2) for simpler reading (the
beginning and the end of intervals from the table are always on the left side of the
condition). The given, or the searched interval, is at the beginning of the timeline for all
intervals in the table.

SET STATISTICS IO ON;
DECLARE @b AS INT = 10,
 @e AS INT = 30;
SELECT id, b, e

Temporal Tables

[241]

FROM dbo.Intervals
WHERE b <= @e
 AND e >= @b
OPTION (RECOMPILE);
GO

The query used 36 logical reads. If you check the execution plan, you can see that the query
used the index seek in the idx_b index with the seek predicate
[tempdb].[dbo].[Intervals].b <= Scalar Operator((30)) and then scanned the
rows and selected the resulting rows using the residual predicate
[tempdb].[dbo].[Intervals].[e]>=(10). Because the searched interval is at the
beginning of the timeline, the seek predicate successfully eliminated the majority of the
rows; only a few intervals in the table have a beginning point lower than or equal to 30.

You would get a similarly efficient query if the searched interval was at the end of the
timeline, just that SQL Server would use the idx_e index to seek. However, what happens
if the searched interval is in the middle of the timeline, as the following query shows?

DECLARE @b AS INT = 570,
 @e AS INT = 590;
SELECT id, b, e
FROM dbo.Intervals
WHERE b <= @e
 AND e >= @b
OPTION (RECOMPILE);
GO

This time, the query used 111 logical reads. With a bigger table, the difference from the first
query would be even bigger. If you check the execution plan, you will see that SQL Server
used the idx_e index with the [tempdb].[dbo].[Intervals].e >= Scalar
Operator((570)) seek predicate and [tempdb].[dbo].[Intervals].[b]<=(590)
residual predicate. The seek predicate excludes approximately half of the rows from one
side, while half of the rows from the other side are scanned and the resulting rows are
extracted with the residual predicate.

Temporal Tables

[242]

There is a solution which would use that index for elimination of the rows from both sides
of the searched interval by using a single index. The following figure shows this logic:

Figure 7 3 Optimizing temporal query

The intervals in the figure are sorted by the lower boundary, representing SQL Server's
usage of the idx_b index. Eliminating intervals from the right side of the given (searched)
interval is simple: just eliminate all intervals where the beginning is at least one unit bigger
(more to the right) of the end of the given interval. You can see this boundary in the figure
denoted with the rightmost dotted line. However, eliminating from the left is more
complex. In order to use the same index, the idx_b index for eliminating from the left, I
need to use the beginning of the intervals in the table in the WHERE clause of the query. I
have to go to the left side, away from the beginning of the given (searched) interval, at least
for the length of the longest interval in the table, which is marked with a callout in the
figure. The intervals that begin before the left yellow line cannot overlap with the given
(blue) interval.

Temporal Tables

[243]

Since I already know that the length of the longest interval is 20, I can write an enhanced
query in quite a simple way:

DECLARE @b AS INT = 570,
 @e AS INT = 590;
DECLARE @max AS INT = 20;
SELECT id, b, e
FROM dbo.Intervals
WHERE b <= @e AND b >= @b - @max
 AND e >= @b AND e <= @e + @max
OPTION (RECOMPILE);

This query retrieves the same rows as the previous one with 20 logical reads only. If you
check the execution plan, you can see that the idx_b index was used, with the seek
predicate Seek Keys[1]: Start: [tempdb].[dbo].[Intervals].b >= Scalar
Operator((550)), End: [tempdb].[dbo].[Intervals].b <= Scalar
Operator((590)), which successfully eliminated rows from both sides of the timeline,
and then the residual predicate [tempdb].[dbo].[Intervals].[e]>=(570) AND
[tempdb].[dbo].[Intervals].[e]<=(610) was used to select rows from a very limited
partial scan.

Of course, the figure could be turned around to cover cases when the idx_e index would be
more useful. With this index, the elimination from the left is simple—eliminate all of the
intervals which end at least one unit before the beginning of the given interval. This time,
the elimination from the right is more complex—the end of the intervals in the table cannot
be more to the right than the end of the given interval plus the maximal length of all
intervals in the table.

Please note that this performance is the consequence of the specific data in the table. The
maximal length of an interval is 20. This way, SQL Server can very efficiently eliminate
intervals from both sides. However, if there is only one long interval in the table, the code
will become much less efficient, because SQL Server would not be able to eliminate a lot of
rows from one side, either left or right, depending on which index it used. Anyway, in real
life, interval length does not vary a lot, so this optimization technique might be very useful,
especially because it is simple.

After you have finished with temporal queries in this section, you can clean up your
tempdb database with the following code:

DROP TABLE dbo.DateNums;
DROP TABLE dbo.Intervals;

Temporal Tables

[244]

Temporal features in SQL:2011
Temporal data support was introduced in the most recent revision of the SQL
standard—SQL:2011. There were also attempts to define the support in previous standard
versions, but without success (TSQL2 extensions in 1995). They were not widely accepted
and vendors did not implement them.

Finally, the ANSI SQL:2011 standard proposed how temporal data should be supported in
relational database management systems. A very important thing is that SQL:2011 did not
introduce a new data type to support temporal data, rather it introduced the period.

A period is a table attribute and it's defined by two table columns of date type representing
start time and end time respectively. It is defined as follows:

A period must have a name
The end time must be greater than the start time
It is a closed-open period model. The start time is included in the period and the
end time is excluded

The SQL:2011 standard recognizes two dimensions of temporal data support:

Valid or application time tables
Transaction or system time tables

Application-time period tables are intended for meeting the requirements of applications
that capture time periods during which the data is believed to be valid in the real world. A
typical example of such an application is an insurance application, where it is necessary to
keep track of the specific policy details of a given customer that are in effect at any given
point in time.

System-versioned tables are intended for meeting the requirements of applications that
must maintain an accurate history of data changes either for business reasons, legal reasons,
or both. A typical example of such an application is a banking application, where it is
necessary to keep previous states of customer account information so that customers can be
provided with a detailed history of their accounts. There are also plenty of examples where
certain institutions are required by law to preserve historical data for a specified length of
time to meet regulatory and compliance requirements.

Bitemporal tables are tables that implement both application-time and system-versioned
time support.

Temporal Tables

[245]

After the standard was published, many vendors came up with the temporal table
implementation:

IDM DB2 10 added full support for temporal tables (for both application time
and system-versioned).
Oracle implemented a feature called the Flashback Data Archive. It automatically
tracks all changes made to data in a database and maintains an archive of
historical data. Oracle 12c introduced valid time temporal support.
PostgreSQL doesn't support temporal tables natively, but temporal tables
approximate them
Teradata implements both valid time and transaction time table types based on
the TSQL2 specification.
All these implementations most probably affected Microsoft's decision to
implement temporal tables in SQL Server 2016.

System-versioned tables in SQL Server 2016
SQL Server 2016 introduces support for system-versioned temporal tables. Unfortunately,
application-time tables are not implemented in this version. System-versioned temporal
tables bring built-in support for providing information about data stored in the table at any
point in time rather than only the data that is correct at the current moment in time. They
are implemented according to the specification in the ANSI SQL 2011 standard with a few
extensions.

How temporal tables work in SQL Server 2016
A system-versioned temporal table is implemented in SQL Server 2016 as a pair of tables:
the current table containing the actual data, and the history table where only historical
entries are stored. There are many limitations of both current and history tables. Here are
limitations and considerations that you must take into account for the current table of a
system-versioned temporal table:

It must have a primary key defined
It must have one PERIOD FOR SYSTEM_TIME defined with two
DATETIME2 columns
Cannot be FILETABLE and cannot contain FILESTREAM data type

Temporal Tables

[246]

INSERT, UPDATE, and MERGE statements cannot reference and modify period
columns: start column is always set to system time, end column to max date
value
INSTEAD OF triggers are not allowed
TRUNCATE TABLE is not supported

The list of limitations for a history table is significantly longer and brings many additional
restrictions. The history table of a system-versioned temporal table:

Cannot have constraints defined (primary or foreign keys, check, table, or column
constraints). Only default column constraints are allowed
You cannot modify data in the history table
You can neither ALTER nor DROP a history table
It must have the same schema as the current table (column names, data types,
ordinal position)
Cannot be defined as the current table
Cannot be FILETABLE and cannot contain FILESTREAM data type
No triggers are allowed (neither INSTEAD OF nor AFTER)
Change Data Capture and Change Data Tracking are not supported

You can read more about considerations and limitations when working with temporal
tables at h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /m t 604468. a s p x .

The list might look long and discouraging, but all these limitations are there to protect data
consistency and accuracy in history tables. However, although you cannot change logical
attributes, you can still perform actions related to the physical implementations of the
history table: you can switch between rowstore and columnstore table storage, you can
choose columns for clustered and create additional non-clustered indexes.

Creating temporal tables
To support the creation of temporal tables, the CREATE TABLE and ALTER TABLE Transact-
SQL statements have been extended. To create a temporal table, you need to:

Define a column of DATETIME2 data type for holding the info since when a row is
valid from a system point of view
Define a column of DATETIME2 data type for holding the info until when a row is
valid from the same point of view

Temporal Tables

[247]

Define a period for system time by using previously defined and described
columns
Set the newly-added SYSTEM_VERSIONING table attribute to ON

The following code creates a new temporal table Product in the schema dbo in the
database WideWorldImporters:

USE WideWorldImporters;
CREATE TABLE dbo.Product
(
 ProductId INT NOT NULL CONSTRAINT PK_Product PRIMARY KEY,
 ProductName NVARCHAR(50) NOT NULL,
 Price MONEY NOT NULL,
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
WITH (SYSTEM_VERSIONING = ON);

You can identify all four elements related to temporal table creation from the above list: two
period columns, the period, and the SYSTEM_VERSIONING attribute. Note that all elements
marked bold are predefined and you must write them exactly like this; data type,
nullability, and default values for both period columns are also predefined and you can
only choose their names and define data type precision. The data type must be
DATETIME2; you can only specify its precision. Furthermore, the period definition itself is
predefined too; you must use period column names you chose in the previous step. By
defining period columns and the period, you have created the infrastructure required for
implementing temporal tables. However, if you create a table with them but without the
SYSTEM_VERSIONING attribute, the table will not be temporal. It will contain an additional
two columns with values that are maintained by the system, but the table will not be a
system-versioned temporal table.

The final, fourth, part is to set the attribute SYSTEM_VERSIONING to ON. When you execute
the above code, you implicitly instruct SQL Server to automatically create a history table for
the temporal table dbo.Product. The table will be created in the same schema (dbo), and
with a name according to the following format
MSSQL_TemporalHistoryFor_<current_temporal_table_object_id>_[suffix].
The suffix is optional and it will be added only if the first part of the table name is not
unique. Figure 7.4 shows what you will see when you open SQL Server Management Studio
and find the dbo.Product table :

Temporal Tables

[248]

Figure 7 4 Temporal table in SQL Server Management Studio

You can see that all temporal tables have a small clock icon indicating temporality. Under
the table name, you can see its history table. Note that columns in both tables are identical
(column names, data types, precision, nullability), but also that the history table does not
have constraints (primary key).

Temporal Tables

[249]

Period columns must have DATETIME2 as their data type. If you try with
DATETIME, you will get an error. Standard does not specify data type
precision, so this is not strictly implemented according to standard. This is
very important when you migrate your existing temporal solution to new
temporal tables in SQL Server 2016. Usually, columns that you were using
are DATETIME data type and you have to extend this to DATETIME2.

You can also specify the name of the history table only and let SQL Server create it with the
same attributes as described earlier. Use the following code to create a temporal table with a
user-defined history table name:

USE WideWorldImporters;
CREATE TABLE dbo.Product2
(
 ProductId INT NOT NULL CONSTRAINT PK_Product2 PRIMARY KEY,
 ProductName NVARCHAR(50) NOT NULL,
 Price MONEY NOT NULL,
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductHistory2));

What storage type is used for the automatically created history table? By default, it is a
rowstore table with the clustered index on the period columns. The table is compressed
with PAGE compression, if it can be enabled for compression (has no SPARSE or (B)LOB
columns). To find out the storage type, use the following code:

SELECT temporal_type_desc, p.data_compression_desc
FROM sys.tables t
INNER JOIN sys.partitions p ON t.object_id = p.object_id
WHERE name = 'ProductHistory2';

The result of the above query shows that PAGE compression has been applied:

temporal_type_desc data_compression_desc
--------------------- ---------------------
HISTORY_TABLE PAGE

Temporal Tables

[250]

You can also see that the history table has a clustered index. The following code extracts the
index name and the columns used in the index:

SELECT i.name, i.type_desc, c.name, ic.index_column_id
FROM sys.indexes i
INNER JOIN sys.index_columns ic on ic.object_id = i.object_id
INNER JOIN sys.columns c on c.object_id = i.object_id AND ic.column_id =
c.column_id
WHERE OBJECT_NAME(i.object_id) = 'ProductHistory2';

The output of this query shows that the automatically created history table has a clustered
index on the period columns and the name in the following ix_<history_tablename>
format:

name type_desc name index_column_id
--------------------- ------------- ----------- ------------
ix_ProductHistory2 CLUSTERED ValidFrom 1
ix_ProductHistory2 CLUSTERED ValidTo 2

However, if the predefined implementation of the history table (rowstore, period columns
in clustered index) doesn't meet your criteria for historical data, you can create your own
history table. Of course, you need to respect all constraints and limitations listed at the
beginning of the chapter. The following code first creates a history table, then a temporal
table, and finally assigns the history table to it. Note that, in order to proceed with the code
execution, you need to remove the temporal table created in the first example in this
chapter:

USE WideWorldImporters;
ALTER TABLE dbo.Product SET (SYSTEM_VERSIONING = OFF);
ALTER TABLE dbo.Product DROP PERIOD FOR SYSTEM_TIME;
DROP TABLE IF EXISTS dbo.Product;
DROP TABLE IF EXISTS dbo.ProductHistory;
GO
CREATE TABLE dbo.ProductHistory
(
 ProductId INT NOT NULL,
 ProductName NVARCHAR(50) NOT NULL,
 Price MONEY NOT NULL,
 ValidFrom DATETIME2 NOT NULL,
 ValidTo DATETIME2 NOT NULL
);
CREATE CLUSTERED COLUMNSTORE INDEX IX_ProductHistory ON dbo.ProductHistory;
CREATE NONCLUSTERED INDEX IX_ProductHistory_NC ON
dbo.ProductHistory(ProductId, ValidFrom, ValidTo);
GO
CREATE TABLE dbo.Product
(

Temporal Tables

[251]

 ProductId INT NOT NULL CONSTRAINT PK_Product PRIMARY KEY,
 ProductName NVARCHAR(50) NOT NULL,
 Price MONEY NOT NULL,
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductHistory));

You will learn how to alter and drop system-versioned tables in more detail later in this
chapter. Here, you should focus on the fact that you can create your own history table with
a clustered columnstore index on it. Figure 7.5 shows what you will see when you look at
SQL Server Management Studio and find the created temporal table:

Figure 7 5 Temporal table in SQL Server Management Studio with user-defined history table

You can see that the table created by you acts as a history table and has a clustered
columnstore index.

Temporal Tables

[252]

Period columns as hidden attributes
Period columns are used to support temporality of data and do not have business logic
value. By using the HIDDEN clause, you can hide the new PERIOD columns to avoid
impacting on existing applications that are not designed to handle new columns.

Converting non-temporal to temporal tables
In SQL Server 2016, you can create temporal tables from scratch, but you can also alter an
existing table and add attributes to it to convert it to a system-versioned temporal table. All
you need is to add period columns, define the SYSTEM_TIME period on them, and set the
temporal attribute. The following code example demonstrates how to convert the
Department table in the AdventureWorks2016CTP3 database to a temporal table:

USE AdventureWorks2016CTP3;
ALTER TABLE HumanResources.Department
ADD ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL
CONSTRAINT DF_Validfrom DEFAULT SYSDATETIME(),
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL CONSTRAINT
DF_ValidTo DEFAULT '99991231 23:59:59.9999999',
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo);
GO
ALTER TABLE HumanResources.Department SET (SYSTEM_VERSIONING = ON
(HISTORY_TABLE = HumanResources.DepartmentHistory));

You have to use two ALTER statements: with the first statement, you define the period
columns and the period, while the second statement sets the SYSTEM_VERSIONING attribute
to ON and the name of the history table that will be created by the system. You should be
aware that you need to provide default constraints for both columns, since they must be
non-nullable. You can even use a date value from the past for the default constraint for the
first period column; however, you cannot set values in the future.

Adding a non-nullable column with a default constraint is a metadata
operation in the Enterprise Edition only; in all other editions that means a
physical operation with the allocation space to update all table rows with
newly added columns. For large tables, this can take a long time and be
aware that, during this action, the table is locked.

As you can see, it is very easy and straightforward to add temporal functionality to an
existing non-temporal table. It works transparently; all your queries and commands will
work without changes. But, what if you did not follow best practice and recommendations
and used SELECT * in your statements? Since SELECT * includes all columns from tables
involved in the FROM clause, two additional columns could lead to exceptions and
breaking changes in the application.

Temporal Tables

[253]

To avoid this situation, you are allowed to define period date columns with the HIDDEN
attribute, as shown in the above code. That means that these two columns will not be
returned as part of the result set for a query that uses the SELECT * operation. Of course, it
is still, and will always be, recommended to use a named list of columns (and only required
ones) instead of SELECT *.

I need, here, to express my concerns about another implementation which
takes care of solutions where SELECT * is implemented. I can understand
that the vendor does not want to introduce a feature that can break
customers' existing applications, but on the other hand, you cannot expect
a developer to stop using SELECT * when new features and solutions
don't sanction bad development habits.

Hidden attributes allow you to convert any non-temporal table (which does not violate the
temporal table limitations listed in the previous section) to a temporal table without
worrying about breaking changes in your solutions.

Migration existing temporal solution to system-versioned tables
Most probably, you have had to deal with historical data in the past. Since there was no out-
of-the-box feature in previous SQL Server versions, you had to create a custom temporal
data solution. Now that the feature is available, you might think to use it for your existing
temporal solutions. You saw earlier in this chapter that you can define your own history
table. Therefore, you can also use an existing and populated historical table. If you want to
convert your existing solution to use system-versioned temporal tables in SQL Server 2016,
you have to prepare both tables so that they fill all requirements for temporal tables. To
demonstrate this, you will again use the AdventureWorks2016CTP3 database and create
both current and history tables by using tables that exist in this database. Use the following
code to create and populate the tables:

USE WideWorldImporters;
CREATE TABLE dbo.ProductListPrice
(
 ProductID INT NOT NULL CONSTRAINT PK_ProductListPrice PRIMARY KEY,
 ListPrice MONEY NOT NULL,
);
INSERT INTO dbo.ProductListPrice(ProductID,ListPrice)
SELECT ProductID,ListPrice FROM AdventureWorks2016CTP3.Production.Product;
GO
CREATE TABLE dbo.ProductListPriceHistory
(
 ProductID INT NOT NULL,
 ListPrice MONEY NOT NULL,
 StartDate DATETIME NOT NULL,

Temporal Tables

[254]

 EndDate DATETIME NULL,
 CONSTRAINT PK_ProductListPriceHistory PRIMARY KEY CLUSTERED
 (
 ProductID ASC,
 StartDate ASC
)
);
INSERT INTO
dbo.ProductListPriceHistory(ProductID,ListPrice,StartDate,EndDate)
SELECT ProductID, ListPrice, StartDate, EndDate FROM
AdventureWorks2016CTP3.Production.ProductListPriceHistory;

Consider the rows for the product with ID 707 in both tables:

SELECT * FROM dbo.ProductListPrice WHERE ProductID = 707;
SELECT * FROM dbo.ProductListPriceHistory WHERE ProductID = 707;

Here are the rows in the current and history tables respectively:

ProductID ListPrice
--------- ---------
707 34,99
ProductID ListPrice StartDate EndDate
--------- --------- ------------------- -------------------
707 33,6442 2011-05-31 00:00:00.000 2012-05-29 00:00:00.000
707 33,6442 2012-05-30 00:00:00.000 2013-05-29 00:00:00.000
707 34,99 2013-05-30 00:00:00.000 NULL

Assume that this data has been produced by your temporal data solution and that you want
to use system-versioned temporal tables in SQL Server 2016 instead of it, but to also use the
same tables. The first thing you have to do is align the columns in both tables. Since the
current table has no date columns, you need to add two period columns and define the
period. The columns should have the same name as the counterpart columns from the
history table. Here is the code that creates the temporal infrastructure in the current table:

ALTER TABLE dbo.ProductListPrice
ADD StartDate DATETIME2 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL
CONSTRAINT DF_StartDate1 DEFAULT SYSDATETIME(),
 EndDate DATETIME2 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL CONSTRAINT
DF_EndDate1 DEFAULT '99991231 23:59:59.9999999',
 PERIOD FOR SYSTEM_TIME (StartDate, EndDate);
GO

Temporal Tables

[255]

The next steps are related to the history table. As you can see from the sample data, your
current solution allows gaps in the history table and also contains the current value with the
undefined end date. As mentioned earlier in this chapter, the history table only contains
historical data and there are no gaps between historical entries (the new start date is equal
to the previous end date). Here are the steps you have to implement in order to prepare the
dbo.ProductLisPriceHistory table to act as a history table in a system-versioned
temporal table in SQL Server 2016:

Update the non-nullable EndDate column to remove the gap between historical
values described earlier and to support the open-closed interval
Update all rows where the EndDate column is null to the StartDate of the rows
in the current table
Remove the primary key constraint
Change the data type for both date columns StartDate and EndDate to
DATETIME2

Here is the code that implements all these requests:

--remove gaps
UPDATE dbo.ProductListPriceHistory SET EndDate = DATEADD(day,1,EndDate);
--update EndDate to StartDate of the actual record
UPDATE dbo.ProductListPriceHistory SET EndDate = (SELECT MAX(StartDate)
FROM dbo.ProductListPrice) WHERE EndDate IS NULL;
--remove constraints
ALTER TABLE dbo.ProductListPriceHistory DROP CONSTRAINT
PK_ProductListPriceHistory;
--change data type to DATETIME2
ALTER TABLE dbo.ProductListPriceHistory ALTER COLUMN StartDate DATETIME2
NOT NULL;
ALTER TABLE dbo.ProductListPriceHistory ALTER COLUMN EndDate DATETIME2 NOT
NULL;

Now, both tables are ready to act as a system-versioned temporal table in SQL Server 2016:

ALTER TABLE dbo.ProductListPrice SET (SYSTEM_VERSIONING = ON (HISTORY_TABLE
= dbo.ProductListPriceHistory, DATA_CONSISTENCY_CHECK = ON));

The command has been executed successfully and the dbo.ProductListPriceHistory
table is now a system-versioned temporal table. Note that the option
DATA_CONSISTENCY_CHECK = ON is used to check that all rows in the history table are
valid from a temporal data point of view (no gaps, the end date not before the start date).
Now, you can check the new functionality by using the UPDATE statement. You will update
the price for the product with the ID 707 to 50 and then check the rows in both tables:

Temporal Tables

[256]

UPDATE dbo.ProductListPrice SET Price = 50 WHERE ProductID = 707;
SELECT * FROM dbo.ProductListPrice WHERE ProductID = 707;
SELECT * FROM dbo.ProductListPriceHistory WHERE ProductID = 707;

Here are the rows for this product in both tables:

You can see another row in the history table (compare with previous result). Of course,
when you try these examples, you will get different values for the columns StartDate and
EndDate since they are managed by the system.

As you can see, it is not so complicated to migrate an existing solution to a system-
versioned table in SQL Server 2016, but it is not a single step. You should take into account,
that most probably it will take time to update the data type to DATETIME2. However, by
using the system-versioned temporal tables feature, your history tables are completely and
automatically protected by changes from anyone except the system. This is a great, out-of-
the-box, data consistency improvement.

Altering temporal tables
You can use the ALTER TABLE statement to perform schema changes on system-versioned
temporal tables. When you use it to add a new data type, change a data type, or remove an
existing column, the system will automatically perform the action against both the current
and the history table. To check this, run the following code to create a temporal table from
the previous section:

USE WideWorldImporters;
CREATE TABLE dbo.Product
(
 ProductId INT NOT NULL CONSTRAINT PK_Product PRIMARY KEY,
 ProductName NVARCHAR(50) NOT NULL,

Temporal Tables

[257]

 Price MONEY NOT NULL,
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductHistory));

The following code adds a new column named Color into both the current and the history
table:

ALTER TABLE dbo.Product ADD Color NVARCHAR(15);

Since the column accepts null values, the action is done instantly.

When you add a non-nullable column, the situation is a bit different. First, you need to
provide a default constraint and then you should take into account that this operation is an
offline operation in all editions of SQL Server, except in the Enterprise Edition. The
following code adds a new column Category that requires a value:

ALTER TABLE dbo.Product ADD Category SMALLINT NOT NULL CONSTRAINT
DF_Category DEFAULT 1;

This action will be online (metadata operation) in the Enterprise Edition only. In all the
other editions, all rows in both the current and the history table will be touched to
add additional columns with its value.

However, adding LOB and BLOB columns will cause a mass update in both the current and
the history table in all SQL Server editions. The next code examples add a new LOB column
Description:

ALTER TABLE dbo.Product ADD Description NVARCHAR(MAX) NOT NULL CONSTRAINT
DF_Description DEFAULT N'N/A';

This action will internally update all rows in both tables. For large tables, this can take a
long time and during this time, both tables are locked.

You can also use the ALTER TABLE statement to add or remove the HIDDEN attribute to
period columns or to remove it. This code line adds the HIDDEN attribute to the columns
ValidFrom and ValidTo:

ALTER TABLE dbo.Product ALTER COLUMN ValidFrom ADD HIDDEN;
ALTER TABLE dbo.Product ALTER COLUMN ValidTo ADD HIDDEN;

Clearly, you can also remove the HIDDEN attribute:

ALTER TABLE dbo.Product ALTER COLUMN ValidFrom DROP HIDDEN;
ALTER TABLE dbo.Product ALTER COLUMN ValidTo DROP HIDDEN;

Temporal Tables

[258]

However, there are some changes that are not allowed for temporal tables:

Adding an IDENDITY or computed column
Adding a ROWGUIDCOL column or changing an existing column to it
Adding a SPARSE column or changing an existing column to it, when the history
table is compressed

When you try to add a SPARSE column, you will get an error, as in the following example:

ALTER TABLE dbo.Product ADD Size NVARCHAR(5) SPARSE;

The command ends up with the following error message:

Msg 11418, Level 16, State 2, Line 20
Cannot alter table 'ProductHistory' because the table either contains
sparse columns or a column set column which are incompatible with
compression.

The same happens when you try to add an identity column, as follows:

ALTER TABLE dbo.Product ADD ProductNumber INT IDENTITY (1,1);

And here is the error message:

Msg 13704, Level 16, State 1, Line 26
System-versioned table schema modification failed because history table
'WideWorldImporters.dbo.ProductHistory' has IDENTITY column specification.
Consider dropping all IDENTITY column specifications and trying again.

If you need to perform schema changes to a temporal table not supported in the ALTER
statement, you have to set its SYSTEM_VERSIONING attribute to false to convert the tables to
non-temporal tables, perform the changes, and then convert back to a temporal table. The
following code demonstrates how to add the identity column ProductNumber and the
sparse column Size into the temporal table dbo.Product:

ALTER TABLE dbo.ProductHistory REBUILD PARTITION = ALL WITH
(DATA_COMPRESSION=NONE);
GO
BEGIN TRAN
ALTER TABLE dbo.Product SET (SYSTEM_VERSIONING = OFF);
ALTER TABLE dbo.Product ADD Size NVARCHAR(5) SPARSE;
ALTER TABLE dbo.ProductHistory ADD Size NVARCHAR(5) SPARSE;
ALTER TABLE dbo.Product ADD ProductNumber INT IDENTITY (1,1);
ALTER TABLE dbo.ProductHistory ADD ProductNumber INT NOT NULL DEFAULT 0;
ALTER TABLE dbo.Product SET(SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.
ProductHistory));

Temporal Tables

[259]

COMMIT;

To perform ALTER TABLE operations, you need to have CONTROL permission on the current
and history tables. During the changes, both tables are locked with schema locks.

Dropping temporal tables
You cannot drop a system-versioned temporal table. Both current and history tables are
protected until the SYSTEM_VERSIONING attribute of the current table is set to ON. When
you set it to OFF, both tables automatically become non-temporal tables and are fully
independent of each other. Therefore, you can perform all operations against them that are
allowed according to your permissions. You can also drop period if you definitely want to
convert a temporal table to a non-temporal one. The following code converts the Product
table into a non-temporal table and removes the defined SYSTEM_TIME period:

ALTER TABLE dbo.Product SET (SYSTEM_VERSIONING = OFF);
ALTER TABLE dbo.Product DROP PERIOD FOR SYSTEM_TIME;

Note that the period columns ValidFrom and ValidTo remain in the table and will be
further updated by the system. However, the history table will not be updated when data in
the current table is changed.

Data manipulation in temporal tables
In this section, what happens when temporal data is inserted, updated, or deleted will be
demonstrated. Note that the history table is protected; only the system can write into it.
Even members of the sysadmin server role cannot insert, update, or delete rows from a
history table of a system-versioned temporal table in SQL Server 2016.

In this section, you will insert into, and manipulate data from, the dbo.Product temporal
table created in the previous section. Assume you have added the Fog product with the 150
price into the table on 21st November 2016. Here is the code for this action and the state of the
current and history tables after the statement's execution:

INSERT INTO dbo.Product(ProductId, ProductName, Price)
VALUES(1, N'Fog', 150.00) ;-- on 21st November

Temporal Tables

[260]

Note that the dates in the ValidFrom and ValidTo columns are displayed in short format
for clarity: their actual value is of DATETIME2 data type.

As you can see after an INSERT into a temporal table:

In the current table, a new row has been added with attributes from the INSERT
statement, the period start date column is set to the system date, the period end
date column is set to the max date
The history table is not affected at all

Now, assume that the price for the product has been changed to 200 and that this change
was entered into the database on 28th November 2016. Here is the code for this action and
the state of the current and history tables after the statement's execution:

UPDATE dbo.Product SET Price = 200.00 WHERE ProductId = 1;-- on 28th
November

We remind you again that values in the ValidFrom and ValidTo columns are displayed in
short format for clarity. The value in the ValidTo column in the history table is identical to
the ValidFrom value in the current table: there are no gaps.

Temporal Tables

[261]

Now, assume that you have reduced the price the next day to 180. Here is the code for this
action and the state of the current and history tables after the statement's execution:

UPDATE dbo.Product SET Price = 180.00 WHERE ProductId = 1;-- on 29th
November

You can see another entry in the history table indicating that the price 200 was valid for one
day. What would happen if you execute the same statement again, say, on 30th November?
There is no real change; no business logic attributes are changed, but what does it mean for
temporal tables? Here is the code for this action and the state of the current and history
tables after the statement's execution:

UPDATE dbo.Product SET Price = 180.00 WHERE ProductId = 1;-- on 30th
November

As you can see in the history table, even if there is no real change to the attributes in the
current table, an entry in the history table is created and period date columns are updated.

Temporal Tables

[262]

You can think about this as a bug, but although no attributes have been
changed, if you use temporal tables for auditing you probably want to see
all attempts of data manipulation in the main table.

Here is how an UPDATE of a single row in a temporal table affects the current and history
tables:

Values in the row of the current table are updates to those provided by the
UPDATE statement, the period start date column is set to system date, the period
end date column is set to max date
From the current table before updating is copied to the history table, only the
period end date column is set to the system date (exactly the same value as in the
period start date column of the current row after the update)
Every UPDATE statement issued against a single row in the current table will
generate an entry in the history table

You can also see that there are no gaps in the dates in the same row in the history
table. Even duplicates are possible: the history table does not have constraints to prevent
them! Therefore, it is possible to have multiple records for the same row with the same
values in period columns. Moreover, even values in period columns can be identical! The
only constraint that is enforced is that the date representing the period end date column
cannot be before the date representing the period start date (therefore, it is guaranteed that
ValidFrom <= ValidTo).

You will finally remove the row from the current table in order to demonstrate how
the DELETE statement affects temporal tables. Here is the code for this action and the state
of the current and history tables after the statement's execution:

DELETE FROM dbo.Product WHERE ProductId = 1;-- on 1st December

Temporal Tables

[263]

As you expected, there is no row in the current table, but another row has been added into
the history table. After executing the DELETE statement against a single row in a temporal
table:

Current table: The row has been removed
History table: The row from the current table before deleting is copied to the
history table, only the period end date column is set to the system date

Querying temporal data in SQL Server 2016
System-versioned tables are primarily intended for tracking historical data changes. Queries
on system-versioned tables often tend to be concerned with retrieving table content as of a
given point in time or between any two given points in time. As you saw, Microsoft has
implemented them according to SQL:2011 standard, which means that two physical tables
exist: a table with actual data and a history table. In order to simplify queries against
temporal tables, SQL:2011 standard introduced a new SQL clause; FOR SYSTEM_TIME. In
addition to it, some new temporal-specific sub-clauses have been added too. SQL Server
2016 has not only implemented these extensions, but added two more extensions. Here is
the complete list of clauses and extensions you can use to query temporal data in SQL
Server 2016:

FOR SYSTEM_TIME AS OF

FOR SYSTEM_TIME FROM TO

FOR SYSTEM_TIME BETWEEN AND

FOR SYSTEM TIME CONTAINED_IN

FOR SYSTEM_TIME ALL

Retrieving temporal data at a specific point in time
When you want to retrieve temporal data that was valid at a given point in time, the
resulting set could contain both actual and historical data. For instance, the following query
would return all rows from the People temporal table in the WideWorldImporters
sample database that were valid at 20th March 2016 at 8 A.M.:

SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People WHERE ValidFrom <= '2016-03-20 08:00:00' AND
ValidTo > '2016-03-20 08:00:00'
UNION ALL
SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People_Archive WHERE ValidFrom <= '2016-03-20 08:00:00'

Temporal Tables

[264]

AND ValidTo > '2016-03-20 08:00:00';

The query returns 1,109 rows. For a single person, only one row is returned: either the
actual or a historical record. A record is valid if its start date was before or exactly on the
given date and its end date is greater than the given date.

The new FOR SYSTEM_TIME clause with the AS OF sub-clause can be used to simplify the
preceding query. Here is the same query with temporal Transact-SQL extensions:

SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People FOR SYSTEM_TIME AS OF '2016-03-20 08:00:00';

Of course, it returns the same result set and the execution plans are identical, as shown in
Figure 7.6:

Figure 7 6 Execution plans for point in time queries against temporal tables

Under the hood, the query processor touches both tables and retrieves data, but the query
looks simpler.

A special case of a point-in-time query against a temporal table is a query where you specify
the actual date as the point in time. The following query returns actual data from the same
temporal table:

DECLARE @Now AS DATETIME = CURRENT_TIMESTAMP;
SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People FOR SYSTEM_TIME AS OF @Now;

Temporal Tables

[265]

The query is logically equivalent to this one:

SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People;

However, when you look at the execution plans (see Figure 7.7), for the execution of the first
query, both tables have been processed, while the non-temporal query had to retrieve data
from the current table only:

Figure 7 7 Compare execution plans for temporal and non-temporal queries that retrieve current data only

Therefore, you should not use temporal queries with the FOR SYSTEM_TIME AS clause to
return data from the current table.

Retrieving temporal data from a specific period
You can use a new FOR SYSTEM_TIME clause to retrieve temporal data that was or is valid
between two points in time. These queries are typically used for getting changes to specific
rows over time. To achieve this, you could use one of two SQL:2011 standard specified sub-
clauses:

FROM…TO returns all data that started before or at the beginning of a given period
and ended after the end of the period (closed-open interval)
BETWEEN…AND returns all data that started before or at the beginning of a given
period and ended after or at the end of the period (closed-closed interval)

Temporal Tables

[266]

As you can see, the only difference between these two sub-clauses is how data with a
starting date to the right side of the given period is interpreted: BETWEEN includes this data,
FROM…TO does not.

The following queries demonstrate usage and the difference between them:

--example using FROM/TO
SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People FOR SYSTEM_TIME FROM '2016-03-20 08:00:00' TO
'2016-05-31 23:14:00' WHERE PersonID = 7;

--example using BETWEEN
SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People FOR SYSTEM_TIME BETWEEN '2016-03-20 08:00:01' AND
'2016-05-31 23:14:00' WHERE PersonID = 7;

Here are the result sets generated by the preceding queries:

As you can see, the second query returns three rows: it includes the row where the start
date is equal to the value of the right boundary of the given period.

These two sub-clauses return row versions that overlap with a specified period. If you need
to return rows that existed within specified period boundaries, you need to use another
extension CONTAINED IN. This extension (an implementation of one of the Allen's
Operators) is not defined in the SQL:2011 standard, it is implemented in SQL Server 2016.
Rows that either start or end outside a given interval will not be part of a result set when
the CONTAINED IN sub-clause is used. When you replace the sub-clause BETWEEN with it in
the above example, only rows whose whole life belongs to the given interval will survive:

SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People FOR SYSTEM_TIME CONTAINED IN ('2016-03-20
08:00:01','2016-05-31 23:14:00') WHERE PersonID = 7;

Temporal Tables

[267]

Instead of three rows by using BETWEEN or two with FROM…TO sub-clauses, this time only
one row is returned:

Although this extension is not standard, its implementation in SQL Server 2016 is
welcomed: it covers a reasonable and not-so-rare use case and simplifies the development
of database solutions based on temporal tables.

Retrieving all temporal data
Since temporal data is separated into two tables, to get all temporal data you need to
combine data from both tables. However, there is no sub-clause defined in SQL:2011
standard for that purpose. However, the SQL Server team has introduced the extension
(sub-clause) ALL to simplify such queries.

Here is a temporal query that returns both actual and historical data for the person with the
ID 7:

SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People FOR SYSTEM_TIME ALL
WHERE PersonID = 7;

The query returns 14 rows, since there are 13 historical rows and one entry in the current
table. Here is the logically equivalent, standard query but it's a bit more complex:

SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People
WHERE PersonID = 7
UNION ALL
SELECT PersonID, FullName, OtherLanguages, ValidFrom, ValidTo
FROM Application.People_Archive
WHERE PersonID = 7;

The only purpose of this sub-clause is to simplify queries against temporal tables. New
extensions for querying temporal tables do not bring performance benefits, but they
significantly simplify queries against them.

Temporal Tables

[268]

Performance and storage considerations with
temporal tables
Introducing temporal tables and especially adding this functionality to existing tables can
significantly increase the storage used for data in your system. Since there is no out-of-the-
box solution for managing the retention of history tables, if you don't do something, data
will remain there forever. This can be painful in terms of storage costs, maintenance, and
the performance of queries on temporal tables, especially if rows in your current tables are
heavily updated.

History data retention
Unfortunately, you cannot configure a history table to automatically remove data according
to a user-defined retention policy. That means that you have to implement data retention
manually. This is not very complicated, but it is not a trivial action. I had expected it as a
part of the implementation and will be disappointed if it is not delivered in the next SQL
Server version. As mentioned, you can use some other SQL Server features to implement
data retention for history tables:

Stretch databases allows you to move an entire part of historical data
transparently to Azure.
Partitioning of history tables allows you to easily truncate the oldest historical
data by implementing a sliding window approach.
Custom Cleanup doesn't require any other features. You use Transact-SQL
scripts to convert a temporal table to non-temporal, delete old data, and convert
the table back to a temporal table.

More details about data retention can be found in Books Online at the
following address: h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /m t

637341. a s p x .

Temporal Tables

[269]

History table physical implementation
You saw in one of the previous sections that you can create your own history table and
associate it with a current table or you can let SQL Server do it for you. When SQL Server
creates a history table, by default it creates a row stored clustered table with a clustered
index on period columns. If the current table does not contain data types that prevents the
usage of data compression, the table is created with PAGE compression. Is this OK? Well, it
depends on the use case. This approach is good, if dominant temporal queries are based on
date range that is, return a snapshot for all rows that were valid at the given point in time.
However, if your temporal queries usually look for historical records for individual items, a
clustered index on primary key columns followed by period columns would be a better
solution.

Finally, if you plan to process a lot of data in temporal queries or to aggregate them, the best
approach is to create your own history table with a clustered columnstore index and
eventual additional non-clustered normal B-tree indexes.

History table overhead
Converting a non-temporal table into a temporal table is very easy. With two ALTER TABLE
statements, you get the full temporal table functionality. However, this cannot be
completely free; adding a temporal feature to a table brings a performance overhead in data
modification operations. According to my measurements, a single update operation against
a row in a temporal table is about 30% slower than it would be when the table is non-
temporal. I performed a simple test where I updated a different number of rows in a table
before it was converted to a temporal table and after that. Figure 7.8 displays the results of
this test. For a small amount of rows (<1000) locking, calculating, and inserting data into the
history table slows down the update about two times. Updating 50,000 rows in a temporal
table takes about 8 times longer than the same operation against the same table when it is
implemented as a non-temporal table.

Temporal Tables

[270]

Figure 7 8 Temporal table updates overhead

Finally, massive updates (>100K rows) are 10 times slower for temporal tables compared to
those against their non-temporal counterparts.

Temporal tables with memory-optimized tables
System-versioned temporal tables are also supported for memory-optimized tables. You can
assign or let SQL Server create a history table for your memory-optimized table. The history
table must be a disk table, but this is exactly what you want: frequently used (hot) data
remains in memory, while cold data can reside in disk tables. By taking this approach, you
can use all the benefits provided by memory-optimized tables (high transactional
throughput, lock-free concurrency) and save their historical data on disk-based tables and
leave memory for active datasets only.

Temporal Tables

[271]

Figure 7.9 shows the architecture of system-versioned memory-optimized tables. It is taken
from the Books Online page at h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /m t 590207. a

s p x .

Figure 7 9 System-Versioned Temporal Tables with Memory-Optimized Tables Architecture

As you can see, system-versioned temporal tables are implemented with three tables:

Current table is a memory-optimized table and all native compiled operations
are supported
Recent history table is an internal memory-optimized table that handles changes
in the current table synchronously and enables DMLs to be executed from
natively compiled code
History table is a disk table that contains changes in the current table and
manages them asynchronously

Temporal Tables

[272]

Historical data is a union of data in the recent history and history tables. A history row is
either in the staging memory table or in the disk table: it cannot be in both tables. The
following code example creates a new memory-optimized temporal table:

USE WideWorldImporters;
CREATE TABLE dbo.Product
(
 ProductId INT NOT NULL PRIMARY KEY NONCLUSTERED,
 ProductName NVARCHAR(50) NOT NULL,
 Price MONEY NOT NULL,
 ValidFrom DATETIME2 GENERATED ALWAYS AS ROW START HIDDEN NOT NULL,
 ValidTo DATETIME2 GENERATED ALWAYS AS ROW END HIDDEN NOT NULL,
 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)
)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA,
SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.ProductHistory));

After the execution of this query, you can see that one memory-optimized table is:

SELECT CONCAT(SCHEMA_NAME(schema_id),'.', name) AS table_name,
is_memory_optimized, temporal_type_desc FROM sys.tables WHERE name IN
('Product',
 'ProductHistory');

The result of the preceding query is as follows:

table_name is_memory_optimized temporal_type_desc
----------------- ------------------- ------------------------------
dbo.Product 1 SYSTEM_VERSIONED_TEMPORAL_TABLE
dbo.ProductHistory 0 HISTORY_TABLE

As mentioned earlier, SQL Server creates a third table automatically: an internal memory-
optimized table. Here is the code that you can use to find its name and properties:

SELECT CONCAT(SCHEMA_NAME(schema_id),'.', name) AS table_name,
internal_type_desc FROM sys.internal_tables WHERE name =
CONCAT('memory_optimized_history_table_', OBJECT_ID('dbo.Product'));

And here is its output:

Temporal Tables

[273]

Only durable, memory-optimized tables can be system-versioned temporal tables and
history tables must be disk-based. Since all current rows are in memory, you can use
natively compiled modules to access this data. Use the following code to create a native
compiled stored procedure that handles the inserting and updating of products:

CREATE OR ALTER PROCEDURE dbo.SaveProduct
(
@ProductId INT,
@ProductName NVARCHAR(50),
@Price MONEY
)
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS
 BEGIN ATOMIC WITH
 (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English')
 UPDATE dbo.Product SET ProductName = @ProductName, Price = @Price
 WHERE ProductId = @ProductId
 IF @@ROWCOUNT = 0
 INSERT INTO dbo.Product(ProductId,ProductName,Price) VALUES
(@ProductId, @ProductName, @Price);
END
GO

Now you can, for instance, add two rows and update one of them by using the above
procedure:

EXEC dbo.SaveProduct 1, N'Home Jersey Benfica', 89.95;
EXEC dbo.SaveProduct 2, N'Away Jersey Juventus', 89.95;
EXEC dbo.SaveProduct 1, N'Home Jersey Benfica', 79.95;

Under the hood, everything works perfectly: both the current and history tables are
updated. Here are the resulting datasets:

Note that values in the column ValidFrom and ValidTo are shortened to fit in a single line.

Temporal Tables

[274]

The querying of historical data is effectively under the SNAPSHOT isolation level and always
returns a union between the in-memory staging buffer and the disk based table without
duplicates. Since temporal queries (queries that use the FOR SYSTEM_TIME clause) are
touching memory-optimized and disk tables, they can be used only in the interop mode; it
is not possible to use them in native compiled procedures.

Data from the internal memory-optimized staging table is regularly moved to the disk-
based history table by the asynchronous data flush task. This data flush mechanism has the
goal of keeping the internal memory buffers at less than 10% of the memory consumption of
their parent objects.

When you add system-versioning to an existing non-temporal table, expect a performance
impact on update and delete operations because history table is updated automatically.
Every update and delete is recorded into the internal memory-optimized history table, so
you may experience unexpected memory consumption if your workload uses those two
operations massively.

What is missing in SQL Server 2016?
SQL Server 2016 is the first SQL Server version that has some built-in support for temporal
data. However, the support is still quite basic. SQL Server 2016 supports system-versioned
tables only. You saw at the beginning of this chapter that application-versioned tables, and
of course bitemporal tables, add much more to the complexity of temporal problems.
Unfortunately, in order to deal with application validity times, you need to develop your
own solution, including your own implementation of all the constraints you need to enforce
data integrity. In addition, you need to deal with the optimization of temporal queries by
yourself as well.

It would also be nice if you were able to define the retention period for the historical rows,
like you can define for the Query Store. Currently, you have to do the history data cleanup
by yourself.

If you are familiar with analytical applications and data warehouses, you might think that
system-versioned temporal tables could help you in analytical scenarios. However, as you
will learn in the next section, which briefly introduces data warehouses and slowly
changing dimension problems, analytical applications typically have different granularity
requests and system-versioned temporal tables don't help here.

Temporal Tables

[275]

SQL Server 2016 temporal tables and data
warehouses
For analytical purposes, data warehouses (DW) evolved. Data warehouses support
historical data. You should not confuse data warehouse (historical) data with temporal data,
the subject of this chapter. In a data warehouse, historical data just means archived non-
temporal data from the past; a typical data warehouse holds from 5 to 10 years of data for
analytical purposes. Data warehouses are not suitable for business applications because a
data warehouse typically has no constraints.

Data warehouses have a simplified data model that consists of multiple star schemas. You
can see a typical star schema in the following screenshot:

Figure 7 10 Star schema

Temporal Tables

[276]

One schema covers one business area. It consists of a single central table, called the fact
table, and multiple surrounding tables, called dimensions. The fact table is always on the
many side in every single relationship. The star schema is deliberately denormalized. The
fact table includes measures, while dimensions give context to those measures. Shared
dimensions connect star schemas in a data warehouse.

Dimensions can change over time. The pace of changes is usually slow compared to the
pace of changes in fact tables. Transactional systems show the current state only, and don't
preserve the history. In a DW, you might need to preserve the history. This is known as the
slowly changing dimensions (SCD) problem. Type 1 solution means not preserving the
history in the DW by simply overwriting the values when the values in the sources change.
Type 2 means adding a new row for a change, and marking which row is the current. You
can also mix both types—for some attributes, like City in the example, you use type 2; while
for some, like Occupation, you use type 1. Note the additional problem—when you update
the Occupation attribute, you need to decide whether to update the current row only, or
also the historical rows (that come from the type 2 changes). You can see these possibilities
in the following figure:

Figure 7 11 Slowly changing dimension

Temporal Tables

[277]

At first glimpse, SQL Server system-versioned tables might be the solution for the SCD
problem when using the type 2 implementation. However, this is typically not true. In a
data warehouse, more often than not, you need to implement a mixed solution, type 1 for
some attributes and type 2 for others. The granularity of the time points in system-
versioned tables is one hundred nanoseconds; in a data warehouse, typical granularity is
one day. In the source system, the same entity, such as customer, can be updated multiple
times per day. You can have multiple historical rows for the same entity in a single day.
Therefore, when transferring the data from a transactional database to a data warehouse,
you need to take care to transfer the last state for each day. The following query illustrates
the problem:

USE WideWorldImporters;
SELECT PersonID, FullName,
 ValidFrom, ValidTo
FROM Application.People
 FOR SYSTEM_TIME ALL
WHERE IsEmployee = 1
 AND PersonID = 14;

In the WideWorldImporters database, the Application.People is a system-versioned
table. The previous query returns all rows for an employee called Lily Code. Here is the
abbreviated result:

You can see that this person has multiple rows for a single date. For example, there are two
rows for Lily where the ValidTo date (just the date part) equals to 2013-01-01. You need
to select only the last row per employee per day. This is done by the following query. You
can run it and check the results.

WITH PersonCTE AS
(
SELECT PersonID, FullName,
 CAST(ValidFrom AS DATE) AS ValidFrom,
 CAST(ValidTo AS DATE) AS ValidTo,
 ROW_NUMBER() OVER(PARTITION BY PersonID, CAST(ValidFrom AS Date)
 ORDER BY ValidFrom DESC) AS rn
FROM Application.People
 FOR SYSTEM_TIME ALL
WHERE IsEmployee = 1
)

Temporal Tables

[278]

SELECT PersonID, FullName,
 ValidFrom, ValidTo
FROM PersonCTE
WHERE rn = 1;

Summary
SQL Server 2016 system-versioned temporal tables are a very nice feature you can start
using immediately, without changes to applications. You can use them for auditing all
changes in specific tables. You can retrieve the state of those tables at any point in time in
history. You can find all states and changes in a specific period. SQL Server automatically
updates the period in the current row and inserts the old version of the row in the history
table as soon as you update the current row.

Nevertheless, there is still a lot to do in future versions of SQL Server. We still need better
support for application validity times, including support for constraints and the
optimization of temporal queries.

8
Tightening the Security

Developers like to forget about security and simply leave the security issues to the database
administrators. However, it is much harder for a DBA to tighten the security for a database
where developers did not plan and design for security. To secure your data, you must
understand the potential threats as well as the security mechanisms provided by SQL
Server and the other components your application is using, including the operating system
and programming language.

When talking about securing SQL Server, we are actually talking about defending data
access to the database platform and guaranteeing the integrity of that access. In addition,
you have to protect all SQL Server components included in your solution. Remember that
your system is only as secure as the least secure component. As a defender, you have to
close all holes, while an attacker only has to find a single hole. However, dealing with all
aspects of security would be out of the scope of this chapter. Therefore, this chapter will
cover only the most important security features of the SQL Server Database Engine, and
introduce the three new SQL Server 2016 security features.

With Always Encrypted, SQL Server 2016 finally enables full data encryption, so that no
tools or persons, regardless of their database and server permissions, can read encrypted
data except the client application with an appropriate key. Row-level security, on the other
hand, restricts which data in a table can be seen by a specific user. This is very useful in
multi-tenant environments where you usually want to avoid a data-reading intersection
between different customers. Dynamic data masking is a soft feature that limits sensitive
data exposure by masking it to non-privileged users.

Tightening the Security

[280]

This chapter will cover the following points:

SQL Server security basics
Data encryption
Row-level security
Dynamic data masking

SQL Server security basics
The structure of secure systems generally consists of three parts: authentication,
authorization, and enforcement of rules. Authentication is the process of checking the
identity of a principal by examining the credentials and validating those credentials against
some authority. Authorization is the process of determining whether a principal is allowed
to perform a requested action. Authorization occurs after authentication, and uses
information about the principal's identity and roles to determine what resources the
principal can access. The enforcement of rules provides the mechanism to block direct
access to resources. Blocking access is essential to securing any system. The following figure
shows the structure of a secure system:

Structure of secure systems

Tightening the Security

[281]

You will learn how SQL Server implements the logic of a secure system, including:

Principals
Securables
Schemas
Object permissions
Statement permissions

Defining principals and securables
SQL Server supports two authentication modes: Windows mode and mixed mode. In
Windows mode, when a user connects through a Windows user account, SQL Server
validates the account name and password by using information from the operating system.
In mixed mode, in addition to the Windows authentication, a user can provide a SQL login
and password to connect to SQL Server. SQL Server can use and enforce the Windows
password policy mechanisms.

SQL Server defines two fundamental terms for security: principals and securables.
Principals are entities that can request SQL Server resources. They are arranged in a
hierarchy in the principal's scope: you can have Windows, server, and database-level
principals. A principal can be a Windows domain login, a Windows local login, a Windows
group, a SQL Server login, a server role, a database user, a database role, or an application
role in a database. In addition to having regular users, you can create a SQL Server login or
a database user from a certificate or an asymmetric key.

Securables are the resources you are protecting. Some securables can be contained within
others in nested hierarchies (scopes). You can secure a complete scope, and the objects in
the scope inherit permissions from the upper level of the hierarchy. The securable scopes
are server, database, and schema.

Tightening the Security

[282]

After authentication, in the authorization phase, SQL Server checks whether a principal has
appropriate permissions to use the securables. The following figure shows the most
important principals, securables, and permissions in SQL Server, including the level where
they are defined.

Principals, securables, and permissions

You manage principals with data definition language (DDL) statements. You maintain
permissions with data control language (DCL) statements. You create a principal as you do
any other objects—by using the CREATE statement. You modify them by using the ALTER
statement and delete them by using the DROP statement.

Tightening the Security

[283]

You can create SQL Server logins, which are security principals, or you can create logins
from different sources, such as from Windows, certificates, or asymmetric keys. When you
create SQL Server logins, you can specify that you want to bypass the password expiration
and account policies. However, these policies help to secure your system, for example,
preventing brute-force password attacks, and therefore this option is not recommended.

Database users are still part of the authentication. SQL Server supports two models:
traditional login and user model and contained database user model.

In the traditional model, a login is created in the master database and then
mapped to a user in some other database. The end user connects to SQL Server
with a login, and, through the mapping to one or more databases, the user gets
access to the database(s).
In the contained model, a database user is either mapped to a Windows user
directly or one is created with a password. The end user connects to a single
database directly, without having a login in the master database.

The following code shows how to create an SQL Server login with a weak password. If you
execute this code, you get an error because the password does not meet Window's
password policy requirements.

USE master;
CREATE LOGIN LoginA WITH password='LoginA';
GO

However, the following code succeeds. It creates an SQL Server login with a weak
password, this time bypassing the Windows password policy, and creates a login from a
built-in Windows group.

CREATE LOGIN LoginA WITH password='LoginA',
CHECK_POLICY=OFF;
CREATE LOGIN [BuiltinPower Users] FROM WINDOWS;

Bypassing password expiration and complexity policies is definitely not recommended. The
SQL Server login just created is now very prone to brute-force attacks. You can check the
sys.sql_logins catalog view to see which SQL logins do not enforce the policies
mentioned, as the following code shows:

SELECT name,
type_desc,
is_disabled,
is_policy_checked,
is_expiration_checked
FROM sys.sql_logins
WHERE name LIKE 'L%';

Tightening the Security

[284]

The result shows the login that was just created:

name type_desc is_disabled is_policy_checked is_expiration_checked
------ ------------ ------------ -------------------
LoginA SQL_LOGIN 0 0 0

In SQL Server, you have some special principals. On the server level, you have the sa SQL
Server login, which is created when you install SQL Server. The default database for this
login is master. This login has all permissions on the server and you cannot revoke any
permissions from this login. You should protect the sa login with a strong password. If you
use Windows authentication only, this login cannot be used to connect to SQL Server.

In every database, you get the public fixed role and the guest user account. You cannot drop
them. You can only disable the guest user account. Any login without a directly mapped
user in a database can access the database through the guest account. Application roles can
also use this account to access the data in databases other than the database in the context
for which they were invoked. Before you give any permission to the guest user account,
make sure you consider all the ramifications. Every database user and every database role is
a member of the public role. Therefore, any user or role—including an application
role—inherits all permissions given to the public role. You should be careful when giving
any permission to the public role; the best practice is to never give any permission to it.

The privileged database user dbo still exists in SQL Server. This user is a member of the
db_owner role and, therefore, has all permissions on the database. You cannot drop dbo
from the db_owner role.

Every database includes two additional principals: INFORMATION_SCHEMA and sys. You
cannot drop these principals because SQL Server needs them. They serve like schemas
(namespaces) for ANSI-standard information schema views and for SQL Server catalog
views. Finally, SQL Server provides some special logins based on certificates, where their
name starts and ends with two hash characters, such as ##MS_dqs_db_owner_login##.
These logins are for SQL Server internal use only.

The principals are securables by themselves. You can control who can modify logins via
membership in the sysadmin and securityadmin server-level roles, and the ALTER ANY
LOGIN server-level permission. You can control who can modify database users and roles
by memberships in the db_owner and db_securityadmin roles, and the ALTER ANY USER
and ALTER ANY ROLE permissions.

In SQL Server, the metadata of the objects is not visible to the public role (that is, everyone)
by default. You can control the metadata visibility by using two permissions: VIEW ANY
DATABASE and VIEW DEFINITION.

Tightening the Security

[285]

The VIEW ANY DATABASE permission is granted to the public role by default, so all logins
can still see the list of all databases on an SQL Server instance unless you revoke this
permission from the public role. You can check this server-level permission by querying the
sys.server_permissions catalog view:

SELECT pr.name,
pe.state_desc,
pe.permission_name
FROM sys.server_principals AS pr
INNER JOIN sys.server_permissions AS pe
ON pr.principal_id = pe.grantee_principal_id
WHERE permission_name = 'VIEW ANY DATABASE';

The result of this query is as follows:

 name state_desc permission_name
 ------ ---------- -----------------
 public GRANT VIEW ANY DATABASE

The VIEW DEFINITION permission lets a user see the definition of the securable for which
this permission is granted. However, this permission does not give the user access to the
securable; you have to give other permissions to the user if the user must work with
database objects. If the user has any other permission on an object, the user can see the
metadata of the object as well.

Managing schemas
The complete name of a relational database management system (RDBMS) object consists of
four parts. In SQL Server, the complete name form is server.database.schema.object.
Objects also have owners, and owners are database users and roles. However, the owners
are hidden; you typically never refer to an object owner in the code that deals with data,
while you intensively use the schemas. Schemas are more than just namespaces for
database objects; they are securables as well. Instead of giving permissions to specific
database objects, a DBA can give users permissions to schemas. For example, granting the
Execute permission to schema Sales gives the grantees the Execute permission on all objects
in this schema for which this permission makes sense, such as stored procedures and
functions. Therefore, you should plan your schemas carefully.

When you refer to database objects in your code, you should always use a two-part name,
in form schema.object. You don't want to use more than two parts because you don't want
to make your application dependent on a specific server or database name. However,
because of the way SQL Server does the name resolution, you should not use a single-part
name either.

Tightening the Security

[286]

In SQL Server, every user has a default schema. You can specify the default schema for a
user when you create the user. You can change the default schema of a user at any later
time. If you do not specify an explicit default schema for a user, the default schema is dbo.
This schema exists in all SQL Server databases and is owned by the dbo user. Thus, SQL
Server first checks for a partially specified object name if the object exists in the user's
default schema and then checks the dbo schema. To fully understand this behavior, work
through the following code; note that this code assumes you are working in the dbo
database user context because it uses the EXECUTE AS command to impersonate a database
user and you must have the correct permission to use this command.

The first part of the code creates a demo database and another login called LoginB. Note
that the login called LoginA should already exist at this point:

USE master;
IF DB_ID(N'SQLDevGuideDemoDb') IS NULL
CREATE DATABASE SQLDevGuideDemoDb;
CREATE LOGIN LoginB WITH password='LB_ComplexPassword';
GO

The next part of the code creates a new schema called Sales in the SQLDevGuideDemoDb
demo database, and then two tables with the same name and structure, one in the dbo
schema and one in the new Sales schema:

USE SQLDevGuideDemoDb;
GO
CREATE SCHEMA Sales;
GO
CREATE TABLE dbo.Table1
(id INT, tableContainer CHAR(5));
CREATE TABLE Sales.Table1
(id INT, tableContainer CHAR(5));
GO

The following two insert statements insert one row into each table. The value of the
character column shows the name of the table schema:

INSERT INTO dbo.Table1(id, tableContainer)
VALUES(1,'dbo');
INSERT INTO Sales.Table1(id, tableContainer)
VALUES(1,'Sales');
GO

Tightening the Security

[287]

The next part of the code creates two database users, one for LoginA and one for LoginB,
with the same name as their respective login name. Note that the default schema for user
LoginA is dbo, while for LoginB it is Sales. Both users are also granted the permission to
select the data from both demo tables:

CREATE USER LoginA FOR LOGIN LoginA;
GO
CREATE USER LoginB FOR LOGIN LoginB
 WITH DEFAULT_SCHEMA = Sales;
GO
GRANT SELECT ON dbo.Table1 TO LoginA;
GRANT SELECT ON Sales.Table1 TO LoginA;
GRANT SELECT ON dbo.Table1 TO LoginB;
GRANT SELECT ON Sales.Table1 TO LoginB;
GO

Next, you impersonate LoginA. In a query, you refer to the table you are reading with a
single-part name only (that is, with table name only):

EXECUTE AS USER='LoginA';
SELECT USER_NAME() AS WhoAmI,
id,
tableContainer
FROM Table1;
REVERT;
GO

Here are the results:

 WhoAmI id tableContainer
 ------ -- --------------
 LoginA 1 dbo

You can see that you read from the dbo.Table1 table. Repeat the same thing for the
database user LoginB:

EXECUTE AS USER='LoginB';
SELECT USER_NAME() AS WhoAmI,
id,
tableContainer
FROM Table1;
REVERT;
GO

Tightening the Security

[288]

This time the results show that you read the data from the Sale.Table1 table:

 WhoAmI id tableContainer
 ------ -- --------------
 LoginB 1 Sales

Now you drop the Sales.Table1 table. Then you impersonate the user LoginB again, and
read from the table using the table name only:

DROP TABLE Sales.table1;
GO
EXECUTE AS USER='LoginB';
SELECT USER_NAME() AS WhoAmI,
id,
tableContainer
FROM Table1;
REVERT;
GO

Here are the results:

 WhoAmI id tableContainer
 ------ -- --------------
 LoginA 1 dbo

After gaining the knowledge of how schemas work, you should be able to understand the
following guidelines for managing schemas:

You should group objects in schemas based on application-access requirements.
Classify applications by access requirements and then create appropriate
schemas. For example, if an application module deals with sales data, create a
Sales schema to serve as a container for all database objects that pertain to sales.
Typically, you can map end users to application modules. You should specify
appropriate default schemas for database users and roles. For example, you
should specify Sales as the default schema for users in the sales department.
Because SQL Server uses a permissions hierarchy, you can manage permissions
efficiently if you set up appropriate schemas. For example, you can give
permissions on data to sales-department users quickly by giving them
appropriate permissions on the Sales schema. Later, you can define exceptions
by denying permissions to some users on the objects contained in the Sales
schema.

Tightening the Security

[289]

You should use either the dbo user or database roles as the owners of schemas
and objects. This way, you can drop a database user without worrying about
orphaned objects.

Although you set appropriate default schemas for users, you should still always
refer to database objects by using two-part names. With this strategy, you can
avoid confusion in your application if the default schema for a user changes, or if
an object from the user's default schema is dropped and an object with the same
name exists in the dbo schema (as you saw in the code example).
You can use schemas to control development environments as well. You can
identify different developer groups based on application requirements and then
map those groups to schemas.
In SQL Server, you can control permissions on schemas and objects with a lot of
precision. For example, giving developers permission to create objects does not
imply that they can create objects in all schemas. On the contrary, the developers
must have an ALTER or CONTROL schema permission on every schema they want
to modify by creating, altering, or dropping objects contained in that schema.
You can move objects between schemas by using the ALTER SCHEMA command.
Your documentation should include schema information.

Object and statement permissions
All the demo code so far has supposed that you are authorized inside a database as the dbo
user. This user has all possible permissions inside a database. However, in real life, it might
be necessary for other users to create and modify objects. These users could be developers
or other database administrators. To modify objects, they need statement permissions.
Statement permissions are on the server, database, schema, or at object level, depending on
which level you work at. In addition, end users must use objects, and thus need object
permissions. Object permissions depend on the type of the object you are working with.

The statement permissions include permissions to use any Data Definition Language
(DDL) statements (that is, to create, alter, and drop objects). The object permissions include
permissions to use the objects (that is, to use the Data Modification Language (DML)
statements). However, the two permissions' classes slightly overlap, and you can treat a
couple of permissions as both statement and object permissions.

Tightening the Security

[290]

You control permissions by using the Data Control Language (DCL) elements: the GRANT,
REVOKE, and DENY statements. You already know that without explicitly granted
permission, a user cannot use an object. You give the permissions by using the GRANT
statement. You explicitly prohibit the usage of an object by using the DENY statement. You
clear an explicit GRANT or an explicit DENY permission by using the REVOKE statement. You
might wonder why you need an explicit DENY statement when, without an explicit GRANT, a
user cannot use an object. The DENY statement exists because all grants are cumulative. For
example, if a user gets a GRANT permission to select from table1 and the role that the user is
a member of is granted permission to select from table2, the user can select from both tables.
If you want to be sure that the user can never select from table2, you should deny the select
permission from table2 to this user. A DENY for an ordinary user always supersedes all
GRANTs.

You cannot grant, deny, or revoke permissions to or from special roles at the server or
database level. For example, you cannot deny anything inside a database to the db_owner
role. You cannot grant, deny, or revoke permissions to special logins and database users
(that is, to sa, dbo, INFORMATION_SCHEMA, and sys). Finally, you cannot grant, deny, or
revoke permissions to yourself.

Statement permissions let users create and alter objects, or back up a database and
transaction log. Permissions granted on a higher level include implicit permissions on a
lower level. For example, permissions granted at the schema level are implicitly granted on
all objects in the schema. In addition, there is a hierarchy between permissions on the same
level; some are stronger and implicitly include weaker permissions. The CONTROL
permission is the strongest. For example, the CONTROL permission on the database level
implies all other permissions on the same database. Therefore, you have two different kinds
of hierarchy: hierarchy between securables and hierarchy between permissions. You can
treat high-level permissions as covering the more detailed, low-level permissions that they
imply. For example, if a user needs to alter an object, the user needs either the ALTER
OBJECT permission or any other higher permission, such as the ALTER ANY SCHEMA
permission.

The types of permissions depend on the types of database objects. You can get a list of
permissions applicable for an object or objects by using the
sys.fn_builtin_permissions system function. For example, you can check which
permissions are applicable for user-defined types, or check the objects for which the SELECT
permission is applicable, like the following two queries do:

SELECT * FROM sys.fn_builtin_permissions(N'TYPE');
SELECT * FROM sys.fn_builtin_permissions(DEFAULT)
WHERE permission_name = N'SELECT';
GO

Tightening the Security

[291]

In SQL Server, you can specify very detailed permissions. For example, you can specify that
a user can select or update only some columns of a table. Specifying permissions on such a
granular level means a lot of administrative work, and is nearly impossible to do in a
limited time with graphical tools such as SQL Server Management Studio. You should
rarely go that far.

You should specify permissions on the higher levels of the object
hierarchy, namely on the schema level, and then handle exceptions. If you
need column-level permissions, you should use programmable objects
such as views and stored procedures. You should keep permissions as
simple as possible.

The GRANT statement includes the WITH GRANT OPTION. This option indicates that the
principal to whom you grant permission on an object can grant this permission on the same
object to other principals.

The DENY statement comes with the CASCADE option. When you use this option with the
DENY statement, you indicate that the permission you are denying is also denied to other
principals to which it has been granted by this principal.

The REVOKE statement has the GRANT OPTION FOR and the CACSCADE options. GRANT
OPTION FOR means you are revoking permission to grant the same permission to other
principals (that is, you are revoking the WITH GRANT OPTION permission you gave to this
principal by using the GRANT statement). The CASCADE option means you are revoking
permission not just from the principal you mention in the statement but also from other
principals to which permission has been granted by this principal. Note that such a
cascading revocation revokes both the GRANT and DENY of that permission.

The following code shows how to use the object permissions. First, the code grants the
CONTROL permission on dbo.Table1 to LoginB. LoginB can read the table.

GRANT CONTROL ON dbo.Table1 TO LoginB;
GO
EXECUTE AS USER = 'LoginB';
SELECT *
FROM dbo.Table1;
REVERT;
GO

Tightening the Security

[292]

Next, you deny the SELECT permission on dbo.Table1 to LoginB. Note that LoginB still
has the CONTROL permission on this table, so this user can insert into the table.

DENY SELECT ON dbo.Table1 TO LoginB;
GO
EXECUTE AS USER = 'LoginB';
INSERT INTO dbo.Table1(id, tableContainer)
VALUES (2, 'dbo');
REVERT;
GO

However, you denied the SELECT permission to LoginB. An explicit DENY for an ordinary
user always supersedes all explicit GRANT. Therefore, the following code produces an error,
stating that the SELECT permission is denied:

EXECUTE AS USER = 'LoginB';
SELECT *
FROM dbo.Table1;
REVERT;
GO

Finally, security would not worth much if a user could change their own settings. The
following code impersonates LoginB and tries to change the permissions to the same
database user:

EXECUTE AS USER = 'LoginB';
REVOKE SELECT ON dbo.Table1 FROM LoginB;
REVERT;
GO

Of course, the previous code produced an error. However, you as the dbo database users,
can change the permissions for the user LoginB, and therefore the following code succeeds:

REVOKE SELECT ON dbo.Table1 FROM LoginB;
GO

Encrypting the data
If you need to store confidential data in your database, you can use data encryption. SQL
Server supports encryption with symmetric keys, asymmetric keys, certificates, and
password phrases. Let's first have a theoretical look at each of these encryption techniques.

Tightening the Security

[293]

When you use symmetric key encryption, the party that encrypts the data shares the same
key with the party that decrypts the data. Because the same key is used for encryption and
decryption, this is called symmetric key encryption. This encryption is very fast. However,
if an unauthorized party somehow acquires the key, that party can decrypt the data.
Protecting symmetric keys is a challenge. The symmetric key must remain secret.
Symmetric encryption is also called secret key encryption.

In asymmetric key encryption, you use two different keys that are mathematically linked.
You must keep one key secret and prevent unauthorized access to it; this is the private key.
You make the other key public to anyone; this is the public key. If you encrypt the data
with the public key, you can decrypt the data with the private key; if you encrypt the data
with the private key, you can decrypt it with the public key. Asymmetric encryption is very
strong; however, it is much slower than symmetric encryption. Asymmetric encryption is
useful for digital signatures. A developer applies a hash algorithm to the code to create a
message digest, which is a compact and unique representation of data. Then the developer
encrypts the digest with the private key. Anybody with a public key from the same pair can
decrypt the digest and use the same hash algorithm to calculate the digest from the code
again. If the re-calculated and decrypted digests match, you can identify who created the
code.

A certificate is a digitally signed statement that binds the value of a public key to the
identity of the person, device, or service that holds the corresponding private key. It
identifies the owner of the public/private keys. You can use certificates for authentication. A
certificate can be issued by a trusted authority or by SQL Server. You can create a certificate
from a file (if the certificate was issued by a trusted authority) or a digitally signed
executable file (assembly), or you can create a self-signed certificate in SQL Server directly.
You can use certificates to encrypt the data; of course, this way you are actually using
asymmetric encryption.

You should use symmetric keys to encrypt the data because secret key encryption is much
faster than public-key encryption. You can then use asymmetric encryption to protect
symmetric keys and use certificates for authentication. You combine certificates and keys to
encrypt data in the following manner:

The server sends a certificate and public key to a client. The certificate identifies1.
the server to the client.
The client creates two symmetric keys. The client encrypts one symmetric key2.
with the public key and sends it to the server.
The server's private key can decrypt the symmetric key. The server and client3.
encrypt and decrypt data with symmetric keys.

Tightening the Security

[294]

When encrypting data, you should consider all possible surface areas for an attack. For
example, if you encrypt the data in SQL Server, but send clear text over the network, an
attacker could use a network monitor to intercept the clear text. You should use on-the-wire
encryption, such as Internet Protocol Security (IPSec), a framework of open source
standards for network security, or Secure Sockets Layer / Transport Layer Security
(SSL/TLS), which are protocols based on public key cryptography. An attacker can even
sniff client computer memory to retrieve clear text. Therefore, you should use .NET
encryption in client applications in addition to or instead of server encryption.

Consider the following trade-offs when you design a solution that uses data encryption:

Encrypted data is typically stored in a binary data type column; space is not
allocated according to the original data type like it is with unencrypted data. This
means you need to change your database schema to support data encryption.
Sorting encrypted data is different from sorting unencrypted data and, of course,
makes no sense from a business point of view.
Similarly, indexing and filtering operations on encrypted data are useless from a
business point of view.
You might need to change applications to support data encryption.
Encryption is a processor-intensive process.
Longer keys mean stronger encryption. However, the stronger the encryption, the
higher the consumption of CPU resources.
When the length of the keys is the same, then asymmetric encryption is weaker
than symmetric encryption. However, asymmetric key encryption is slower than
symmetric encription.
Although you probably already know this, it is still worth mentioning that long
and complex passwords are stronger than short and simple ones.

Instead of storing all keys in SQL Server, you can also use an external cryptographic
provider to store the asymmetric keys used to encrypt and decrypt the symmetric keys
stored in SQL Server, or to store both asymmetric and symmetric keys outside SQL Server.
This is called Extensible Key Management (EKM). For example, you can use the Azure
Key Vault service as the external cryptographic provider.

Tightening the Security

[295]

As already mentioned, you can protect symmetric keys with asymmetric keys or certificates.
In addition, you can protect them with passwords or even other symmetric keys. You can
protect certificates and asymmetric keys stored in SQL Server with the Database Master
Key (DMK) and passwords. You protect the DMK when you create it with the Service
Master Key (SMK) and password. The SMK is created by SQL Server Setup, and is
protected by the Windows system Data Protection Application Programming Interface
(DPAPI). This whole encryption hierarchy looks quite complex. The following figure shows
the encryption hierarchy in a condensed way. It shows all components and a couple of
possible paths to the encrypted data.

Encryption hierarchy

SQL Server supports many encryption algorithms. You can choose from DES, Triple DES,
TRIPLE_DES_3KEY, RC2, RC4, 128-bit RC4, DESX, 128-bit AES, 192-bit AES, and 256-bit
AES. However, from SQL Server 2016 onwards, you should use only the AES_128,
AES_192, and AES_256 algorithms; all other algorithms have been deprecated.

You don't need to encrypt all of the data all of the time. SQL Server provides many
encryption options, and you should choose the one that suits you the best. In addition, you
should also consider encrypting and decrypting the data in the client application. In this
section, you will learn about the different encryption options in SQL Server, including the
strengths and weaknesses of each option. These options include:

Backup encryption
Column-level encryption
Transparent data encryption
Always encrypted

Tightening the Security

[296]

Leveraging SQL Server data encryption options
SQL Server encryption options start with backup encryption. This encryption was
introduced in version 2014. You can encrypt the data while creating a backup. You need to
specify an encryptor, which can be either a certificate or an asymmetric key, and define
which algorithm to use for the encryption. The supported algorithms are AES_128,
AES_192, AES_256, and Triple DES. Of course, you also need to back up the encryptor, and
store it in a different, probably even off-site, location from the backup files. Without the
encryptor, you can't restore an encrypted backup. You can also use EKM providers for
storing your encryptor safely outside SQL Server. Actually, if you are using an asymmetric
key as an encryptor instead of a certificate, then this key must reside in an EKM provider.

The restore process of an encrypted backup is completely transparent. You don't need to
specify any particular encryption options. However, the encryptor must be available on the
instance of SQL Server you are restoring to. In addition to the regular restore permissions,
you also need to have at least the VIEW DEFINITION permission on the encryptor.

In the following code, showing the start of the backup encryption process, first a master
database DMK is created. This key is used to protect a self-issued certificate, also created in
the master database.

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
CREATE CERTIFICATE DemoBackupEncryptCert
WITH SUBJECT = 'SQLDevGuideDemoDb Backup Certificate';
GO

The master DMK is encrypted using the SMK created during the setup. You can check both
keys with the following query:

SELECT name, key_length, algorithm_desc
FROM sys.symmetric_keys;

The query returns the following result set:

 Name key_length algorithm_desc
 ------------------------ ----------- --------------
 ##MS_DatabaseMasterKey## 256 AES_256
 ##MS_ServiceMasterKey## 256 AES_256

For a test, the following code creates an unencrypted backup in the C:SQL2016DevGuide
folder, which should be created in advance:

BACKUP DATABASE SQLDevGuideDemoDb
TO DISK = N'C:SQL2016DevGuideSQLDevGuideDemoDb_Backup.bak'
WITH INIT;

Tightening the Security

[297]

Next, you can create an encrypted backup:

BACKUP DATABASE SQLDevGuideDemoDb
TO DISK = N'C:SQL2016DevGuideSQLDevGuideDemoDb_BackupEncrypted.bak'
WITH INIT,
ENCRYPTION
 (
 ALGORITHM = AES_256,
 SERVER CERTIFICATE = DemoBackupEncryptCert
);

Note that this time you get a warning telling you that the certificate used for encrypting the
database encryption key has not been backed up. Therefore, you should back up the
certificate used for the backup encryption, and, in addition, the master DMK used to protect
the certificate and the SQL Server SMK used to protect the master DMK, as the following
code shows:

-- Backup SMK
BACKUP SERVICE MASTER KEY
 TO FILE = N'C:SQL2016DevGuideSMK.key'
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
-- Backup master DMK
BACKUP MASTER KEY
 TO FILE = N'C:SQL2016DevGuidemasterDMK.key'
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
-- Backup certificate
BACKUP CERTIFICATE DemoBackupEncryptCert
 TO FILE = N'C:SQL2016DevGuideDemoBackupEncryptCert.cer'
 WITH PRIVATE KEY
 (
 FILE = N'C:SQL2016DevGuideDemoBackupEncryptCert.key',
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd'
);
GO

Now you are ready to simulate a failure. Drop the demo database, the certificate used for
the encryption, and the master DMK:

DROP DATABASE SQLDevGuideDemoDb;
DROP CERTIFICATE DemoBackupEncryptCert;
DROP MASTER KEY;

Try to restore the encrypted backup. You should get error 33111, telling you that SQL
Server cannot find server certificate.

RESTORE DATABASE SQLDevGuideDemoDb
FROM DISK = N'C:SQL2016DevGuideSQLDevGuideDemoDb_BackupEncrypted.bak'
WITH FILE = 1;

Tightening the Security

[298]

You have to start the restore process by restoring the master DMK:

RESTORE MASTER KEY
FROM FILE = N'C:SQL2016DevGuidemasterDMK.key'
DECRYPTION BY PASSWORD = 'Pa$$w0rd'
ENCRYPTION BY PASSWORD = 'Pa$$w0rd';

Next, you open the master DMK and restore the certificate:

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'Pa$$w0rd';
CREATE CERTIFICATE DemoBackupEncryptCert
 FROM FILE = N'C:SQL2016DevGuideDemoBackupEncryptCert.cer'
 WITH PRIVATE KEY (FILE = N'C:SQL2016DevGuideDemoBackupEncryptCert.key',
 DECRYPTION BY PASSWORD = 'Pa$$w0rd');

Now you are ready to restore the encrypted backup. The following code should restore the
demo database successfully:

RESTORE DATABASE SQLDevGuideDemoDb
FROM DISK = N'C:SQL2016DevGuideSQLDevGuideDemoDb_BackupEncrypted.bak'
WITH FILE = 1, RECOVERY;

Finally, you can check which backups are encrypted by querying the
msdb.dbo.backupset table:

SELECT b.database_name,
 c.name,
 b.encryptor_type,
 b.encryptor_thumbprint
FROM sys.certificates AS c
 INNER JOIN msdb.dbo.backupset AS b
 ON c.thumbprint = b.encryptor_thumbprint;

Backup encryption encrypts backups only. It does not encrypt the data in the data files. You
can encrypt data in tables with T-SQL using column-level encryption. Column-level
encryption is present in SQL Server from version 2008 onwards. You encrypt the data in a
specific column by using a symmetric key. You protect the symmetric key with an
asymmetric key or a certificate. The keys and the certificate are stored inside your database
where the tables with the encrypted columns are. You protect the asymmetric key or the
certificate with the database master key. The following code, which created the DMK in the
demo database, issues an SQL Server certificate and then creates the symmetric key used for
the column encryption:

USE SQLDevGuideDemoDb;
-- Create the SQLDevGuideDemoDb database DMK
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
-- Create the column certificate in SQLDevGuideDemoDb

Tightening the Security

[299]

CREATE CERTIFICATE DemoColumnEncryptCert
 WITH SUBJECT = 'SQLDevGuideDemoDb Column Certificate';
-- Create the symmetric key
CREATE SYMMETRIC KEY DemoColumnEncryptSimKey
 WITH ALGORITHM = AES_256
 ENCRYPTION BY CERTIFICATE DemoColumnEncryptCert;
GO

Next, you can prepare an additional column to store the encrypted data. The dbo.Table1
should already exist from the demo code earlier in this chapter.

ALTER TABLE dbo.Table1
ADD tableContainer_Encrypted VARBINARY(128);
GO

Now you are ready to encrypt the data in the new column. You need to open the symmetric
key and decrypt it with the certificate used for the encryption. The following code opens the
symmetric key and then updates the new column in the table with the values from an
unencrypted column. The code uses the ENCRYPTBYKEY() T-SQL function to encrypt the
data with a symmetric key:

OPEN SYMMETRIC KEY DemoColumnEncryptSimKey
 DECRYPTION BY CERTIFICATE DemoColumnEncryptCert;
UPDATE dbo.Table1
SET tableContainer_Encrypted =
 ENCRYPTBYKEY(Key_GUID('DemoColumnEncryptSimKey'), tableContainer);
GO

You can check the data with the following query, which uses the DECRYPTBYKEY() T-SQL
function for the decryption:

OPEN SYMMETRIC KEY DemoColumnEncryptSimKey
 DECRYPTION BY CERTIFICATE DemoColumnEncryptCert;
-- All columns
SELECT id, tableContainer,
 tableContainer_Encrypted,
 CAST(DECRYPTBYKEY(tableContainer_Encrypted) AS CHAR(5))
 AS tableContainer_Decrypted
FROM dbo.Table1;
GO

Here are the results, with the encrypted value abbreviated for simpler reading:

Id tableContainer tableContainer_Encrypted tableContainer_Decrypted
----- -------------- ------------------------ ------------------------
1 dbo 0x003D10428AE86248A44F70 dbo
2 dbo 0x003D10428AE86248A44F70 dbo

Tightening the Security

[300]

You can use the following code to clean up your SQL Server instance. The code also deletes
the backups in the demo folder. You need to run SSMS as administrator and turn on the
SQLCMD mode in SSMS to successfully execute the clean-up code (go to Query menu and
select the SQLCMD mode option).

USE master;
!!del C:SQL2016DevGuideDemoBackupEncryptCert.cer
!!del C:SQL2016DevGuideDemoBackupEncryptCert.key
!!del C:SQL2016DevGuidemasterDMK.key
!!del C:SQL2016DevGuideSMK.key
!!del C:SQL2016DevGuideSQLDevGuideDemoDb_Backup.bak
!!del C:SQL2016DevGuideSQLDevGuideDemoDb_BackupEncrypted.bak
GO
IF DB_ID(N'SQLDevGuideDemoDb') IS NOT NULL
 DROP DATABASE SQLDevGuideDemoDb;
DROP LOGIN LoginA;
DROP LOGIN [BuiltinPower Users];
DROP LOGIN LoginB;
DROP CERTIFICATE DemoBackupEncryptCert;
DROP MASTER KEY;
GO

Column-level encryption protects the data in the database, not just backups. However, it
protects data at rest only. When the data is used by an application, the data is decrypted. If
you don't use network encryption, the data travels over the network in an unencrypted
way. All the keys are in a SQL Server database, and therefore a DBA can always decrypt the
data. End users who don't have access to the certificates and keys can't decrypt the
encrypted data. In addition, the implementation of the column-level encryption might be
quite complex because you might need to modify a lot of T-SQL code. The column-level
encryption is available in all editions of SQL Server.

Another option to protect data at rest is Transparent Data Encryption (TDE). You can use
the TDE for the real-time encryption and decryption of the data and log files. You encrypt
the data with the database encryption key (DEK), which is a symmetric key. It is stored in
the database boot record and is therefore already available during the database recovery
process. You protect the DEK with a certificate in the master database. You can also use an
asymmetric key instead of the certificate; however, the asymmetric key must be stored in an
EKM module. TDE uses the AES and Triple DES encryptions only. TDE was first
implemented in SQL Server with version 2012.

You can use TDE on user databases only. You cannot export the database encryption key.
This key is used by the SQL Server database engine only. End users never use it. Even if you
change the database owner, you don't need to regenerate the DEK.

Tightening the Security

[301]

TDE encrypts data on a page level. In addition, it also encrypts the transaction log. You
should backup the certificate used to protect the DEK and the private key used to protect
the certificate immediately after you enable TDE. If you need to restore or attach the
encrypted database to another SQL Server instance, you need to restore both the certificate
and the private key, or you are not able to open the database. Note again that you don't
export the DEK as it is a part of the database itself. You need to keep and maintain the
certificate used to protect the DEK even after you disable the TDE on the database. This is
because parts of the transaction log might still be encrypted. The certificate is needed until
you perform a full database backup.

The following code starts the process of enabling the TDE by creating a DMK in the master
database:

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
GO

You can check whether the master DMK was created successfully with the following code:

SELECT name, key_length, algorithm_desc
FROM sys.symmetric_keys;

Let's backup the SMK and the master DMK immediately, as the next part of the code shows:

BACKUP SERVICE MASTER KEY
 TO FILE = N'C:SQL2016DevGuideSMK.key'
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
-- Backup master DMK
BACKUP MASTER KEY
 TO FILE = N'C:SQL2016DevGuidemasterDMK.key'
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd';
GO

The next portion of the code creates a demo database:

IF DB_ID(N'TDEDemo') IS NULL
CREATE DATABASE TDEDemo;
GO

While still in the context of the master database, use the following code to create the
certificate you will use to protect the DEK:

CREATE CERTIFICATE DemoTDEEncryptCert
WITH SUBJECT = 'TDEDemo TDE Certificate';
GO

Tightening the Security

[302]

Of course, you need to backup this certificate immediately:

BACKUP CERTIFICATE DemoTDEEncryptCert
 TO FILE = N'C:SQL2016DevGuideDemoTDEEncryptCert.cer'
 WITH PRIVATE KEY
 (
 FILE = N'C:SQL2016DevGuideDemoTDEEncryptCert.key',
 ENCRYPTION BY PASSWORD = 'Pa$$w0rd'
);
GO

You create the database encryption key in the demo user database:

USE TDEDemo;
CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = AES_128
 ENCRYPTION BY SERVER CERTIFICATE DemoTDEEncryptCert;
GO

The final step of this process is to actually turn the TDE on:

ALTER DATABASE TDEDemo
SET ENCRYPTION ON;
GO

You can check which databases are encrypted by querying the sys.
dm_database_encryption_keys dynamic management view. This view exposes the
information about the encryption keys and the state of encryption of a database.

SELECT DB_NAME(database_id) AS DatabaseName,
 key_algorithm AS [Algorithm],
 key_length AS KeyLength,
 encryption_state AS EncryptionState,
 CASE encryption_state
 WHEN 0 THEN 'No database encryption key present, no encryption'
 WHEN 1 THEN 'Unencrypted'
 WHEN 2 THEN 'Encryption in progress'
 WHEN 3 THEN 'Encrypted'
 WHEN 4 THEN 'Key change in progress'
 WHEN 5 THEN 'Decryption in progress'
 END AS EncryptionStateDesc,
 percent_complete AS PercentComplete
FROM sys.dm_database_encryption_keys;

Tightening the Security

[303]

The results of this query are as follows.

DatabaseName Algorithm KeyLength EncryptionState EncryptionStateDesc
PercentComplete
------------ --------- --------- --------------- ------------------- ------

Tempdb AES 256 3 Encrypted 0
TDEDemo AES 128 3 Encrypted 0

Note that the Tempdb system database also inherited the encryption. The demo database is
empty and thus very small. The encryption process on such a small database is very fast.
However, in a production database, you would be able to monitor the percentage complete
rising from zero to one hundred, while the encryption state would be “Encryption in
progress.” SQL Server needs to scan all of the data files and log files to finish the encryption.

Now let's turn the encryption off for the demo database:

ALTER DATABASE TDEDemo
SET ENCRYPTION OFF;
GO

Using the same query, you can check the encryption status again:

SELECT DB_NAME(database_id) AS DatabaseName,
 key_algorithm AS [Algorithm],
 key_length AS KeyLength,
 encryption_state AS EncryptionState,
 CASE encryption_state
 WHEN 0 THEN 'No database encryption key present, no encryption'
 WHEN 1 THEN 'Unencrypted'
 WHEN 2 THEN 'Encryption in progress'
 WHEN 3 THEN 'Encrypted'
 WHEN 4 THEN 'Key change in progress'
 WHEN 5 THEN 'Decryption in progress'
 END AS EncryptionStateDesc,
 percent_complete AS PercentComplete
FROM sys.dm_database_encryption_keys;

Please note the result. The tempdb system database is still encrypted.

DatabaseName Algorithm KeyLength EncryptionState EncryptionStateDesc
PercentComplete
---------- --------- --------- --------------- ------------------- --------

Tempdb AES 256 3 Encrypted 0
TDEDemo AES 128 1 Unencrypted 0

Tightening the Security

[304]

Restart your SQL Server instance and execute the previous query again. This time, the
tempdb system database is unencrypted.

You can use the following code to clean up your SQL Server instance. Again, use the
SQLCMD mode to execute it.

USE master;
!!del C:SQL2016DevGuideDemoTDEEncryptCert.cer
!!del C:SQL2016DevGuideDemoTDEEncryptCert.key
!!del C:SQL2016DevGuidemasterDMK.key
!!del C:SQL2016DevGuideSMK.key
IF DB_ID(N'TDEDemo') IS NOT NULL
 DROP DATABASE TDEDemo;
DROP CERTIFICATE DemoTDEEncryptCert;
DROP MASTER KEY;
GO

Always Encrypted
SQL Server 2016 Enterprise Edition introduces a new level of encryption, namely the
Always Encrypted (AE) feature. This feature enables the same level of data protection as
encrypting the data in the client application. Actually, although this is an SQL Server
feature, the data is encrypted and decrypted on the client side. The encryption keys are
never revealed to the SQL Server Database Engine. This way, a DBA can't also see sensitive
data without the encryption keys, just by having sysadmin permissions on the SQL Server
instance with the encrypted data. This way, AE makes a separation between the
administrators who manage the data and the users who own the data.

You need two keys for AE. First you create the column master key (CMK). Then you create
the column encryption key (CEK) and protect it with the CMK. An application uses the
CEK to encrypt the data. SQL Server stores only encrypted data, and can't decrypt it. This is
possible because the column master keys aren't really stored in a SQL Server database. In
the database, SQL Server stores only the link to those keys. The column master keys are
stored outside SQL Server, in one of the following possible places:

Windows Certificate Store for the current user
Windows Certificate Store for the local machine
Azure Key Vault service
A hardware security module (HSM) that supports Microsoft CryptoAPI or
Cryptography API: Next Generation

Tightening the Security

[305]

The column encryption keys are stored in the database. Inside an SQL Server database, only
the encrypted part of the values of the column encryption keys are stored, together with the
information about the location of the column master keys. CEKs are never stored as plain
text in a database. CMKs are, as mentioned, actually stored in external trusted key stores.

An application can use the AE keys and encryption by using an AE-enabled driver, such as
.NET Framework Data Provider for SQL Server version 4.6 or higher, Microsoft JDBC
Driver for SQL Server 6.0 or higher, or Windows ODBC driver for SQL Server version 13.1
or higher. The application must send parameterized queries to SQL Server. The AE-enabled
driver works together with the SQL Server Database Engine to determine which parameters
should be encrypted or decrypted. For each parameter that needs to be encrypted or
decrypted, the driver obtains the metadata needed for the encryption from the Database
Engine, including the encryption algorithm, the location of the corresponding CMK, and the
encrypted value for the corresponding CEK. Then the driver contacts the CMK store,
retrieves the CMK, decrypts the CEK, and uses the CEK to encrypt or decrypt the
parameter. Next the driver caches the CEK in order to speed up the next usage of the same
CEK. The following figure shows the process graphically:

Always Encrypted process

The figure represents the whole process in these steps:

The client application creates a parameterized query.1.
The client application sends the parameterized query to the AE-enabled driver.2.
The AE-enabled driver contacts SQL Server to determine which parameters need3.
encryption or decryption, the location of the CMK, and the encrypted value of the
CEK.
The AE-enabled driver retrieves the CMK and decrypts the CEK.4.
The AE-enabled driver encrypts the parameter(s).5.

Tightening the Security

[306]

The driver sends the query to the Database Engine.6.
The Database Engine retrieves the data and sends the result set to the driver.7.
The driver performs decryption, if needed, and sends the result set to the client8.
application.

The Database Engine never operates on the plain text data stored in the encrypted columns.
However, some queries on the encrypted data are possible, depending on the encryption
type. There are two types of encryption:

Deterministic encryption, which always generates the same encrypted value for
the same input value. With this encryption, you can index the encrypted column
and use point lookups, equality joins, and grouping expressions on the encrypted
column. However, a malicious user could try to guess the values by analyzing the
patterns of the encrypted values. This is especially dangerous when the set of
possible values for a column is discrete, with a small number of distinct values.
Randomized encryption, which encrypts data in an unpredictable manner.

It is time to show how AE works through some demo code. First, let's create and use a
demo database:

USE master;
IF DB_ID(N'AEDemo') IS NULL
 CREATE DATABASE AEDemo;
GO
USE AEDemo;
GO

Next, create the CMK in SSMS GUI. In Object Explorer, refresh the Databases folder to see
the AEDemo database. Expand this database folder, expand the Security subfolder and the
Always Encrypted Keys subfolder, and right-click on the Column Master Key subfolder and
select the New Column Master Key option from the pop-up menu. In the Name text box,
write AE_ColumnMasterKey, and make sure you select the Windows Certificate
Store–Local Machine option in the Key Store drop-down list, as shown in the following
screenshot. Then click OK.

Tightening the Security

[307]

Creating a CMK

You can check if the CMK was created successfully with the following query:

SELECT *
FROM sys.column_master_keys;

Tightening the Security

[308]

Next, you create the CEK. In SSMS, in Object Explorer, right-click on the Column
Encryption Keys subfolder that is right under the Column Master Key subfolder, and select
the New Column Encryption Key option from the pop-up menu. Name the CEK
AE_ColumnEncryptionKey and use the AE_ColumnMasterKey CMK to encrypt it. You
can check whether the CEK creation was successful with the following query:

SELECT *
FROM sys.column_encryption_keys;
GO

Now try to create a table with one deterministic encryption column and one randomized
encryption column. My database used the default SQL_Latin1_General_CP1_CI_AS
collation.

CREATE TABLE dbo.Table1
(id INT,
 SecretDeterministic NVARCHAR(10)
 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = AE_ColumnEncryptionKey,
 ENCRYPTION_TYPE = DETERMINISTIC,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NULL,
 SecretRandomized NVARCHAR(10)
 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = AE_ColumnEncryptionKey,
 ENCRYPTION_TYPE = RANDOMIZED,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NULL
);
GO

The previous statement produced an error number 33289, which tells me that I cannot
create an encrypted column for the character strings that use a non-BIN2 collation.
Currently, only the new binary collations (that is, the collations with the BIN2 suffix) are
supported for AE.

So let's try to create the table again, this time with correct collations for the character
columns:

CREATE TABLE dbo.Table1
(id INT,
 SecretDeterministic NVARCHAR(10) COLLATE Latin1_General_BIN2
 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = AE_ColumnEncryptionKey,
 ENCRYPTION_TYPE = DETERMINISTIC,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NULL,
 SecretRandomized NVARCHAR(10) COLLATE Latin1_General_BIN2
 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = AE_ColumnEncryptionKey,
 ENCRYPTION_TYPE = RANDOMIZED,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NULL
);
GO

Tightening the Security

[309]

This time, table creation succeeds. Now you can try to insert a row of data with the
following statement:

INSERT INTO dbo.Table1
(id, SecretDeterministic, SecretRandomized)
VALUES (1, N'DeterSec01', N'RandomSec1');

You get the error 206 with error text “Operand type clash: nvarchar is incompatible with
nvarchar(4000) encrypted with (encryption_type = 'DETERMINISTIC',
encryption_algorithm_name = 'AEAD_AES_256_CBC_HMAC_SHA_256',
column_encryption_key_name = 'AE_ColumnEncryptionKey',
column_encryption_key_database_name = 'AEDemo').” SQL Server cannot encrypt
or decrypt the data. You need to modify the data from a client application. You can do a
limited set of operations on the table from SQL Server. For example, you can use the
TRUNCATE TABLE statement on a table with AE columns.

I created a very simple client Windows Console application in Visual C#. The application
actually just retrieves the keys and inserts a single row into the table that was created with
the code above. Here is the C# code. The first part of the code just defines the namespaces
used in the application or added by default in a new project in Visual Studio 2015.

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

The next part of the code defines the connection string to my local SQL Server. Please note
the new connection string property in .NET 4.6 and above, the Column Encryption
Setting=enabled property. Then the application opens the connection:

namespace AEDemo
{
 class Program
 {
 static void Main(string[] args)
 {
 string connectionString = "Data Source=localhost; " +
 "Initial Catalog=AEDemo; Integrated Security=true; " +
 "Column Encryption Setting=enabled";
 SqlConnection connection = new SqlConnection(connectionString);
 connection.Open();

Tightening the Security

[310]

The next part is just a simple check whether three arguments were passed. Please note that
in a real application you should use a try-catch block when parsing the first argument to an
integral number.

if (args.Length != 3)
 {
 Console.WriteLine("Please enter a numeric " +
 "and two string arguments.");
 return;
 }
int id = Int32.Parse(args[0]);

The next part of the code defines the parameterized INSERT statement and executes it:

{
 using (SqlCommand cmd = onnection.CreateCommand())
 {
 cmd.CommandText = @"INSERT INTO dbo.Table1 " +
 "(id, SecretDeterministic, SecretRandomized)" +
 " VALUES (@id, @SecretDeterministic,
 @SecretRandomized);";

 SqlParameter paramid= cmd.CreateParameter();
 paramid.ParameterName = @"@id";
 paramid.DbType = DbType.Int32;
 paramid.Direction = ParameterDirection.Input;
 paramid.Value = id;
 cmd.Parameters.Add(paramid);

 SqlParameter paramSecretDeterministic =
 cmd.CreateParameter();
 paramSecretDeterministic.ParameterName =
 @"@SecretDeterministic";
 paramSecretDeterministic.DbType = DbType.String;
 paramSecretDeterministic.Direction =
 ParameterDirection.Input;
 paramSecretDeterministic.Value = "DeterSec1";
 paramSecretDeterministic.Size = 10;
cmd.Parameters.Add(paramSecretDeterministic);

 SqlParameter paramSecretRandomized = cmd.CreateParameter();
 paramSecretRandomized.ParameterName =
@"@SecretRandomized";
paramSecretRandomized.DbType = DbType.String;
paramSecretRandomized.Direction = ParameterDirection.Input;
paramSecretRandomized.Value = "RandomSec1";
paramSecretRandomized.Size = 10;
 cmd.Parameters.Add(paramSecretRandomized);

Tightening the Security

[311]

cmd.ExecuteNonQuery();
}
}

Finally, the code closes the connection and informs you that a row was inserted
successfully:

 connection.Close();
 Console.WriteLine("Row inserted successfully");
 }
 }
}

If you don't have Visual Studio installed, you can just run the AEDemo.exe application
provided with the code examples associated with this book. As mentioned, the application
inserts a single row into the previously created table with two AE-enabled columns. Please
run the application from SSMS in SQLCMD mode, as the following example shows; there is
no prompting for values in the application:

!!C:SQL2016DevGuideAEDemo 1 DeterSec01 RandomSec1
!!C:SQL2016DevGuideAEDemo 2 DeterSec02 RandomSec2

Now try to read the data from the same session in SSMS that you used to create the table:

SELECT *
FROM dbo.Table1;

You can see only encrypted data. Now open a second query window in SSMS. Right-click in
this window and choose Connection, then Change Connection. In the connection dialog,
click the Options button at the bottom. Type in AEDemo for the database name and then
click the Additional Connection Parameters tab. In the text box, enter Column Encryption
Setting=enabled (without the double quotes). Then click on Connect.

Try again to insert a row from SSMS. Use the following query:

INSERT INTO dbo.Table1
(id, SecretDeterministic, SecretRandomized)
VALUES (2, N'DeterSec2', N'RandomSec2');

When I ran this when writing this book, I got the same error 206 again. At the time of
writing, I used SSMS version 13.0.15700.28. This SSMS version still can't parametrize ad
hoc inserts. However, let's try to read the data with the following query:

SELECT *
FROM dbo.Table1;

Tightening the Security

[312]

This time, the query works and you get the following result:

Id SecretDeterministic SecretRandomized
--- -------------------- ----------------
1 DeterSec1 RandomSec1
2 DeterSec2 RandomSec2

You can now close this query window and continue in the first one. Try to index the column
with deterministic encryption. The following code creates a nonclustered index on the
dbo.Table1 with the SecretDeterministic column used as the key:

CREATE NONCLUSTERED INDEX NCI_Table1_SecretDeterministic
ON dbo.Table1(SecretDeterministic);
GO

The creation succeeds. Now try to also create an index on the column with randomized
encryption:

CREATE NONCLUSTERED INDEX NCI_Table1_SecretRandomized
ON dbo.Table1(SecretRandomized);
GO

This time you get an error message telling you that you cannot index a column with
randomized encryption. Finally, execute the following code to clean up your SQL Server
instance:

USE master;
IF DB_ID(N'AEDemo') IS NOT NULL
DROP DATABASE AEDemo;
GO

You have already seen some of the limitations of AE, including:

Only BIN2 collations are supported for strings
You can only index columns with deterministic encryption, and use a limited set
of T-SQL operations on those columns
You cannot index columns with randomized encryption
AE is limited to the Enterprise and Developer editions only
Working with AE in SSMS can be painful

Tightening the Security

[313]

Refer to Books Online for a more detailed list of AE's limitations. However, please also note
the strengths of AE. It is simple to implement because it does not need modifications in an
application, except the modification for connection strings. Data is encrypted end-to-end,
from client memory, through network to database storage. Even DBAs can't view the data
within SQL Server only; they need access to the key storage outside SQL Server to read the
CMK. AE and other encryption options in SQL Server provide a complete set of
possibilities, and it is up to you to select the appropriate method for the business problem
you are solving.

Row-Level security
In the first part of this chapter, you learned about the permissions on database objects,
including objects with data, namely tables, views, and table-valued, user-defined functions.
Sometimes you need to give permissions to end users in a more granular way. For example,
you might need to give permissions to a specific user to read and update only a subset of
columns in the table, and to see only a subset of rows in a table.

You can use programmable objects, such as stored procedures, to achieve these granular
permission needs. You can use declarative permissions with the DCL statements GRANT,
REVOKE, and DENY on the column level already available in previous versions of SQL
Server. However, SQL Server 2016 also offers declarative row-level security, abbreviated as
RLS. In this section, you will learn how to:

Use programmable objects to maintain security
Use SQL Server 2016 row-level security

Using programmable objects to maintain security
In Transact-SQL, you can write views, stored procedures, scalar and table-valued user-
defined functions, and triggers. Views serve best as a layer for selecting data, although you
can modify data through views as well. Views are especially useful for column and row-
level security. You can grant column permissions directly; however, doing this means a lot
of administrative work. You can create a view as a projection on the base table with selected
columns only, and then maintain permissions on a higher granularity level (that is, on the
view instead of on the columns). In addition, you cannot give row-level permissions
through a predicate in the GRANT statement. Of course, you can use the same predicate in
the WHERE clause of the SELECT statement of the view you are using as a security layer. You
can use table-valued functions as parameterized views.

Tightening the Security

[314]

Stored procedures are appropriate for all update activity, and also for querying data.
Maintaining security through stored procedures is the easiest method of administration;
with stored procedures, you typically need to grant the EXECUTE permission only. You can
use triggers and scalar functions for advanced security checking; for example, for validating
users' input.

Programmable objects refer to base tables and to each other in a kind of chain. For example,
a stored procedure can use a view that selects from a base table. All the objects in SQL
Server have owners. As long as there is a single owner for all the objects in the chain, you
can manage permissions on the highest level only. Using the previous example, if the stored
procedure, view, and base table have the same owner, you can manage permissions for the
stored procedure only. SQL Server trusts that the owner of the procedure knows what the
procedure is doing. This works for any DML statement (SELECT, INSERT, UPDATE, DELETE,
and MERGE).

If the chain of owners between dependent objects is broken, SQL Server must check the
permissions for any objects where the chain is broken. For example, if the owner of the
procedure from the previous example is different from the owner of the view, SQL Server
will check the permissions on the view as well. If the owner of the table was different from
the owner of the view, SQL Server will also check permissions on the base table. In
addition, if you use dynamic T-SQL code, concatenate a T-SQL statement as a string, and
then use the EXECUTE command to execute them, SQL Server checks the permissions on all
the objects the dynamic code is using. This is logical because SQL Server cannot know
which objects the dynamic code is going to use until it actually executes the code, especially
if you concatenate a part of the dynamic code from user input. Besides the threat of code
injection, this extra checking is another reason why you should not use dynamic string
concatenation in T-SQL code in production.

To start testing the programmable-objects-based row-level security, let's create a new demo
database and change the context to this database:

USE master;
IF DB_ID(N'RLSDemo') IS NULL
CREATE DATABASE RLSDemo;
GO
USE RLSDemo;

Tightening the Security

[315]

The next step is to create four database users without logins. Three of them represent
regular users from the Sales department, and the fourth one represents the Sales
department manager.

CREATE USER SalesUser1 WITHOUT LOGIN;
CREATE USER SalesUser2 WITHOUT LOGIN;
CREATE USER SalesUser3 WITHOUT LOGIN;
CREATE USER SalesManager WITHOUT LOGIN;
GO

The next piece of code creates a table for the employee data. This table needs row-level
security.

CREATE TABLE dbo.Employees
(
 EmployeeId INT NOT NULL PRIMARY KEY,
 EmployeeName NVARCHAR(10) NOT NULL,
 SalesRegion NVARCHAR(3) NOT NULL,
 SalaryRank INT NOT NULL
);
GO

Now let's insert some data into the dbo.Employees table. The three rows inserted
represent the three regular users from the Sales department. You can check the inserted
rows immediately with a query. Note that the sales region for the first two users is USA, and
for the third one it is EU.

INSERT INTO dbo.Employees
(EmployeeId, EmployeeName, SalesRegion, SalaryRank)
VALUES
 (1, N'SalesUser1', N'USA', 5),
 (2, N'SalesUser2', N'USA', 4),
 (3, N'SalesUser3', N'EU', 6);
-- Check the data
SELECT *
FROM dbo.Employees;
GO

Tightening the Security

[316]

The dbo.Customers table, created with the following code, will also need row-level
security:

CREATE TABLE dbo.Customers
(
 CustomerId INT NOT NULL PRIMARY KEY,
 CustomerName NVARCHAR(10) NOT NULL,
 SalesRegion NVARCHAR(3) NOT NULL
);
GO

Again, let's insert some rows into this table and check them. There are two customers from
the USA and two from the EU.

INSERT INTO dbo.Customers
(CustomerId, CustomerName, SalesRegion)
VALUES
 (1, N'Customer01', N'USA'),
 (2, N'Customer02', N'USA'),
 (3, N'Customer03', N'EU'),
 (4, N'Customer04', N'EU');
-- Check the data
SELECT *
FROM dbo.Customers;
GO

None of the users have been given any permissions yet. Therefore, you can read the data
only as the dbo user. If you execute the following five lines of code, only the first SELECT
succeeds. For the other four EXECUTE commands, you get an error.

SELECT * FROM dbo.Employees;
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser2';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser3';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesManager';

In the next step, the code creates a stored procedure that reads the data from the
dbo.Employees table. It filters the rows for regular users and returns all rows for the Sales
department manager.

CREATE PROCEDURE dbo.SelectEmployees
AS
SELECT *
FROM dbo.Employees
WHERE EmployeeName = USER_NAME()
OR USER_NAME() = N'SalesManager';
GO

Tightening the Security

[317]

You must give the permission to execute this procedure to the database users:

GRANT EXECUTE ON dbo.SelectEmployees
TO SalesUser1, SalesUser2, SalesUser3, SalesManager;
GO

Users still cannot see the data by querying the tables directly. You can test this fact by
executing the following code again. You can read the data as the dbo user, but will get
errors when you impersonate other database users.

SELECT * FROM dbo.Employees;
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser2';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser3';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesManager';
GO

Try to execute the stored procedure, once as dbo and once by impersonating each database
user:

EXEC dbo.SelectEmployees;
EXECUTE AS USER = N'SalesUser1' EXEC dbo.SelectEmployees;
REVERT;
EXECUTE AS USER = N'SalesUser2' EXEC dbo.SelectEmployees;
REVERT;
EXECUTE AS USER = N'SalesUser3' EXEC dbo.SelectEmployees;
REVERT;
EXECUTE AS USER = N'SalesManager' EXEC dbo.SelectEmployees;
REVERT;
GO

As the dbo user, you can execute the procedure; however, you don't see any rows because
the filter in the query in the procedure did not take the dbo user into consideration. Of
course, the dbo user can still query the table directly. The regular users see their rows only.
The Sales department manager sees all of the rows in the table.

The next procedure uses dynamic SQL to read the data from the table for a single user. By
using dynamic SQL, the procedure creates a broken ownership chain.

CREATE PROCEDURE dbo.SelectEmployeesDynamic
AS
DECLARE @sqlStatement AS NVARCHAR(4000);
SET @sqlStatement = N'
SELECT *
FROM dbo.Employees
WHERE EmployeeName = USER_NAME();'
EXEC(@sqlStatement);

Tightening the Security

[318]

GO

Give the users permission to execute this procedure:

GRANT EXECUTE ON dbo.SelectEmployeesDynamic
TO SalesUser1, SalesUser2, SalesUser3, SalesManager;
GO

Try to execute the procedure by impersonating different users:

EXEC dbo.SelectEmployeesDynamic;
EXECUTE AS USER = N'SalesUser1' EXEC dbo.SelectEmployeesDynamic;
REVERT;
EXECUTE AS USER = N'SalesUser2' EXEC dbo.SelectEmployeesDynamic;
REVERT;
EXECUTE AS USER = N'SalesUser3' EXEC dbo.SelectEmployeesDynamic;
REVERT;
EXECUTE AS USER = N'SalesManager' EXEC dbo.SelectEmployeesDynamic;
REVERT;

When you execute it as the dbo users, the execution succeeds, but you don't get any data
returned. However, when you execute the procedure when impersonating other users, you
get an error because other users don't have permission to read the underlying table.

Predicate-based Row-Level Security
Using programmable objects for row-level security protects the sensitive data very well
because users don't have direct access to the tables. However, implementation of such
security might be very complex for existing applications that don't use stored procedures,
and other programmable objects. This is why SQL Server 2016 includes predicate-based
Row-Level Security (RLS). A DBA creates the security filters and policies. The new security
policies are transparent to the application. RLS is available in Standard, Enterprise, and
Developer editions. There are two types of RLS security predicates:

Filter predicates that silently filter the rows the application reads. For these
predicates, no application change is needed. Note that, besides reading, filter
predicates also filter the rows when an application updates or deletes the rows;
this is because the application again simply does not see the filtered rows.

Tightening the Security

[319]

Block predicates that explicitly block write operations. You can define them for
after-insert and after-update operations, when the predicates block such inserts
or updates that would move a row out of the scope of the block predicate. The
after-insert block predicates also apply to minimally logged or bulk inserts. You
can also define the block predicates for before-update and delete operations,
when they serve as the filter predicates for the updates and deletes. Note that if
you already use filter predicates, the before-update and before-delete predicates
are not needed. You might want to change the affected applications to catch the
additional errors produced by the block predicates.

You define the predicates through a predicate function. In the body of this function, you
can use other tables with the JOIN or APPLY operators. If the function is schema bound, no
additional permission checks are needed. If the function is not schema bound, users need
permissions to read the data from the joined tables. When a predicate function is schema
bound, you cannot modify the objects it refers to.

A security policy adds an RLS predicate to a table using a predicate function. The policy
can be disabled. If it is disabled, users see all of the rows. A security policy also filters
and/or blocks the rows for the database owners (dbo user, db_owner database role, and
sysadmin server role).

Before testing the SQL Server 2016 RLS, the users need permissions to read the data. The
following code gives the users permissions to read data from both tables in the demo
database:

GRANT SELECT ON dbo.Employees
TO SalesUser1, SalesUser2, SalesUser3, SalesManager;
GRANT SELECT ON dbo.Customers
TO SalesUser1, SalesUser2, SalesUser3, SalesManager;
GO

To check the permissions, you can try to read from the dbo.Employees table by
impersonating each of the users again. All of the users see all of the rows.

SELECT * FROM dbo.Employees;
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser2';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser3';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesManager';
GO

Tightening the Security

[320]

The following command creates a separate schema for security objects. It is good practice to
move the security objects into a separate schema. If they are in a regular schema, a DBA
might inadvertently give permission to modify the security objects when giving the ALTER
SCHEMA permission to users for some other reason, such as allowing them to alter the
procedures in that schema.

CREATE SCHEMA Security;
GO

The following predicate function limits the users to seeing only their own rows in a table.
The Sales department manager role can see all rows. In addition, the predicate also takes
care of the dbo users, enabling these users to see all of the rows as well.

CREATE FUNCTION Security.EmployeesRLS(@UserName AS NVARCHAR(10))
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN SELECT 1 AS SecurityPredicateResult
 WHERE @UserName = USER_NAME()
 OR USER_NAME() IN (N'SalesManager', N'dbo');
GO

The next step is to create the security policy. The security policy created with the following
code adds a filter predicate for the dbo.Employees table. Note that the EmployeeName
column is used as the argument for the predicate function.

CREATE SECURITY POLICY EmployeesFilter
ADD FILTER PREDICATE Security.EmployeesRLS(EmployeeName)
ON dbo.Employees
WITH (STATE = ON);
GO

You can test the filter predicate by querying the dbo.Employees table again. This time,
each regular user gets their own row only, while the Sales department manager and the
dbo users see all of the rows.

SELECT * FROM dbo.Employees;
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser2';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser3';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesManager';
GO

Tightening the Security

[321]

Note that the users can still gain access to the sensitive data if they can write queries. With
carefully crafted queries, they can conclude that a specific row exists, for example. The
salary rank for the SalesUser1 user is 5. This user might be interested if another user with
salary rank 6 exists. The user can execute the following query:

EXECUTE (N'SELECT * FROM dbo.Employees
WHERE SalaryRank = 6')
AS USER = N'SalesUser1';

The query returns zero rows. The SalesUser1 did not get any information yet. However,
when a query is executed, the WHERE predicate is evaluated before the security policy filter
predicate. Imagine that the SalesUser1 tries to execute the following query:

EXECUTE (N'SELECT * FROM dbo.Employees
WHERE SalaryRank / (SalaryRank - 6) = 0')
AS USER = N'SalesUser1';

When you execute this code, you get error 8134, divide by zero error encountered. Now
SalesUser1 knows that an employee with salary rank equal to 6 exists.

Now let's create another predicate function that will be used to filter the rows in the dbo.
Customers table. It applies a tabular expression to each row of the dbo.Customers table to
include the rows with the same sales region as the sales region value for the user that is
querying the tables. It does not filter the data for the Sales department manager and the
dbo database user.

CREATE FUNCTION Security.CustomersRLS(@CustomerId AS INT)
RETURNS TABLE
WITH SCHEMABINDING
AS
RETURN
SELECT 1 AS SecurityPredicateResult
FROM dbo.Customers AS c
 CROSS APPLY(
 SELECT TOP 1 1
 FROM dbo.Employees AS e
 WHERE c.SalesRegion = e.SalesRegion
 AND (e.EmployeeName = USER_NAME()
 OR USER_NAME() IN (N'SalesManager', N'dbo')))
 AS E(EmployeesResult)
WHERE c.CustomerId = @CustomerId;
GO

Tightening the Security

[322]

The next step is, of course, to add a security policy. Note that you need to use a column
from the dbo.Customers table for the argument of the predicate function. This argument is
a dummy one, it does not filter the rows; the actual filter i is implemented in the body of the
function.

CREATE SECURITY POLICY CustomersFilter
ADD FILTER PREDICATE Security.CustomersRLS(CustomerId)
ON dbo.Customers
WITH (STATE = ON);
GO

The following queries test the filter predicate:

SELECT * FROM dbo.Customers;
EXECUTE (N'SELECT * FROM dbo.Customers') AS USER = N'SalesUser1';
EXECUTE (N'SELECT * FROM dbo.Customers') AS USER = N'SalesUser2';
EXECUTE (N'SELECT * FROM dbo.Customers') AS USER = N'SalesUser3';
EXECUTE (N'SELECT * FROM dbo.Customers') AS USER = N'SalesManager';
GO

The rows from the dbo.Customers table are filtered for the regular users. However, note
that SalesUser1 and SalesUser2 see the same rows—the rows for the customers from the
USA—because the sales territory for both of them is USA. Now let's give the users
permissions to modify the data in the dbo.Customers table.

GRANT INSERT, UPDATE, DELETE ON dbo.Customers
TO SalesUser1, SalesUser2, SalesUser3, SalesManager;

Try to impersonate the SalesUser1 user, and delete or update a row that SalesUser1
does not see because of the filter predicate. In both cases, zero rows are affected.

EXECUTE (N'DELETE FROM dbo.Customers WHERE CustomerId = 3')
 AS USER = N'SalesUser1';
EXECUTE (N'UPDATE dbo.Customers
 SET CustomerName =' + '''' + 'Updated' + '''' +
 'WHERE CustomerId = 3')
 AS USER = N'SalesUser1';

However, SalesUser1 can insert a row that is filtered out when the same user queries the
data. In addition, the user can also update a row in such a way that the row would
disappear from the user's scope. Check the following code:

EXECUTE (N'INSERT INTO dbo.Customers
(CustomerId, CustomerName, SalesRegion)
 VALUES(5, ' + '''' + 'Customer05' + '''' + ',' +
 '''' + 'EU' + '''' + ');'
) AS USER = N'SalesUser1';

Tightening the Security

[323]

EXECUTE (N'UPDATE dbo.Customers
 SET SalesRegion =' + '''' + 'EU' + '''' +
 'WHERE CustomerId = 2')
 AS USER = N'SalesUser1';

Now try to read the data. The dbo user sees all of the rows, while SalesUser1 sees neither
the row (s)he just inserted nor the row (s)he just updated.

SELECT * FROM dbo.Customers;
EXECUTE (N'SELECT * FROM dbo.Customers') AS USER = N'SalesUser1';

You need to add a block predicate to block the inserts and updates that would move a row
outside the scope of the user performing the write operation:

ALTER SECURITY POLICY CustomersFilter
ADD BLOCK PREDICATE Security.CustomersRLS(CustomerId)
ON dbo.Customers AFTER INSERT,
ADD BLOCK PREDICATE Security.CustomersRLS(CustomerId)
ON dbo.Customers AFTER UPDATE;
GO

Try to do similar data modifications while impersonating the SalesUser1 user again:

EXECUTE (N'INSERT INTO dbo.Customers
(CustomerId, CustomerName, SalesRegion)
 VALUES(6, ' + '''' + 'Customer06' + '''' + ',' +
 '''' + 'EU' + '''' + ');'
) AS USER = N'SalesUser1';
EXECUTE (N'UPDATE dbo.Customers
SET SalesRegion =' + '''' + 'EU' + '''' +
'WHERE CustomerId = 1')
 AS USER = N'SalesUser1';

This time, you get an error for both commands. You can see that the block predicate works.
Finally, you can clean up your SQL Server instance:

USE master;
IF DB_ID(N'RLSDemo') IS NOT NULL
 ALTER DATABASE RLSDemo SET SINGLE_USER WITH ROLLBACK IMMEDIATE;
 DROP DATABASE RLSDemo;
GO

Tightening the Security

[324]

Exploring dynamic data masking
With the new SQL Server 2016 Dynamic Data Masking (DDM), you have an additional
tool that helps you limit the exposure of sensitive data by masking it to non-privileged
users. The masking is done on the SQL Server side, and thus you don't need to implement
any changes to applications to start using it. DDM is available in Standard, Enterprise, and
Developer editions.

This section introduces DDM, including:

Defining masked columns
DDM limitations

Defining masked columns
You define DDM at the column level. You can obfuscate values from a column in a table by
using four different masking functions:

The default function implements full masking. The mask depends on the data
type of the column. A string is masked by changing each character of a string to
X. Numeric values are masked to zero. Date and time data type values are
masked to “01.01.2000 00:00:00.0000000” (without double quotes). Binary data is
masked to a single byte of ASCII value 0.
The email function masks strings that represent e-mail addresses in the form
aXXX@XXXX.com.
The random function masks numeric values to a random value in a specified
range.
The partial function uses a custom string for masking character data. You can
skip masking some characters at the beginning of the string (prefix) or at the end
of the string (suffix).

You must give the users the UNMASK database level permission if you want them to see
unmasked data.

Tightening the Security

[325]

Let's start testing the DDM feature by creating a new demo database and changing the
context to the newly created database:

USE master;
IF DB_ID(N'DDMDemo') IS NULL
CREATE DATABASE DDMDemo;
GO
USE DDMDemo;

Next, you need a couple of database users for the test:

CREATE USER SalesUser1 WITHOUT LOGIN;
CREATE USER SalesUser2 WITHOUT LOGIN;

The following code creates and populates a demo table using the SELECT INTO statement.
It uses the employees from the WideWorldImporters demo database, and adds a
randomized salary.

SELECT PersonID, FullName, EmailAddress,
 CAST(JSON_VALUE(CustomFields, '$.HireDate') AS DATE)
 AS HireDate,
 CAST(RAND(CHECKSUM(NEWID()) % 100000 + PersonID) * 50000 AS INT) + 20000
 AS Salary
INTO dbo.Employees
FROM WideWorldImporters.Application.People
WHERE IsEmployee = 1;

You must grant the SELECT permission on this table to the two database users:

GRANT SELECT ON dbo.Employees
TO SalesUser1, SalesUser2;

If you execute the following queries, you can see that you, as the dbo user, and both
database users you created, can see all of the data:

SELECT * FROM dbo.Employees;
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser2';

Here is the partial result of one of the three previous queries:

PersonID FullName EmailAddress HireDate Salary
-------- ------------- ------------------------------ ---------- ------
2 Kayla Woodcock kaylaw@wideworldimporters.com 2008-04-19 45823
3 Hudson Onslow hudsono@wideworldimporters.com 2012-03-05 39344

Tightening the Security

[326]

The following code adds masking:

ALTER TABLE dbo.Employees ALTER COLUMN EmailAddress
 ADD MASKED WITH (FUNCTION = 'email()');
ALTER TABLE dbo.Employees ALTER COLUMN HireDate
 ADD MASKED WITH (FUNCTION = 'default()');
ALTER TABLE dbo.Employees ALTER COLUMN FullName
 ADD MASKED WITH (FUNCTION = 'partial(1, "&&&&&", 3)');
ALTER TABLE dbo.Employees ALTER COLUMN Salary
 ADD MASKED WITH (FUNCTION = 'random(1, 100000)');
GO

Try to read the data as one of the regular users:

EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';

The result for this user is masked:

PersonID FullName EmailAddress HireDate Salary
-------- -------------- --------------------------- ---------- ------
2 K&&&&&ock kXXX@XXXX.com 1900-01-01 57709
3 H&&&&&low hXXX@XXXX.com 1900-01-01 44627

Note that you might get different values for the salary because this column uses the random
masking function. Now you can grant the UNMASK permission to the SalesUser1 user, and
try to read the data again. This time, the result is unmasked.

GRANT UNMASK TO SalesUser1;
EXECUTE (N'SELECT * FROM dbo.Employees') AS USER = N'SalesUser1';

Dynamic data masking limitations
You might have already noticed the first DDM limitation. The UNMASK permission currently
works at the database level only. You also cannot mask the columns encrypted with the AE
feature. FILESTREAM and COLUMN_SET (sparse) columns don't support masking either. A
masked column cannot be used in a full-text index. You cannot define a mask on a
computed column. If a user who does not have permission to unmask the columns creates a
copy of the data with the SELECT INTO statements, then the data in the destination is
converted to masked values and the original data is lost. For example, the following code
gives the CREATE TABLE and ALTER SCHEMA permissions to both test users, while only the
first user has the UNMASK permission. Both users execute the SELECT INTO statement.

GRANT CREATE TABLE TO SalesUser1, SalesUser2;
GRANT ALTER ON SCHEMA::dbo TO SalesUser1, SalesUser2;
EXECUTE (N'SELECT * INTO dbo.SU1 FROM dbo.Employees') AS USER =

Tightening the Security

[327]

N'SalesUser1';
EXECUTE (N'SELECT * INTO dbo.SU2 FROM dbo.Employees') AS USER =
N'SalesUser2';
GO

You can query the two new tables as the dbo user. The values in the table created by the
SalesUser2 user are converted into the masked values.

Carefully crafted queries can also bypass DDM. Some numeric system functions
automatically unmask the data in order to perform the calculation. The following query is
executed in the context of the SalesUser2 user, who does not have permission to unmask
the data.

EXECUTE AS USER = 'SalesUser2';
SELECT Salary AS SalaryMaskedRandom,
 EXP(LOG(Salary)) AS SalaryExpLog,
 SQRT(SQUARE(salary)) AS SalarySqrtSquare
FROM dbo.Employees
WHERE PersonID = 2;
REVERT;

Here are the results:

SalaryMaskedRandom SalaryExpLog SalarySqrtSquare
------------------ ------------ ----------------
70618 45822.96875 45823

Filtering in a query also works on the unmasked value. For example, the SalesUser2 user
can check which employees have a salary greater than 50,000 with the following query:

EXECUTE AS USER = 'SalesUser2';
SELECT *
FROM dbo.Employees
WHERE Salary > 50000;
REVERT;

Here are the abbreviated results.

PersonID FullName EmailAddress HireDate Salary
-------- --------- ------------- ---------- ------
4 I&&&&&upp iXXX@XXXX.com 1900-01-01 8347
8 A&&&&&sse aXXX@XXXX.com 1900-01-01 60993

Tightening the Security

[328]

Please note that you might get different results because the Salary column is masked with
the random masking function. Finally, you can clean up your SQL Server instance:

USE master;
DROP DATABASE DDMDemo;
GO

Summary
In this chapter, you have learned about SQL Server security. You have learned about
principals and securables. When designing a database, you should carefully implement
schemas. You give object and statement permissions to database users. To enhance data
protection, SQL Server implements encryption in many different ways. The new SQL Server
2016 Always Encrypted feature might be extremely useful because you don't need to
change existing applications (except for the connection string) to use it. You can filter the
rows the users can see and modify these with the help of programmable objects or SQL
Server 2016 predicate-based row level security. Finally, in SQL Server 2016, you can also
mask the data with dynamic data masking for the non-privileged users.

9
Query Store

Query Store is a new performance troubleshooting tool, fully integrated into the database
engine. In my opinion, it is one of the best database engine features since 2005 and the
introduction of OPTION (RECOMPILE). Query Store helps you to troubleshoot query
performance by collecting information about queries, resource utilization, execution plans,
and the other execution parameters. It is stored in a database and therefore it survives
server crashes, restarts, and failovers.

Query Store does not only help you to identify issues with query executions, but also lets
you easily and quickly fix or workaround problems caused by poorly chosen execution
plans.

In this chapter, you will learn about the following points:

Why Query Store has been introduced
What Query Store is intended for and what it is not
Query Store Architecture
How Query Store can help you to quickly identify and solve some performance
issues

Query Store

[330]

Why Query Store?
I am sure that everyone who reads this book had to deal with a situation where a stored
procedure or query suddenly started to perform poorly. That means, performance was
good in the past, and it was working regularly up to some point in time, but the same
procedure or query does not perform well anymore: either you got a timeout when you
executed it, or the execution time has been significantly increased. Usually you need to fix it
as soon as possible, especially when this happens in an important application module
and/or during non-working or peak hours.

How do you proceed with this? What is the first step you take when you start such
troubleshooting? By gathering information such as system information, query stats and
plans, execution parameters, and so on, right? When a query or stored procedure is slow,
you want to see its execution plan. Therefore, the first thing is to check the execution plan in
the server cache. You can use this query to return the execution plan for a given stored
procedure:

SELECT c.usecounts, c.cacheobjtype, c.objtype, q.text AS query_text,
p.query_plan
FROM
sys.dm_exec_cached_plans c
CROSS APPLY sys.dm_exec_sql_text(c.plan_handle) q
CROSS APPLY sys.dm_exec_query_plan(c.plan_handle) p
WHERE
c.objtype = 'Proc' AND q.text LIKE '%<SlowProcedureName>%';

By observing the execution plan of a poorly performed query you could find the reason
why the execution is slow: you could see Scan, Hash Join, and Sort operators, and at least
make some assumptions about the slow execution. You can also find out when the plan
was generated. In addition to the plan info, you can also use the execution statistics. The
following query returns info about the execution time and logical reads for the execution of
a given stored procedure:

SELECT p.name, s.execution_count,
ISNULL(s.execution_count*60/(DATEDIFF(second, s.cached_time, GETDATE())),
0) AS calls_per_minute,
(s.total_elapsed_time/(1000*s.execution_count)) AS avg_elapsed_time_ms,
s.total_logical_reads/s.execution_count AS avg_logical_reads,
s.last_execution_time,
s.last_elapsed_time/1000 AS last_elapsed_time_ms,
s.last_logical_reads
FROM sys.procedures p
INNER JOIN sys.dm_exec_procedure_stats AS s ON p.object_id = s.object_id
AND s.database_id = DB_ID()
WHERE p.name LIKE '%<SlowProcedureName>%';

Query Store

[331]

By using the results of this query, you can compare current and average execution
parameters, and also discover if only occasional executions are slow or if each execution
under current circumstances runs longer. These two queries can help you to find out how
the execution looks now and to see how it differs from the execution in the past from the
response time and used resources point of view. You can also include a third query that
returns current waiting tasks on the server within your database, to see if bad performance
is caused by blocking issues.

However, there are some limitations in the set of information in the server cache. First,
dynamic management views reflect particular or aggregated information from the last
server restart only. When a server crashes, is restarted, or fails over, all cache information
disappears. This could be a huge limitation in the query troubleshooting process. In the
server cache, only the actual execution plan for a query is available and even this is not
guaranteed. Sometimes, the plan is not in the cache due to memory pressure or infrequent
usage. For queries with the OPTION (RECOMPILE), for instance, only the latest version of
the execution plan is in the cache, although the plan is generated by every execution. Since
only the latest execution plan for a query is available, you don't know if and how the
execution plan changed over time.

Every upgrade to a new SQL Server version, every failover, patch, and installation of a new
version of an application or service could lead to new execution plans. In most of the cases,
these plans look the same after the mentioned action, sometimes they are even better (new
versions and installing of cumulative updates and service packs usually improve overall
performance), but in some cases newly-generated plans could be significantly slower than
before the change. However, in server cache, the old, good plan cannot be found.

Query Store

[332]

What do we do in such cases? For the most critical stored procedures, I collect execution
plans and statistics from dynamic management views mentioned at the beginning of this
chapter and save them regularly into a database table by using a SQL job. The job runs
every five minutes, data is persistent, belongs to the database, and is not lost when the
server is restarted. On the top of the tables, I created a few PowerPivot reports and
notifications. I check them immediately after a failover, patch, or installation of a new
application version and use them to confirm that the action was successful or to quickly
identify performance degradations. A typical report is shown in the following screenshot.

Figure9 1 Report using previously collected execution data

It clearly shows one regressed stored procedure after an application release.

This approach works very well and I have good experience with it. It helped me many
times not only to identify performance issues, but also to confirm that an update action was
successful and learn more about my workload and how it behaves over time. However, I
had to write, maintain, and deploy this custom solution to every database, and ensure that
the mentioned SQL job will run on all servers for all databases, regardless of failover or
restart. It also requires consideration for, and even negotiations with, database
administrators to ensure that server performance will not be significantly affected with the
SQL job that collects my statistics. I would prefer an out-of-box solution for this, but such a
solution did not exist. Until SQL Server 2016.

Query Store

[333]

What is Query Store?
Query Store is the answer to the challenges described above. It collects the most relevant
information about the executed queries: query text, parameters, query optimization and
compilation details, execution plans, and execution statistics (execution time, CPU and
memory usage, I/O execution details) and stores them in a database so that they are
available after server restarts, failovers, or crashes.

You can use Query Store not only to identify performance issues, but also to fix some of
them. Query Store offers a solution for issues caused by changed execution plans. By using
Query Store, you can easily enforce the old plan; it is not required to rewrite the query or to
write any code. You don't affect the business logic, therefore there is no need for testing,
there is neither code deployment nor application restart. By taking this approach you can
quickly implement a solution or at least a workaround, and save time and money.

In addition to this, stored information can be used (they are exposed
through catalog views) outside of SQL Server, usually in reports and
notifications, to let you to get a better or more complete picture about your
workload and help you to be more familiar with it.

Query Store also captures some information that is not available in server cache such as
unfinished queries or queries with broken execution, either by the caller or by an exception.
You can easy find out how many executions of a single query were successful and how
many executions ended with exceptions. This was not possible prior to SQL Server 2016
with querying server cache.

Query Store architecture
Query Store is integrated with the query processor of the database engine. The simplified
architecture diagram is shown in the following diagram:

Figure 9 2 Query Store architecture

Query Store

[334]

Query Store actually has two stores:

Query and PlanStore: Stored information about executed queries and execution
plans used for their execution
Runtime Statistics Store: This store holds aggregated execution parameters
(execution time, logical reads, and so on) for executed queries within a specified
time

Both stores have instances in memory and persisted representation through disk tables. Due
to performance reasons, captured info is not immediately written to disk, it is rather written
asynchronously. Query Store physically stores this info into the database primary file
group.

When a query is submitted to the database engine and Query Store is enabled for the
database, during query compilation, Query Store captures information about the query and
execution plan. This is then sent into the Query and Plan store, if the information is not
already there. Information about a single query is stored only once in Query Store; the same
for execution plans. For every execution plan we have only one row (up to 200 different
execution plans are supported by default).

When the query is executed, execution parameters Query Store captures the most relevant
execution parameters (duration, logical reads, CPU time, used memory, and so on), uses
them in aggregated calculations, and sends them into the Runtime Stats Store only at
configured time intervals. Therefore, Query Store does not store info about every single
execution. If the time interval is 10 minutes, for instance, it stores runtime stats for a single
execution plan every 10 minutes.

Captured data is persistently stored in internal database tables. It is not directly available
for reading and manipulation. Instead of that, Query Store functionalities are exposed
through Query Store catalog views and stored procedures. There are seven query store
catalog views:

sys.database_query_store_options

sys.query_context_settings

sys.query_store_plan

sys.query_store_query

sys.query_store_query_text

sys.query_store_runtime_stats

sys.query_store_runtime_stats_interval

Query Store

[335]

Detailed info about query store catalog views can be found in SQL Server
Books Online at h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /d n

818149. a s p x .

You can also interact and perform some actions with Query Store by using six query store
stored procedures:

sp_query_store_flush_db

sp_query_store_force_plan

sp_query_store_remove_plan

sp_query_store_remove_query

sp_query_store_reset_exec_stats

sp_query_store_unforce_plan

Of course, SQL Server Books Online describes query store stored procedure in detail at h t t p

s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /d n 818153. a s p x .

Enabling and configuring Query Store
As with all new features, Query Store is not active for a database by default. You can enable
and configure it in SQL Server Management Studio (SSMS) by using the database
properties (Query Store Page) or by using Transact-SQL. To enable Query Store, your
account must be db_owner of the database or a member of the sysadmin fixed server role.

Query Store

[336]

Enabling Query Store with SSMS
To enable Query Store for a database, you need to select it and click on Properties. You can
find a new Query Store property page at the bottom of the list. As mentioned at the
beginning of the section, it is disabled by default, which is indicated by the values Off for
both Operation Mode (Actual) and Operation Mode (Requested). To enable it, you need to
change the value for the parameter Operation Mode (Requested) to Read Write, as shown
in the following screenshot:

Figure 9-3; Enabling Query Store in SQL Server Management Studio

Query Store

[337]

Enabling Query Store with Transact-SQL
The same action can be done by using Transact-SQL. Use the following statement to enable
Query Store in the database WideWorldImporters:

ALTER DATABASE WideWorldImporters SET QUERY_STORE = ON;

Configuring Query Store
As shown in the above section, to enable Query Store you need to set only one parameter or
click once. When you do this, you have enabled it with default values for all of its
parameters. There is a collection of query store options that can be configured. Again, you
can set them through SSMS or Transact-SQL. However, some of them have different names
and even metrics in both tools. Here is the list of configurable Query Store parameters:

Operation Mode defines the operation mode of the query store. Only two modes
are supported: READ_WRITE and READ_ONLY. Default value is READ_WRITE,
which means that Query Store collects query plans and runtime statistics and
writes them to the disk. READ_ONLY mode makes sense only when the collected
info in the query store exceeds the maximum allocated space for it. In this case,
the mode is set to READ_ONLY automatically. The name of the parameter in the
ALTER DATABASE Transact-SQL statement is OPERATION_MODE.
Max Size (MB) determines the space in megabytes allocated to the query store.
The parameter data type is bigint, default value is 100. The name of the
parameter in the ALTER DATABASE Transact-SQL statement is
STORAGE_SIZE_MB.
Statistics Collection Interval defines a fixed time window at which runtime
execution statistics data is aggregated into the query store. The parameter data
type is bigint, default value is 60.The name of the parameter in the ALTER
DATABASE Transact-SQL statement is INTERVAL_LENGTH_MINUTES.
Data Flush Interval (Minutes) determines the frequency at which data written to
the query store is persisted to disk. The parameter data type is bigint, default
value is 15. The minimum value is 1 minute. If you want to use it in the ALTER
DATABASE Transact-SQL statement its name is
DATA_FLUSH_INTERVAL_SECONDS. As you can see, in the Transact-SQL you need
to use seconds, and in SSMS, minutes as parameter metric. It seems that
consistency is lost somewhere between these two configuration modes.

Query Store

[338]

Query Store Capture Mode defines the scope of queries that will be captured.
The parameter data type is nvarchar, and has the following values: AUTO (only
relevant queries based on execution count and resource consumption are
captured), ALL (all queries are captured) and NONE (new queries are not captured,
only info about already captured queries). Default value is ALL. The name of the
parameter in the ALTER DATABASE Transact-SQL statement is
QUERY_CAPTURE_MODE.
Stale Query Threshold (Days) controls the retention period of persisted runtime
statistics and inactive queries. The parameter data type is bigint, default value
is 30 days. When you use Transact-SQL you need to know that this parameter is
a part of another parameter called CLEANUP_POLICY. The following Transact-
SQL code configures the Stale Query Threshold parameter for the Query Store in
the database WideWorldImporters to 60 days:

 ALTER DATABASE WideWorldImporters
 SET QUERY_STORE (CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS =
 60));

Size Based Cleanup Mode controls whether cleanup will be automatically
activated when the total amount of data gets close to maximum size. The
parameter data type is nvarchar, and has the following values: AUTO (size based
cleanup will be automatically activated when size on disk reaches 90% of
max_storage_size_mb. Size-based cleanup removes the least expensive and
oldest queries first. It stops at approximately 80% of max_storage_size_mb),
ALL (all queries are captured) and OFF (size based cleanup won't be automatically
activated). Default value is OFF. The name of the parameter in the ALTER
DATABASE Transact-SQL statement is SIZE_BASED_CLEANUP_MODE.
MAX_PLANS_PER_QUERY determines the maximum number of plans maintained
for a single query. The parameter data type is int, default value is 200. This
parameter is inconsistently implemented, too. It is not even shown on the Query
Store property page and can be set only via Transact-SQL.

Query Store default configuration
Enabling Query Store with default values is equivalent to this Transact-SQL statement:

ALTER DATABASE WideWorldImporters
SET QUERY_STORE = ON
 (
 OPERATION_MODE = READ_WRITE,
 MAX_STORAGE_SIZE_MB = 100,

Query Store

[339]

 DATA_FLUSH_INTERVAL_SECONDS = 900,
 INTERVAL_LENGTH_MINUTES = 60,
 CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 367),
 QUERY_CAPTURE_MODE = ALL,
 SIZE_BASED_CLEANUP_MODE = OFF,
 MAX_PLANS_PER_QUERY = 200
);

Default configuration is good for small databases or when you want to enable the feature
and learn about it with the real query workload. However, for large databases and volatile
database workloads you might need to change values for some Query Store options.

Query Store Recommended Configuration
What are the most important settings, and are default values a good starting point for using
Query Store in your database? The most important values are Max Size, Size Based
Cleanup Mode, Statistics Collection Interval, and Query Capture Mode.

Max Size: When maximum storage size allocated for Query Store is reached, then
Query Store switches to Read Only operation mode and no info is captured
anymore: you can only read already captured data. In most of the cases, this is
not what you want—you are usually interested in the recent data. To leave the
most recent data in Query Store, you would need to set Size Based Cleanup
Mode to Auto, which instructs a background process to remove the oldest data
from the store, when the data size approaches the max size, keeping the most
recent data in Query Store, similar to flight recorders in aircrafts. However, even
for a moderate workload, 100 MB for storage is not enough: I've seen moderate
databases, where Query Store contains queries from the last 24 hours only.
Therefore, I would suggest you to increase this value at least to 1 GB and set Size
Based Cleanup Mode to Auto to ensure that the most recent data is available
and to avoid switching to Read Only operation mode.
Statistics Collection Interval: You can leave this on its default value (1 hour) if
you don't need to track queries over time in less granular intervals. If your
database workload is volatile and depends on time patterns, you can consider
using a smaller value. However, bear in mind that this will increase the amount
of runtime statistics data.
Query Store Capture Mode: Should be set to auto to instruct Query Store to
capture info about only relevant queries based on execution count and resource
consumption. This will exclude some queries and captured info would not reflect
the whole workload, but the most relevant and important information will be
there.

Query Store

[340]

Disabling and cleaning Query Store
You might need to remove collected data from Query Store sometimes. For instance, when
you use it for demo purposes or when you fixed queries that were a long time in regression
and will be shown in Query Store reports in the next period too, because of their significant
regression. You can remove captured information by clicking on the Purge Query
Data button in the Query Store properties page inside SQL Server Management Studio (see
Figure 9.3).

In addition to this, you can use the following Transact-SQL command:

ALTER DATABASE WideWorldImporters SET QUERY_STORE CLEAR;

To disable Query Store, you would need to set operation mode property to Off either
through SQL Server management studio (Query Store page within database properties) or
Transact-SQL command:

ALTER DATABASE WideWorldImporters SET QUERY_STORE = OFF;

Query Store in action
In this section, you will see how Query Store collects information about queries and query
plans and how it can identify and fix regressed queries. It will be demonstrated how Query
Store supports and facilitates an upgrade to SQL Server 2016.

First, you will create a new database with a single table and populate it with two million
rows. This database will simulate a database that is created and used in SQL Server 2012
and that you restored in SQL Server 2016 but left in the old compatibility mode. Use the
following code to accomplish this task:

IF DB_ID('Mila') IS NULL CREATE DATABASE Mila;
GO
USE Mila;
GO
--help function GetNums created by Itzik Ben-Gan (http://tsql.solidq.com)
CREATE OR ALTER FUNCTION dbo.GetNums(@n AS BIGINT) RETURNS TABLE
AS
RETURN
 WITH
 L0 AS(SELECT 1 AS c UNION ALL SELECT 1),
 L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),
 L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),
 L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),
 L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

Query Store

[341]

 L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),
 Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT NULL)) AS n FROM L5)
 SELECT n FROM Nums WHERE n <= @n;
GO
--Create sample table
DROP TABLE IF EXISTS dbo.Order;
CREATE TABLE dbo.Order(
id INT IDENTITY(1,1) NOT NULL,
custid INT NOT NULL,
details NVARCHAR(200) NOT NULL,
status TINYINT NOT NULL DEFAULT (1) INDEX ix1 NONCLUSTERED,
CONSTRAINT PK_Order PRIMARY KEY CLUSTERED (id ASC)
);
GO
-- Populate the table with 2M rows
INSERT INTO dbo. Ord (custid, details)
SELECT 1 + ABS(CHECKSUM(NEWID())) % 1111100 AS custid, REPLICATE(N'X', 200)
AS details
FROM dbo.GetNums(2000000);

To simulate a database created with SQL Server 2012, set the compatibility level to 110:

ALTER DATABASE Mila SET COMPATIBILITY_LEVEL = 110;

Now, you will enable and configure Query Store for the database. It will accompany you in
your migration adventure. The following statement enables and configures Query Store for
the sample database:

ALTER DATABASE Mila
SET QUERY_STORE = ON
 (
 OPERATION_MODE = READ_WRITE,
 INTERVAL_LENGTH_MINUTES = 1
);

You can check the status and configured parameters of your query store by using the
following view:

SELECT * FROM sys.database_query_store_options;

The following screenshots shows Query Store configuration, done by the previous
command.

Figure 9 4 Check Query Store Configuration

Query Store

[342]

As you noticed, in this example you have used minimal value (one minute) for the
parameter INTERVAL_LENGTH_MINUTES. This is done for demonstration purposes; you
want to see collected data immediately. On the production system, this action can generate
a lot of runtime statistics rows and could mean, for instance, that data is available for the
last few hours only.

After you have enabled and configured Query Store, it immediately starts to collect
information about executed queries. You can now simulate a workload by executing a
sample query against the table you have created at the beginning of this section.

Capturing Query info
To simulate a database workload, you will execute one simple query. Ensure that the
database is in the compatibility mode 110, and that the Query Store is clean in order to track
your queries easily:

ALTER DATABASE Mila SET COMPATIBILITY_LEVEL = 110;
ALTER DATABASE Mila SET QUERY_STORE CLEAR;

Run this code to execute one statement 100 times, as shown in the following command:

SET NOCOUNT ON;
SELECT id, custid, details, status FROM dbo.Orders WHERE status IN (0, 2);
GO 100

The above query returns no rows; all rows in your table have 1 as value in the status
column. After executing this single query 100 times, you can check what has been captured
by Query Store by using the following query:

SELECT * FROM sys.query_store_query;

The query repository contains a single row for each compiled query. You can see in the
following screenshot one row representing the query you have executed in the previous
step.

Figure 9 5 Check captured queries in Query Store

Query Store

[343]

You have cleared the Query Store before executing the above query, and since you have
executed a single query only, Query Store captured only one query. However, you could
still get more rows from this catalog view if you run this code when you try code examples
from this chapter, because some system queries such as updated statistics could also run at
this time. Use the following query to return the query_text beside the query_id for all
captured queries in the Query Store so that you can identify your query:

SELECT q.query_id, qt.query_sql_text FROM sys.query_store_query q
INNER JOIN sys.query_store_query_text AS qt ON q.query_text_id =
qt.query_text_id;

The preceding query produces the following output:

query_id query_sql_text
-------- ---
1 SELECT id, custid, details, status FROM dbo.Orders
 WHERE status IN (0, 2)
2 SELECT * FROM sys.query_store_query

As you can see, the query_id of your initial query has a value of 1, and
you will use it for further queries. If you get some other value when you
run these examples, use it later instead of 1. In this section, the initial
query will be tracked by using query_id =1.

The catalog view sys.query_store_query contains information about query hash, query
compilation details, binding and optimizing, and also parametrization. The full list and
description of all attributes of the catalog view you can find in the Books Online at h t t p s

://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /d n 818156. a s p x .

The catalog view sys.query_store_query_text contains query text and statement SQL
handle for all queries captured in the Query Store. It has only five attributes and is linked to
the sys.query_store_query catalog view via the attribute query_id. The full list and
description of all attributes of the catalog view you can find in the Books Online at h t t p s

://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /d n 818159. a s p x .

Capturing plan info
For each query, you can have at least one execution plan. Therefore, in the plan repository,
at least one entry exists for each query from the query repository. The following query
returns rows from the plan repository:

SELECT * FROM sys.query_store_plan;

Query Store

[344]

You can see four plans for four executed queries in the database Mila. The first query is
your initial query; the rest are queries against the catalog views as shown in the following
screenshot. As mentioned earlier in this section, you can see more entries if you execute the
code examples from this chapter.

Figure 9 6 Check captured query plans in Query Store

The catalog view sys.query_store_plan contains information about query plan
generation, including the plan in XML format. The full list and description of all attributes
of the catalog view can be found in the Books Online at h t t p s ://m s d n . m i c r o s o f t . c o m /e n -

u s /l i b r a r y /d n 818155. a s p x .

Retuning query text beside IDs is always a good idea. Run the following code to show
query text info, too:

SELECT qs.query_id, q.query_sql_text, p.query_plan
FROM sys.query_store_query AS qs
INNER JOIN sys.query_store_plan AS p ON p.query_id = qs.query_id
INNER JOIN sys.query_store_query_text AS q ON qs.query_text_id =
q.query_text_id;

The output is more user friendly as the following screenshot clearly shows:

Figure 9-7 Check captured queries and query plans in Query Store

As you can see, queries against catalog views are also there, but you are interested in user
queries only. For the initial query, you can see that all its executions were done with the
same execution plan.

Query Store

[345]

Already here, you can see the first great thing about Query Store. You can identify all
queries that are executed with more than one execution plan. Use the following query to
identify query_id for queries that have at least two different plans:

SELECT query_id, COUNT(*) AS cnt
FROM sys.query_store_plan p
GROUP BY query_id
HAVING COUNT(*) > 1 ORDER BY cnt DESC;

The query returns no rows in this case, you have simply executed only one query, but this is
very useful information: you can instantly identify unstable queries in your system.

Collecting runtime statistics
In the previous two subsections, you saw two kinds of information: query details and
execution plan. Now, it is time for execution statistics parameters. You will query a new
catalog view:

SELECT * FROM sys.query_store_runtime_stats;

The output is shown in the following screenshot:

Figure 9 8 Check collected runtime statistics in Query Store

Again, the output generated when you execute the above query can differ from the one
shown in Figure 9.8. The catalog view sys.query_store_runtime_stats contains
information about the runtime execution statistics information for the query. The full list
and description of all attributes of the catalog view can be found in the Books Online at h t t

p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /d n 818158. a s p x .

Every minute (you have so configured Query Store), one entry per query plan will be
entered in this store.

Query Store

[346]

Actually, for each execution plan, you can have more than one entry in the
runtime statistics store per unit defined with Statistics Collection Interval
option. If all queries were successfully executed, one row will be added to
the store. However, if some executions with the same plan were aborted
by the client or ended with an exception, you can have more rows
representing each execution type. Three execution types are supported:
Regular, Aborted, and Exception which means that for each execution
plan you can have up to three rows in the runtime statistics store per unit
defined with Statistics Collection Interval option.

If you execute the initial query again, say, 200 times:

SET NOCOUNT ON;
SELECT id, custid, details, status FROM dbo.Orders WHERE status IN (0, 2);
GO 200

When you check the runtime statistics, you can see two entries for the same execution plan.
In this example, it is plan_id = 1, because it is identified as the plan for the initial query.
If you run this code later, your plan_id can be different.

SELECT * FROM sys.query_store_runtime_stats WHERE plan_id = 1;

The following screenshot shows these three entries:

Figure 9-9 Check multiple runtime statistics entries for an execution plan in Query Store

You can see two additional entries with 200 executions and their aggregated statistic
relevant execution parameters. You can use this query to see how execution parameters are
changing over time.

Query Store and migration
In previous sections, you saw how Query Store captures and stores data about queries and
their execution plans. It is now time to see how Query Store can help you with migration.

To simulate migration to SQL Server 2016, you will now change the compatibility level to
130.

ALTER DATABASE Mila SET COMPATIBILITY_LEVEL = 130;

Query Store

[347]

And execute the initial query:

SET NOCOUNT ON;
SELECT id, custid, details, status FROM dbo.Orders WHERE status IN (0, 2);
GO 100

This time, it will take much longer than the execution under the old compatibility mode;
you will see why later. It is clear that a new plan has been created for the query and it is also
clear that the old one was better. After the execution is done, you can check query and plan
repositories. Since you already know the query_id for the query, you can check the plan
repository to confirm that the plan has been changed under the new compatibility mode.

SELECT * FROM sys.query_store_plan WHERE query_id = 1;

The following screenshot shows two entries in the plan repository. You can also see that
two plans have been generated with different compatibility modes: 110 and 130
respectively.

Figure 9 10 Check multiple plans for a single query in Query Store

Setting the compatibility mode for the sample database to 130 triggers the generation of
new execution plans for queries against this database. Most of them will probably be the
same as they were before, but some of them will change. You can expect small or big
improvements for most of them, but the upgrade to the latest compatibility mode will
introduce significant regression for some queries, as in the sample query in this section. In
the next section, you will see how Query Store can help you to solve these issues.

Query Store

[348]

Query Store – identifying regressed queries
To see how Query Store represents regression, you will use new Query Store node within
SQL Server management studio. From four integrated reports, you will choose Tracked
Queries as shown in the following screenshot:

Figure 9 11 Tracked Queries report in Query Store section of SQL Server Management Studio

When you click to Tracked Queries, a new window will be opened in SSMS. In the text
field Tracking query, enter 1 and click on the button with the small play icon. As
mentioned earlier, assume that the ID of your initial query is 1. You will see a screen similar
to the one displayed in the following screenshot:

Figure 9 12 Tracked Queries report showing the new execution plan (compatibility level 130)

Query Store

[349]

You can see two different colors for bullets, representing two execution plans used for the
execution of the query with the ID 1. The vertical axis shows the average execution time for
the plans in milliseconds. It is clear that the yellow plan performs better and that average
execution time for the blue plan is significantly increased. In the bottom pane, you can see
the execution plan for the selected circle (in this case, this is a plan with the ID 14, which
represents the execution plan under the compatibility level 130). The plan uses clustered
index scan operator and performs the full scan of the sample table.

When you click on the pink circle in the screen, you get the window shown in the following
screenshot:

Figure 9 13 Tracked Queries report showing the old execution plan (compatibility level 110)

You can see the old execution plan that uses nested loop join operator, while the new one
has clustered index scan as the main operator, which explains why the old execution plan is
better for this high selective query (no rows are returned).

Query Store

[350]

Changes in the cardinality estimator introduced in SQL Server 2014 are
responsible for new execution plans in this example. The old CE estimates
only one row, while the new CE expects all rows to be returned, which of
course, leads to an execution plan with a scan operator. Since the query
returns no rows, the estimation done by the old CE is more suitable in this
case. The same plan (clustered index scan) would be generated under the
compatibility level 120.

Of course, you can get this info by querying catalog views, too. The following query returns
rows from the collected runtime statistics for two plans in the Query Store:

SELECT plan_id, CAST(avg_duration AS INT) AS avg_duration,
avg_logical_io_reads FROM sys.query_store_runtime_stats WHERE plan_id = 1
UNION ALL
SELECT plan_id, CAST(avg_duration AS INT) AS avg_duration,
avg_logical_io_reads FROM sys.query_store_runtime_stats WHERE plan_id = 14;

The output is shown in the following screenshot. You can see that all execution parameters
are significantly increased for the second plan:

Figure 9-14 Comparing multiple runtime statistics for two different execution plans

Query Store – fixing regressed queries
Of course, after migration, you need to fix the regression as soon as possible. It is obvious in
this case that the old plan is better: both average execution time and number of logical reads
are significantly increased. What can you do with this information? All you want is to have
the same or similar execution parameters as you had before the migration. How can you get
them back? Here are the steps you usually need to perform prior to SQL Server 2016 when
an important query suddenly starts to run slow:

You need to understand why SQL Server decided to change the plan
You can try to rewrite the query and hope that the optimizer will choose a better
plan or the old plan

Query Store

[351]

You can apply a query hint to enforce a better plan or the old execution plan
If you have saved the old plan, you can try to enforce it by using plan guides

All these tasks require time and knowledge for the implementation, and since they include
code changes, there is risk that the change will break the application functionality.
Therefore, it introduced testing efforts, which means additional time, resources, and money.
You usually don't have a lot of time, and company management is not happy when an
action requires more money.

As you can guess, Query Store will save you time and money. It allows you to instruct the
optimizer to use the old plan. All you have to do is to choose the plan you want to be
applied and to click the button Force Plan, and then confirm the decision by clicking on Yes
in the Confirmation dialog box as shown in the following screenshot:

Figure 9 15 Query Store plan forcing

Query Store

[352]

Now, when you execute the query again, you will see the third color with the circle
representing the third execution plan as shown in the following screenshot:

SET NOCOUNT ON;
SELECT id, custid, details, status FROM dbo.Orders WHERE status IN (0, 2);

Figure 9-16 Plan forcing in action

The execution is faster, you get the old plan again and there is no risk of a breaking change.
And also, you did not spend much time fixing the issue!

You can also force and unforce a plan by using Query Store stored procedures. The
following command unforces the execution plan that you forced in the previous step:

EXEC sp_query_store_unforce_plan @query_id = 1, @plan_id = 1;

Query Store

[353]

When you execute the query again, you will see that the plan is not forced anymore and
that the execution is slow again as shown in the following screenshot.

SET NOCOUNT ON;
SELECT id, custid, details, status FROM dbo.Orders WHERE status IN (0, 2);

Figure 9-17 Query Store plan un-forcing

Now you can use Transact-SQL to force the old plan again:

EXEC sp_query_store_force_plan @query_id = 1, @plan_id = 1;

Query Store

[354]

When you execute the query again, you will see that the plan is forced again and another
circle came to the main pane as you can see in the following screenshot:

SET NOCOUNT ON;
SELECT id, custid, details, status FROM dbo.Orders WHERE status IN (0, 2);

Figure 9-18 Query Store plan forcing

In this section, you saw that Query Store can not only help you to identify performance
regressions, but also to solve them quickly, elegantly, and with almost no effort. However,
bear in mind that forcing an old plan is a “forever decision”; the plan will always be applied
whenever the query is executed. You have to be absolutely sure that you want this when
you force the plan.

Forcing a plan will instruct SQL Server to use one plan whenever the
query is executed regardless of its costs or improvement in the database
engine. However, if the execution plan requires database objects that don't
exist anymore (for instance, an index used in the plan is dropped), the
query execution will not fail, but a new plan will be generated. The forced
plan will be saved and set in the “hold on” mode and will be applied again
when the missing object is available.

Query Store

[355]

You should also notice that forcing an old, good looking execution plan in a Query Store
report does not guarantee that the execution with it will be better. A typical example would
be issues with parameter sniffing, where different parameter combinations require different
plans. Forcing an old plan in that case can be good for some parameter combinations only,
but for others, it could be even worse than the actual, bad execution plan. Generally, Query
Store helps you to solve problems with queries whose execution plans have changed over
time but that have stable input parameters. You should not force the old plan for all queries
when you see that the old execution parameters look better!

I am using Query Store intensively, and it is an excellent tool and great help for me during
query troubleshooting. I have forced an old execution plan several times in the production
system to solve or mitigate a significant performance degradation. In my company, the
massive workload and peaks happen on a weekend, and if you have an issue on a weekend,
you usually want to solve it or find a workaround as quickly as possible. Query Store
allows me to force a well-known and good plan and solve the issue temporarily. I review
and evaluate it later, during regular working time, without pressure and risk of breaking
some applications. Sometimes, I rewrite the code and unforce the plan, sometimes, when I
am completely sure that I want exactly the plan that I have forced, I leave it in the
production database. When you know what are you doing, you can use all Query Store
features. Query Store can save time and money.

Query Store reports in SQL Server
management studio
In the previous section, you saw that migration to SQL Server 2016 can lead to performance
regressions for some database queries. In this example, you had only one query and since
the regression was significant, you could immediately detect it; you did not need help from
Query Store. However, in the production system, you could have hundreds or thousands of
queries, and you will not be able to check them to see if they perform well after migration.
To find regressed queries or queries that are consuming most server resources, you can use
the Query Store reports.

Query Store

[356]

When Query Store is enabled for a database, in the Object Explorer of the SQL Server
management studio you can find a new node Query Store for this database. When you
expand the node, you can find four reports under it:

Regressed queries
Top resource consuming queries
Overall resource consumption
Tracked queries

You have already seen the report Tracked Queries in action; here we will describe the other
three reports.

Regressed queries
The report page Regressed queries shows queries where performance is regressed over
time. Query Store analyzes database workload and extracts the 25 most regressed queries
according to the chosen metrics. You can choose between the following metrics: CPU time,
Duration, Logical reads, Logical writes, Memory consumptions, and Physical reads. You
can also decide whether you want to see total numbers or maybe average, max, min, or
standard deviation of the value chosen in the first step. The following screenshot shows
regressed queries in a moderate database in a chart format:

Query Store

[357]

Figure 9-19 View regressed queries in a chart format

Chart format allows you to focus on the most regressed queries. As you can see, there are
three panes on the page. In the first pane, you can see up to 25 of the most regressed
queries. The pane on the right side shows the execution plans over time for the query
chosen in the left pane. Finally, the bottom pane shows the graphical representation of the
plan chosen in the second pane.

Query Store

[358]

In the top-right corner in the left pane, you can find an option which allows you to choose
between chart and grid format of regressed queries. The same regressed queries but in a
grid format are shown in the following screenshot:

Figure 9-20 View regressed queries in a grid format

Compared to the other display mode, only the left pane is different. It contains textual
information such as query text and procedure name and numerical values for many metrics
with significantly more information than chart view.

In the top-right corner in the right pane, you can configure time intervals for query
executions. In Figure 9-20, the time interval is set to one week (last week).

Query Store

[359]

Top resource consuming queries tab
The report top resource consuming queries shows you the most expensive queries (25),
based on your chosen metric, analog to the previous report type. The displayed panes are
the same as in the regressed queries report. The only difference between them is extracted
queries: top resource consumers can also see queries that did not regress, but just use a lot
of server resources. A sample report is shown in Figure 9-21.

Figure 9-21 Top Resource Consuming Queries

This Query Store report will not find plan regressions, but can help you to quickly identify
the most expensive queries in a database in a given time interval.

Query Store

[360]

Overall resource consumption
The report overall resource consumption can be used to determine the impact of particular
queries to all database resources. The report has predefined panes where you can see the
impact of queries for overall duration, execution count, CPU time, and logical reads. You
can define an additional three parameters (logical writes, memory consumption, and
physical reads) and you can also show this info in a grid format. A common report with
default windows is shown in the following screenshot:

Figure 9 22 Overall Resource Consumption

Query Store

[361]

Query Store use cases
Query Store is a very useful feature and can help you to identify and solve some
performance problems, but also help you to learn about your workload and to be more
familiar with it.

The main use cases are related to issues caused by a changed execution plan. Complex
queries can have many potential execution plans and some of them can be performant,
while some others lead to serious performance problems. The Query Optimizer does a great
job when it generates execution plans but sometimes it comes up with a suboptimal plan. It
is possible that two, totally different execution plans have similar costs. When a complex
query has a good plan, the next plan for the same query can perform badly. The next plan
might be generated when the old plan is not in the cache anymore. This happens when SQL
Server is upgrading to a new version, when cumulative update or Service Pack is installed,
when patching is performed, when a failover happens, and also when a new application or
service version is deployed. In all these cases, when a new plan performs badly, Query
Store can help not only for identifying but also to find a solution or a workaround for the
problem.

SQL Server version upgrades and patching
The main use case, and most probably the one that triggered introducing of this feature, is
upgrading to a new SQL Server version. An upgrade is never a trivial action, and it brings
improvements (that's the reason why we upgrade, right?), but sometimes also brings
regressions. These regressions are not always predictable and it happens often that
companies do not perform a full upgrade to the latest SQL Server version, but leave the
most important or most volatile database in the old compatibility mode. This means
execution plans will use the logic, rules, and algorithms from the previous database version.
By taking this approach, you can reduce the risk of performance regression, but you will not
be able to use some of the new features because they are available only in the latest
compatibility mode. In my experience, after changes in the Cardinality Estimator in SQL
Server 2014, more than 50% of companies did not upgrade all large and volatile databases
to its compatibility mode 120 because of significant regressions. Most of the queries perform
well, but some of them got different, sub-optimal execution plans and fixing them on
production systems would be too expensive and risky.

Query Store can help you to perform upgrades without worrying about issues with
different plans in the new version. It can easily and quickly identify issues with execution
plans and offer you an option to force the old plan in case of regression, without a big
impact to the production workload.

Query Store

[362]

In measurements and tests that I have performed, I could not detect a
significant impact of Query Store activities to the database workload. I
would estimate that the Query Store impact is roughly 3-5% of server
resources.

A typical scenario for SQL Server version upgrade follows:

Upgrade SQL Server to the latest version (SQL Server 2016 Service Pack 1), but
leave all user databases in the old compatibility mode.
Enable and configure Query Store.
Let Query Store work and collect information about your representative
workload.
Change compatibility level to the latest one (130).
Check Regressed Queries report in Query Store.
Force old plans for regressed queries.
Query Store will let you fix the problems by choosing the old plan. However, as
mentioned earlier, this might not be a final solution and it is good idea to analyze
why regression happened and to try to tune the query. Of course, this could be
time and resource consuming and it is better to do this later, when you have
enough time, than when under pressure, at the time when problems occur on the
production system.

Application and service releases, patching,
failovers, and cumulative updates
In all these cases, Query Store can help you to identify issues after the actions and to fix
problems caused by changed execution plans very quickly, efficiently, and without risking
business applications. A typical scenario is:

Ensure that Query Store is enabled and configured.
Let Query Store work and capture information about your representative
workload.
Perform the install action. This can be one of these actions.
Server failover.
Installing SQL Server Service Pack.
Installing SQL Server Cumulative Update.
Upgrade hardware configuration.
Operating system and network patching.

Query Store

[363]

Application and service deployment.
Let Query Store collect information about queries and plans.
Run Regressed Queries and Top Resources Consuming Query reports
Query Store will let you fix the problems by choosing the old plan. It is good idea
to analyze why regression happened, but it is better to do this later, when you
have enough time.

Identifying ad hoc queries
You can use Query Store to identify ad hoc workloads, which are typically characterized by
a relatively large number of different queries executed very rarely, and usually only once.
Use the following query to identify all queries that are executed exactly once:

SELECT p.query_id
FROM sys.query_store_plan p
INNER JOIN sys.query_store_runtime_stats s ON p.plan_id = s.plan_id
GROUP BY p.query_id
HAVING SUM(s.count_executions) = 1;

Identifying unfinished queries
In the section, Query Store in Action, you saw that Query Store does not capture runtime
statistics only for successfully executed queries. When query execution is aborted by the
caller or end with an exception, this info is not stored to server cache, but Query Store
collects that info too. This can help you to easily identify queries with an incomplete
execution process.

To see an example, you first need to clean-up info that was captured in the previous
sections of this chapter:

ALTER DATABASE Mila SET QUERY_STORE CLEAR ALL;
ALTER DATABASE Mila SET QUERY_STORE = OFF;
ALTER DATABASE Mila
SET QUERY_STORE = ON
 (
 OPERATION_MODE = READ_WRITE
 , DATA_FLUSH_INTERVAL_SECONDS = 2000
 , INTERVAL_LENGTH_MINUTES = 1
);

Query Store

[364]

You should also ensure that the latest compatibility mode is applied:

ALTER DATABASE Mila SET COMPATIBILITY_LEVEL = 130;

Now, you can execute the same query as you did in the section Query Store in Action:

SELECT * FROM dbo.Orders WHERE status IN (0,2);
GO 100

You should execute the query, then click the cancel executing query button in the SQL
Server management studio, then click again to execute it in order to simulate the execution
and query abortion.

In addition to this you should execute the following query, too:

SELECT Status/ (SELECT COUNT(*) FROM dbo.Orders WHERE Status IN (0, 2))
FROM dbo.Orders WHERE id = 1;

This query will not be successfully executed; it will raise a Divide by zero exception. Now,
you can check what Query Store has captured. To do this run the following code:

SELECT * FROM sys.query_store_runtime_stats;

In the following screenshot you can see two entries for your initial query (regular executed
and aborted) and also an entry for the query with the Divide by zero exception:

Figure 9-23 Identifying unfinished queries by using Query Store

As you can see, by using Query Store you can easily identify started but not executed
queries in your database.

Query Store

[365]

Summary
Query Store is a great troubleshooting tool which captures all execution relevant
parameters for database queries: query details, execution plans, and runtime statistics and
stores them in the same database so that they can survive after server failures. All that is
done out-of-the-box, with minimal impact on the database workload.

By using Query Store, you can not only quickly identify performance regressions, but also
mitigate them by forcing a well-known and previously used execution plan. Query Store
will save you time and money. It also helps you to learn how your database workload
changes over time and to identify queries that did not execute successfully.

10
Columnstore Indexes

Analytical queries that scan huge amounts of data were always problematic in a relational
database. Nonclustered balanced tree indexes are efficient for transactional queries seeks;
however, they rarely help with analytical queries. A great idea occurred nearly 30 years
ago: why do we need to store data physically in the same way we work with it
logically—row by row? Why don't we store it column by column and transform columns
back to rows when we interact with the data? Microsoft was playing with this idea for a
long time and finally implemented it in SQL Server.

Columnar storage was first added to SQL Server in version 2012. It included nonclustered
columnstore indexes (NCCI) only. Clustered columnstore indexes (CCI) were added in
version 2014. In this chapter, the readers revise the columnar storage and then explore huge
improvements for columnstore indexes in SQL Server 2016: updatable nonclustered
columnstore indexes, columnstore indexes on in-memory tables, and many other new
features for operational analytics.

In the first section, you will learn about the SQL Server support for analytical queries
without using the columnar storage. The next section of this chapter jumps directly to the
columnar storage and explains the internals about it, with the main focus on columnar
storage compression. In addition, the batch execution mode is introduced.

Then it is time to show columnar storage in action. The chapter starts with a section that
introduces the nonclustered columnstore indexes. The demo code shows the compression
you can get with this storage and also how to create a filtered nonclustered columnstore
index.

Columnstore Indexes

[367]

The clustered columnstore indexes can have even better compression. You will learn how
much these clustered and nonclustered columnstore indexes compress data and improve
the performance of your queries. You can also combine columnar indexes with regular B-
tree indexes. In addition, you will learn how to update data in a clustered columnstore
index, especially how to insert new data efficiently. Finally, the chapter introduces the way
to use columnar indexes together with regular B-tree indexes to implement a solution for
operational analytics.

This chapter will cover the following points:

Data compression in SQL Server
Indexing for analytical queries
T-SQL support for analytical queries
Columnar storage basics
Nonclustered columnstore indexes
Using clustered columnstore indexes
Creating regular B-tree indexes for tables with CCI
Discovering support for primary and foreign keys for tables with CCI
Discovering additional performance improvements with batch mode
Columnstore indexes query performance
Columnstore for real time operational analytics
Data loading for columnstore indexes

Analytical queries in SQL Server
Supporting analytical applications in SQL Server differs quite a lot from supporting
transactional applications. The typical schema for reporting queries is the star schema. In a
star schema, there is one central table called fact table and multiple surrounding tables
called dimensions. The fact table is always on the many side of every relationship with
every dimension. The database that supports analytical queries and uses the star schema
design is called Data Warehouse (DW). Dealing with data warehousing design in detail is
out of the scope of this book. Nevertheless, there is a lot of literature available. For a quick
start, you can read the data warehouse concepts MSDN blog at
https://blogs.msdn.microsoft.com/syedab/2010/06/01/data-warehouse-concepts/. The
WideWorldImportersDW demo database implements multiple star schemas. The following
screenshot shows a subset of tables from this database that supports analytical queries for
sales:

Columnstore Indexes

[368]

Figure 10-1 Sales Star schema

Typical analytical queries require huge amounts of data, for example, sales data for two
years, which is then aggregated. Therefore, index seeks are quite rare. Most of the times,
you need to optimize the number of IO reads using different techniques than you would
use in a transactional environment, where you have mostly selective queries that benefit a
lot from index seeks. Columnstore indexes are the latest and probably the most important
optimization for analytical queries in SQL Server. However, before going to the columnar
storage, you should be familiar with other techniques and possibilities for optimizing data
warehousing scenarios. All you will learn about in this section will help you understand the
need for and the implementation of columnstore indexes. You will learn about the
following:

Join types
Bitmap filtered hash joins

Columnstore Indexes

[369]

B-tree indexes for analytical queries
Filtered nonclustered indexes
Table partitioning
Indexed views
Row compression
Page compression
Appropriate query techniques

Joins and indexes
SQL Server executes a query by a set of physical operators. Because these operators iterate
through rowsets, they are also called iterators. There are different join operators, because
when performing joins, SQL Server uses different algorithms. SQL Server supports three
basic algorithms: nested loops joins, merge joins, and hash joins. A hash join can be
further optimized by using bitmap filtering; a bitmap filtered hash join could be treated as
the fourth algorithm or as an enhancement of the third, the hash algorithm. The last one, the
bitmap filtered hash join, is an example of SQL Server's optimization for analytical queries.

The nested loops algorithm is a very simple and, in many cases, efficient algorithm. SQL
Server uses one table for the outer loop, typically the table with fewer rows. For each row in
this outer input, SQL Server seeks matching rows in the second table, which is the inner
table. SQL Server uses the join condition to find the matching rows. The join can be a non-
equijoin, meaning that the equality operator does not need to be part of the join predicate.
If the inner table has no supporting index to perform seeks, then SQL Server scans the inner
input for each row of the outer input. This is not an efficient scenario. A nested loops join is
efficient when SQL Server can perform an index seek in the inner input.

Merge join is a very efficient join algorithm. However, it has its own limitations. It needs at
least one equijoin predicate and sorted inputs from both sides. This means that the merge
join should be supported by indexes on both tables involved in the join. In addition, if one
input is much smaller than another, then the nested loops join could be more efficient than a
merge join.

Columnstore Indexes

[370]

In a one-to-one or one-to-many scenario, the merge join scans both inputs only once. It
starts by finding the first rows on both sides. If the end of the input is not reached, the
merge join checks the join predicate to determine whether the rows match. If the rows
match, they are added to the output. Then the algorithm checks the next rows from the
other side and adds them to the output until they match the predicate. If the rows from the
inputs do not match, then the algorithm reads the next row from the side with the lower
value from the other side. It reads from this side and compares the row to the row from the
other side until the value is bigger than the value from the other side. Then it continues
reading from the other side, and so on. In a many-to-many scenario, the merge join
algorithm uses a worktable to put the rows from one input side aside for reusage when
duplicate matching rows from the other input exist.

If none of the inputs is supported by an index and an equijoin predicate is used, then the
hash join algorithm might be the most efficient one. It uses a searching structure named
hash table. This is not a searching structure you can build like a balanced tree used for
indexes. SQL Server builds the hash table internally. It uses a hash function to split the
rows from the smaller input into buckets. This is the build phase. SQL Server uses the
smaller input for building the hash table because SQL Server wants to keep the hash table in
memory. If it needs to get spilled out to tempdb on disk, then the algorithm might become
much slower. The hash function creates buckets of approximately equal size.

After the hash table is built, SQL Server applies the hash function on each of the rows from
the other input. It checks to see which bucket the row fits. Then it scans through all rows
from the bucket. This phase is called the probe phase.

A hash join is a kind of compromise between creating a full balanced tree index and then
using a different join algorithm and performing a full scan of one side input for each row of
the other input. At least in the first phase, a seek of the appropriate bucket is used. You
might think that the hash join algorithm is not efficient. It is true that in a single-thread
mode, it is usually slower than merge and nested loops join algorithms that are supported
by existing indexes. However, SQL Server can split rows from the probe input in advance. It
can push the filtering of the rows that are candidates for a match with a specific hash bucket
down to the storage engine. This kind of optimization of a hash join is called a bitmap
filtered hash join. It is typically used in a data warehousing scenario, where you can have
large inputs for a query, which might not be supported by indexes. In addition, SQL Server
can parallelize query execution and perform partial joins in multiple threads. In data
warehousing scenarios, it is not uncommon to have only a few concurrent users, so SQL
Server can execute a query in parallel. Although a regular hash join can be executed in
parallel as well, the bitmap filtered hash join is even more efficient because SQL Server can
use bitmaps for early elimination of rows not used in the join from the bigger table involved
in the join.

Columnstore Indexes

[371]

In the bitmap filtered hash join, SQL Server first creates a bitmap representation of a set of
values from a dimension table to prefilter rows to join from a fact table. A bitmap filter is a
bit array of m bits. Initially, all bits are set to 0. Then SQL Server defines k different hash
functions. Each one maps some set element to one of the m positions with a uniform
random distribution. The number of hash functions k must be smaller than the number of
bits in array m. SQL Server feeds each of the k hash functions to get k array positions with
values from dimension keys. It set the bits at all these positions to 1. Then SQL Server tests
the foreign keys from the fact table. To test whether any element is in the set, SQL Server
feeds it to each of the k hash functions to get k array positions. If any of the bits at these
positions are 0, the element is not in the set. If all are 1, then either the element is in the set,
or the bits have been set to 1 during the insertion of other elements. The following diagram
shows the bitmap filtering process:

Figure 10 2 Bitmap filtering

In the preceding diagram, the length m of the bit array is 16. The number k of hash
functions is 3. When feeding the hash functions with the values from the set {a, b, c}, which
represents dimension keys, SQL Server sets bits at positions 2, 4, 5, 6, 11, 12, and 14 to 1
(starting numbering positions with 1). Then SQL Server feeds the same hash functions with
the value w from the smaller set at the bottom {w}, which represents a key from a fact table.
The functions would set bits at positions 4, 9, and 12 to 1. However, the bit at position 9 is
set to 0. Therefore, the value w is not in the set {a, b, c}.

If all of the bits for the value w would be set to 1, this could mean either
that the value w is in the set {a, b, v} or that this is a coincidence.

Columnstore Indexes

[372]

Bitmap filters return so-called false positives. They never return false negatives. This means
that when you declare that a probe value might be in the set, you still need to scan the set
and compare it to each value from the set. The more false positive values a bitmap filter
returns, the less efficient it is. Note that if the values in the probe side in the fact table are
sorted, it will be quite easy to avoid the majority of false positives.

The following query reads the data from the tables introduced earlier in this section and
implements star schema optimized bitmap filtered hash joins:

USE WideWorldImportersDW;
SELECT cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,
 ci.[State Province] AS StateProvince, ci.[Sales Territory] AS
SalesTeritory,
 d.Date, d.[Calendar Month Label] AS CalendarMonth,
 d.[Calendar Year] AS CalendarYear,
 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product, s.Color,
 e.[Employee Key] AS EmployeeKey, e.Employee,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Employee AS e
 ON f.[Salesperson Key] = e.[Employee Key]
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date;

The following diagram shows a part of the execution plan. You can see the Bitmap Create
operator that is fed with values from the dimension date table. The filtering of the fact table
is done in the Hash Match operator:

Figure 10-3 Bitmap Create operator in the execution plan

Columnstore Indexes

[373]

Benefits of clustered indexes
SQL Server stores a table as a heap or as a balanced tree (B-tree). If you create a clustered
index, a table is stored as a B-tree. As a general best practice, you should store every table
with a clustered index because storing a table as a B-tree has many advantages, as listed
here:

You can control table fragmentation with the ALTER INDEX command using the
REBUILD or REORGANIZE option.
A clustered index is useful for range queries because the data is logically sorted
on the key.
You can move a table to another filegroup by recreating the clustered index on a
different filegroup. You do not have to drop the table as you would to move a
heap.
A clustering key is a part of all nonclustered indexes. If a table is stored as a heap,
then the row identifier is stored in nonclustered indexes instead. A short integer-
clustering key is shorter than a row identifier, thus making nonclustered indexes
more efficient.
You cannot refer to a row identifier in queries, but clustering keys are often part
of queries. This raises the probability for covered queries. Covered queries are
queries that read all data from one or more nonclustered indexes without going
to the base table. This means that there are fewer reads and less disk IO.

Clustered indexes are particularly efficient when the clustering key is short. Creating a
clustering index with a long key makes all nonclustered indexes less efficient. In addition,
the clustering key should be unique. If it is not unique, SQL Server makes it unique by
adding a 4-byte sequential number called uniquifier to duplicate keys. Uniquifier becomes
a part of the clustering key, which is duplicated in every nonclustered index. This makes
keys longer and all indexes less efficient. Clustering keys could be useful if they are ever-
increasing. With ever-increasing keys, minimally logged bulk inserts are possible even if a
table already contains data, as long as the table does not have additional nonclustered
indexes.

Columnstore Indexes

[374]

Data warehouse surrogate keys are often ideal for clustered indexes. Because you are the
one who defines them, you can define them as efficiently as possible. Use integers with
autonumbering options. The primary key constraint creates a clustered index by default. In
addition, clustered indexes can be very useful for partial scans. Remember that analytical
queries typically involve a lot of data and, therefore, don't use seeks a lot. However, instead
of scanning the whole table, you can find the first value with a seek and then perform a
partial scan until you reach the last value needed for the query result. Many times,
analytical queries use date filters; therefore, a clustering key over a date column might be
ideal for such queries.

You need to decide whether to optimize your tables for data load or for querying. However,
with partitioning, you can get both—efficient data load without a clustered key on an ever-
increasing column, and more efficient queries with partial scans. In order to show the
efficiency of partial scans, let's first create a new table organized as a heap with the
following query:

SELECT 1 * 1000000 + f.[Sale Key] AS SaleKey,
 cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,
 f.[Delivery Date Key] AS DateKey,
 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
INTO dbo.FactTest
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date;

Now you can turn the STATISTICS IO on to show the number of logical reads in the
following two queries:

SET STATISTICS IO ON;
-- All rows
SELECT *
FROM dbo.FactTest;
-- Date range
SELECT *
FROM dbo.FactTest
WHERE DateKey BETWEEN '20130201' AND '20130331';
SET STATISTICS IO OFF;

Columnstore Indexes

[375]

SQL Server used a Table Scan operator for executing both queries. For both of them, even
though the second one used a filter on the delivery date column, SQL Server performed
5,893 logical IOs.

Note that your results for the logical IOs might vary slightly for every
query in this chapter. However, you should be able to notice which query
is more efficient and which is less.

Now let's create a clustered index in the delivery date column:

CREATE CLUSTERED INDEX CL_FactTest_DateKey
ON dbo.FactTest(DateKey);
GO

If you execute the aforementioned same two queries, you get around 6,091 reads and the
Clustered Index Scan operator for the first query, and 253 logical reads for the second
query, with Clustered Index Seek operator that finds the first value needed for the
query and performs a partial scan after.

Leveraging table partitioning
Loading even very large fact tables is not a problem if you can perform incremental loads.
However, this means that data in the source should never be updated or deleted; data
should only be inserted. This is rarely the case with LOB applications. In addition, even if
you have the possibility of performing an incremental load, you should have a
parameterized ETL procedure in place so you can reload portions of data loaded already in
earlier loads. There is always a possibility that something might go wrong in the source
system, which means that you will have to reload historical data. This reloading will require
you to delete part of the data from your data warehouse.

Deleting large portions of fact tables might consume too much time unless you perform a
minimally logged deletion. A minimally logged deletion operation can be done using the
TRUNCATE TABLE command; however, this command deletes all the data from a table, and
deleting all the data is usually not acceptable. More commonly, you need to delete only
portions of the data.

Inserting huge amounts of data could consume too much time as well. You can do a
minimally logged insert, but as you already know, minimally logged inserts have some
limitations. Among other limitations, a table must either be empty, have no indexes, or use
a clustered index only on an ever-increasing (or ever-decreasing) key so that all inserts
occur on one end of the index.

Columnstore Indexes

[376]

You can resolve all of these problems by partitioning a table. You can even achieve better
query performance using a partitioned table because you can create partitions in different
filegroups on different drives, thus parallelizing reads. In addition, SQL Server query
optimizer can do early partition elimination, so SQL Server does not even touch a partition
with data excluded from the result set of a query. You can also perform maintenance
procedures on a subset of filegroups and thus on a subset of partitions only. That way, you
can also speed up regular maintenance tasks. Altogether, partitions have many benefits.

Although you can partition a table on any attribute, partitioning over dates is most common
in data warehousing scenarios. You can use any time interval for a partition. Depending on
your needs, the interval could be a day, a month, a year, or any other interval.

In addition to partitioning tables, you can also partition indexes. If indexes are partitioned
in the same way as the base tables, they are called aligned indexes. Partitioned table and
index concepts include the following:

Partition function: This is an object that maps rows to partitions by using values
from specific columns. The columns used for the function are called partitioning
columns. A partition function performs logical mapping.
Partition scheme: A partition scheme maps partitions to filegroups. A partition
scheme performs physical mapping.
Aligned index: This is an index built on the same partition scheme as its base
table. If all indexes are aligned with their base table, switching a partition is a
metadata operation only, so it is very fast. Columnstore indexes have to be
aligned with their base tables. Nonaligned indexes are, of course, indexes that are
partitioned differently than their base tables.
Partition switching: This is a process that switches a block of data from one table
or partition to another table or partition. You switch the data by using the ALTER
TABLE T-SQL command. You can perform the following types of switches:

Reassign all data from a nonpartitioned table to an empty existing
partition of a partitioned table
Switch a partition of a one-partitioned table to a partition of
another partitioned table
Reassign all data from a partition of a partitioned table to an
existing empty nonpartitioned table

Partition elimination: This is a query optimizer process in which SQL Server
accesses only those partitions needed to satisfy query filters.

For more information about table and index partitioning, refer to the MSDN Partitioned
Tables and Indexes article at https://msdn.microsoft.com/en-
us/library/ms190787.aspx.

Columnstore Indexes

[377]

Nonclustered indexes in analytical scenarios
As mentioned, data warehouse queries typically involve large scans of data and
aggregation. Very selective seeks are not common for reports from a DW. Therefore,
nonclustered indexes generally don't help DW queries much. However, this does not mean
that you shouldn't create any nonclustered indexes in your DW.

An attribute of a dimension is not a good candidate for a nonclustered index key. Attributes
are used for pivoting and typically contain only a few distinct values. Therefore, queries
that filter based on attribute values are usually not very selective. Nonclustered indexes on
dimension attributes are not a good practice.

DW reports can be parameterized. For example, a DW report could show sales for all
customers or for only a single customer, based perhaps on parameter selection by an end
user. For a single-customer report, the user would choose the customer by selecting that
customer's name. Customer names are selective, meaning that you retrieve only a small
number of rows when you filter by customer name. Company names, for example, are
typically unique, so by filtering by a company name, you typically retrieve a single row. For
reports like these, having a nonclustered index on a name column or columns could lead to
better performance.

You can create a filtered nonclustered index. A filtered index spans a subset of column
values only and thus applies to a subset of table rows. Filtered nonclustered indexes are
useful when some values in a column occur rarely, whereas other values occur frequently.
In such cases, you would create a filtered index over the rare values only. SQL Server uses
this index for seeks of rare values but performs scans for frequent values. Filtered
nonclustered indexes can be useful not only for name columns and member properties but
also for attributes of a dimension, and even foreign keys of a fact table. For example, in our
demo fact table, the customer with ID equal to 378 has only 242 rows. You can execute the
following code to show that even if you select data for this customer only, SQL Server
performs a full scan:

SET STATISTICS IO ON;
-- All rows
SELECT *
FROM dbo.FactTest;
-- Customer 378 only
SELECT *
FROM dbo.FactTest
WHERE CustomerKey = 378;
SET STATISTICS IO OFF;

Columnstore Indexes

[378]

Both queries needed 6,091 logical reads. Now you can add a filtered nonclustered index to
the table:

CREATE INDEX NCLF_FactTest_C378
 ON dbo.FactTest(CustomerKey)
 WHERE CustomerKey = 378;
GO

If you execute the same two queries again, you get much less IO for the second query. It
needed 752 logical reads in my case and used the Index Seek and Key Lookup operators.

You can drop the filtered index when you don't need it anymore with the following code:

DROP INDEX NCLF_FactTest_C378
 ON dbo.FactTest;
GO

Using indexed views
You can optimize queries that aggregate data and perform multiple joins by permanently
storing the aggregated and joined data. For example, you could create a new table with
joined and aggregated data and then maintain that table during your ETL process.

However, creating additional tables for joined and aggregated data is not best practice
because using these tables means you have to change queries used in your reports.
Fortunately, there is another option for storing joined and aggregated tables. You can create
a view with a query that joins and aggregates data. Then you can create a clustered index
on the view to get an indexed view. With indexing, you are materializing a view; you are
storing physically the data the view is returning when you query it. In the Enterprise or
Developer Edition of SQL Server, SQL Server Query Optimizer uses the indexed view
automatically—without changing the query. SQL Server also maintains indexed views
automatically. However, to speed up data loads, you can drop or disable the index before
load and then recreate or rebuild it after the load.

For example, note the following query that aggregates the data from the test fact table:

SET STATISTICS IO ON;
SELECT StockItemKey,
 SUM(TotalAmount) AS Sales,
 COUNT_BIG(*) AS NumberOfRows
FROM dbo.FactTest
GROUP BY StockItemKey;
SET STATISTICS IO OFF;

Columnstore Indexes

[379]

In my case, this query used 6,685 logical IOs. It used the clustered Index scan operator on
the fact table to retrieve the whole dataset. Now let's create a view with the same query
used for the definition:

CREATE VIEW dbo.SalesByProduct
WITH SCHEMABINDING AS
SELECT StockItemKey,
 SUM(TotalAmount) AS Sales,
 COUNT_BIG(*) AS NumberOfRows
FROM dbo.FactTest
GROUP BY StockItemKey;
GO

Indexed views have many limitations. One of them is that they have to be created with the
SCHEMABINDING option if you want to index them, as you can see in the previous code.
Now let's index the view:

CREATE UNIQUE CLUSTERED INDEX CLU_SalesByProduct
 ON dbo.SalesByProduct (StockItemKey);
GO

Try to execute the last query before creating the view again. Make sure you notice that the
query refers to the base table and not the view. This time, the query needed only four
logical reads. If you check the execution plan, you should see that SQL Server used the
Clustered Index Scan operator on the indexed view. If your indexed view was not used
automatically, please check which edition of SQL Server you use. When you finish with
testing, you can drop the view with the following code:

DROP VIEW dbo.SalesByProduct;
GO

Columnstore Indexes

[380]

Data compression and query techniques
SQL Server supports data compression. Data compression reduces the size of the database,
which helps improve query performance because queries on compressed data read fewer
pages from disk and thus use less IO. However, data compression requires extra CPU
resources for updates, because data must be decompressed before and compressed after the
update. Data compression is therefore suitable for data warehousing scenarios in which
data is mostly read and only occasionally updated.

SQL Server supports three compression implementations:

Row compression: Row compression reduces metadata overhead by storing
fixed data type columns in a variable-length format. This includes strings and
numeric data. Row compression has only a small impact on CPU resources and is
often appropriate for OLTP applications as well.
Page compression: Page compression includes row compression, but also adds
prefix and dictionary compressions. Prefix compression stores repeated prefixes
of values from a single column in a special compression information structure
that immediately follows the page header, replacing the repeated prefix values
with a reference to the corresponding prefix. Dictionary compression stores
repeated values anywhere in a page in the compression information area.
Dictionary compression is not restricted to a single column.
Unicode compression: In SQL Server, Unicode characters occupy an average of
two bytes. Unicode compression substitutes single-byte storage for Unicode
characters that don't truly require two bytes. Depending on collation, Unicode
compression can save up to 50 per cent of the space otherwise required for
Unicode strings. Unicode compression is very cheap and is applied automatically
when you apply either row or page compression.

You can gain quite a lot from data compression in a data warehouse. Foreign keys are often
repeated many times in a fact table. Large dimensions that have Unicode strings in name
columns, member properties, and attributes can benefit from Unicode compression.

Columnstore Indexes

[381]

The following diagram explains dictionary compression:

Figure 10 4 Dictionary compression

As you can see from the diagram, the dictionary compression (corresponding to the first
arrow) starts with prefix compression. In the compression information space on the page
right after the page header, you can find stored prefixes for each column. If you look at the
top left cell, the value in the first row, first column, is aaabb. The next value in this column
is aaabcc. A prefix value aaabcc is stored for this column in the first column of the row for
the prefix compression information. Instead of the original value in the top left cell, a value
4b is stored. This means use four characters from the prefix for this column and add the
letter b to get back the original value. The value in the second row for the first column is
empty because the prefix for this column is equal to the whole original value in that
position. The value in the last row for the first column after the prefix compression is 3ccc,
meaning that in order to get the original value, you need to take the first three characters
from the column prefix and add a string ccc, thus getting the value aaaccc, which is, of
course, equal to the original value. Check also the prefix compression for other two
columns.

After the prefix compression, dictionary compression is applied (corresponding to the
second arrow in the Figure 10.4). It checks all strings across all columns to find common
substrings. For example, the value in the first two columns of the first row after the prefix
compression was applied is 4b. SQL Server stores this value in the dictionary compression
information area as the first value in this area, with index 0. In the cells, it stores just the
index value 0 instead of the value 4b. The same happens for the value 0bbbb, which you
can find in the second row, second column, and third row, third column, after prefix
compression is applied. This value is stored in the dictionary compression information area
in the second position with index 1; in the cells, the value 1 is left.

Columnstore Indexes

[382]

You might wonder why prefix compression is needed. For strings, a prefix is just another
substring, so the dictionary compression could cover the prefixes as well. However, prefix
compression can work on nonstring data types as well. For example, instead of storing
integers 900, 901, 902, 903, and 904 in the original data, you can store a prefix 900 and leave
values 0, 1, 2, 3, and 4 in the original cells.

Now it's time to test SQL Server compression. First of all, let's check the space occupied by
the test fact table:

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

The result is as follows:

Name rows reserved data index_size unused
------------ ------ -------- -------- ---------- ------
dbo.FactTest 227981 49672 KB 48528 KB 200 KB 944 KB

The following code enables row compression on the table and checks the space used again:

ALTER TABLE dbo.FactTest
 REBUILD WITH (DATA_COMPRESSION = ROW);
EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';

This time the result is as follows:

Name rows reserved data index_size unused
------------ ------ -------- -------- ---------- ------
dbo.FactTest 227981 25864 KB 24944 KB 80 KB 840 KB

You can see that a lot of space was saved. Let's also check the page compression:

ALTER TABLE dbo.FactTest
 REBUILD WITH (DATA_COMPRESSION = PAGE);
EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';

Now the table occupies even less space, as the following result shows:

Name rows reserved data index_size unused
------------ ------ -------- -------- ---------- ------
dbo.FactTest 227981 18888 KB 18048 KB 80 KB 760 KB

If these space savings are impressive for you, wait for the columnstore compression!
Anyway, before continuing, you can remove the compression from the test fact table with
the following code:

ALTER TABLE dbo.FactTest
 REBUILD WITH (DATA_COMPRESSION = NONE);

Columnstore Indexes

[383]

Before continuing with other SQL Server features that support analytics, I want to explain
another compression algorithm because this algorithm is also used in columnstore
compression. The algorithm is called LZ77 compression. It was published by Abraham
Lempel and Jacob Ziv in 1977; the name of the algorithm comes from the first letters of the
author's last names plus the publishing year. The algorithm uses sliding window dictionary
encoding, meaning it encodes chunks of an input stream with dictionary encoding. The
following are the steps of the process:

Set the coding position to the beginning of the input stream.1.
Find the longest match in the window for the look ahead buffer.2.
If a match is found, output the pointer P and move the coding position (and the3.
window) L bytes forward.
If a match is not found, output a null pointer and the first byte in the look ahead4.
buffer and move the coding position (and the window) one byte forward.
If the look ahead buffer is not empty, return to step 2.5.

The following figure explains this process in an example:

Figure 10 5 LZ77 compression

The input stream chunk that is compressed in the figure is AABCBBABC:

The algorithm starts encoding from the beginning of the window of the input
stream. It stores the first byte (the A value) in the result, together with the pointer
(0,0), meaning this is a new value in this chunk.
The second byte is equal to the first one. The algorithm stores just the pointer
(1,1) to the output. This means that in order to recreate this value, you need to
move one byte back and read one byte.
The next two values, B and C, are new and are stored to the output together with
the pointer (0,0).

Columnstore Indexes

[384]

Then the B value repeats. Therefore, the pointer (2,1) is stored, meaning that in
order to find this value, you need to move two bytes back and read one byte.
Then the B value repeats again. This time, you need to move one byte back and
read one byte to get the value, so the value is replaced with the pointer (1,1). You
can see that when you move back and read the value, you get another pointer.
You can have a chain of pointers.
Finally, the substring ABC is found in the stream. This substring can be also
found in the positions 2-4. Therefore, in order to recreate the substring, you need
to move five bytes back and read three bytes, and the pointer (5,3) is stored in the
compressed output.

Writing efficient queries
Before finishing this section, I also need to mention that no join or compression algorithm,
or any other feature that SQL Server offers can help you if you write inefficient queries. A
good example of a typical DW query is one that involves running totals. You can use non-
equi self joins for such queries, which is a very good example of an inefficient query. The
following code calculates the running total for the profit ordered over the sale key with a
self join. The code also measures IO and time needed for executing the query. Note that the
query uses a CTE first to select only 12,000 rows from the fact table. A non-equi self join is a
quadratic algorithm; with double the amount of the rows, the time needed increases four
times. You can play with different amount of rows to prove that:

SET STATISTICS IO ON;
SET STATISTICS TIME ON;
WITH SalesCTE AS
(
SELECT [Sale Key] AS SaleKey, Profit
FROM Fact.Sale
WHERE [Sale Key] <= 12000
)
SELECT S1.SaleKey,
 MIN(S1.Profit) AS CurrentProfit,
 SUM(S2.Profit) AS RunningTotal
FROM SalesCTE AS S1
 INNER JOIN SalesCTE AS S2
 ON S1.SaleKey >= S2.SaleKey
GROUP BY S1.SaleKey
ORDER BY S1.SaleKey;
SET STATISTICS IO OFF;
SET STATISTICS TIME OFF;

Columnstore Indexes

[385]

With 12,000 rows, the query needed 817,584 logical reads in a worktable, which is a
temporary representation of the test fact table on the right side of the self join, and on the
top of it, more than 3,000 logical reads for the left representation of the fact table. On my
computer, it took more than 12 seconds (elapsed time) to execute this query, with more than
72 seconds of CPU time, as the query was executed with a parallel execution plan. With
6,000 rows, the query would need approximately four times less IO and time.

You can calculate running totals very efficiently with window aggregate functions. The
following example shows the query rewritten. The new query uses the window aggregate
functions:

SET STATISTICS IO ON;
SET STATISTICS TIME ON;
WITH SalesCTE AS
(
SELECT [Sale Key] AS SaleKey, Profit
FROM Fact.Sale
WHERE [Sale Key] <= 12000
)
SELECT SaleKey,
 Profit AS CurrentProfit,
 SUM(Profit)
 OVER(ORDER BY SaleKey
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS RunningTotal
FROM SalesCTE
ORDER BY SaleKey;
SET STATISTICS IO OFF;
SET STATISTICS TIME OFF;

This time, the query used 331 reads in the fact table, 0 (zero) reads in the worktable, 0.15
second elapsed time, and 0.02 second CPU time. SQL Server didn't even bother to find a
parallel plan.

Columnar storage and batch processing
Various researchers started to think about columnar storage already in the 80's. The main
idea is that a relational database management system (RDBMS) does not need to store the
data in exactly the same way we understand it and work with it. In a relational model, a
tuple represents an entity and is stored as a row of a table, which is an entity set.
Traditionally, database management systems store entities row by row. However, as long as
we get rows back to the client application, we do not care how an RDBMS stores the data.

Columnstore Indexes

[386]

This is actually one of the main premises of the relational model—we work with data on the
logical level, which is independent of the physical level of the physical storage. However, it
was not until approximately the year 2000 when the first attempts to create columnar
storage came to life. SQL Server added columnar storage first in version 2012.

Columnar storage is highly compressed. Higher compression means more CPU usage
because the data must be decompressed when you want to work with it and recompressed
when you store it. In addition, SQL Server has to transform columns back to rows when you
work with data and vice versa when you store the data. Add to this picture parallelized
query execution, and suddenly CPU becomes a bottleneck. CPU is rarely a bottleneck in a
transactional application. However, analytical applications have different requests. SQL
Server solves the CPU problem by introducing batch processing.

In this section, you will learn about SQL Server columnar storage and batch processing,
including the following:

How SQL Server creates columnar storage
Columnstore compression
Nonclustered columnstore indexes
Clustered columnstore indexes
Limitations of columnar storage in different versions of SQL Server
Batch processing
Limitations of batch processing in different versions of SQL Server

Columnar storage and compression
Storing the data column by column instead of row by row gives the opportunity to store
each column in a sorted way. Imagine that you have every column totally sorted. Then for
every equijoin, the merge join algorithm could be used, which is, as you already know, a
very efficient algorithm. In addition, with sorted data, you get one more type of
compression nearly for free—the run-length encoding (RLE) compression.

Columnstore Indexes

[387]

The following figure explains the idea graphically:

Figure 10-6 Sorted columnar storage and RLE

An RDBMS in the first step reorders every single column. Then the RLE compression is
implemented. For example, if you look at the Color column, you don't need to repeat the
value Red three times; you can store it only once and store either the frequency of the value
or the index in form from position to position, as shown in the figure.

Note that SQL Server does not implement total sorting. Total sorting of every single column
would simply be too expensive. Creating such storage would take too much time and
resources. SQL Server uses its own patented row-rearranging algorithm, which rearranges
the rows in the most optimal way for ordering all columns as best as possible, with a single
pass through the data. This means that SQL Server does not totally sort any column;
however, all columns are at least partially sorted. Therefore, SQL Server does not target
merge join algorithm; hash join algorithm is preferred. Partial sort still optimizes the usage
of the bitmap filters because fewer false positives are returned from a bitmap filter when
compared with randomly organized values. The RLE compression can still reduce the size
of the data substantially.

Recreating rows from columnar storage
Of course, there is still the question of how to recreate rows from the columnar storage. In
1999, Stephen Tarin patented the Tarin Transform Method that uses a row reconstruction
table to regenerate the rows. Mr. Tarin called columnar storage the Trans-Relational Model.
This does not mean the model is beyond relational; this was more a marketing term, short
for “Transform Relational Model”.

Columnstore Indexes

[388]

SQL Server documentation does not publish the row recreation algorithm it uses. I am
presenting the Tarin's method here. It should still be good enough for a better
understanding of the amount of work SQL Server has to do when it recreates rows from
columns.

The following figure explains the Tarin Transform Method:

Figure 10 7 Tarin transform Method

In the figure, the top table is the row reconstruction table. You start reconstructing the rows
in the top left corner. For the first column of the first row value, take the top left value in the
columnar storage table at the bottom, in this case the value Bolt. In the first cell of the row
reconstruction table is the pointer to the row number of the second column in this table. In
addition, it is an index for the value of the second column in the columnar storage table. In
the figure, this value is 3. This means that you need to find the value in the second column
of the columnar storage table with index 3, which is Green. In the row reconstruction table,
you read the value 5 in the second column, third row. You use this value as an index for the
value of the third column in the columnar storage table, which, in the example, is Paris. In
the row reconstruction table, you read the value 1. Because this is the last column in the
table, this value is used for a cyclic redundancy check, checking whether you correctly get
to the starting point of the row reconstruction process. The row Bolt, Green, and Paris, the
second row from the original table from the previous figure, was successfully reconstructed.

Columnstore Indexes

[389]

As mentioned, it is not published how SQL Server reconstructs the rows. Nevertheless, you
can imagine this is quite an intensive process. You can also imagine changes in the original
data. Just a small update of the original values might cause the complete recreation of the
row reconstruction table. This would simply be too expensive. This is why columnar
storage, once it is created, is actually read only. In SQL Server 2014 and 2016, columnstore
indexes are updateable; however, SQL Server does not update the columnar storage online.
SQL Server uses additional row storage for the updates. You will learn further details later
in this section.

Columnar storage creation process
SQL Server starts creating the columnar storage by first splitting the data into rowgroups.
The maximum number of rows per rowgroup is 1,048,576. The idea here is that the time-
consuming row rearranging is done on smaller datasets, just as how the hash join algorithm
splits the data into buckets and then performs smaller joins on portions of the data. SQL
Server performs row rearranging in each of the groups separately. Then SQL Server
encodes and compresses each column. Each column data in each rowgroup is called a
segment. Then SQL Server stores the segments in blobs in database files. Therefore, SQL
Server leverages the existing storage for columnar storage. The following figure shows the
process:

Figure 10-8 How SQL Server creates columnar storage

Columnstore Indexes

[390]

SQL Server implements different compressing algorithms:

SQL Server does bit-packing. Bit-packing is similar to row compression, just
pushed one level further. Instead of storing the minimal number of bytes, SQL
Server stores the minimal number of bits that can represent the value. For
example, with row compression, you would get one byte instead of four bytes for
value 5, if this value is an integer. With bit-packing, SQL Server would store this
value using three bits only (101).
Then SQL Server encodes the values to integers with value encoding and
dictionary encoding. The value encoding is similar to the prefix encoding in the
page compression, and the dictionary encoding is the same. Therefore, this part
of the compression uses the ideas of the page compression. However, dictionaries
for the columnar storage are much more efficient because they are built on more
values than dictionaries in the page compression. With page compression, you
get a separate dictionary for each 8 KB page. With columnar storage, you get one
dictionary per rowgroup plus one global dictionary over all rowgroups.
Because of the partial ordering, the run-length encoding algorithm is also used.
Finally, SQL Server can also use the LZ77 algorithm to compress the columnar
data.

All of these compression algorithms except the LZ77 one are implemented automatically
when you create a columnstore index. This is called COLUMNSTORE compression. You must
turn the LZ77 compression on manually to get so-called the COLUMNSTORE_ARCHIVE
compression.

With all of these compression algorithms implemented, you can count on at least 10 times
compression compared to the original, non-compressed row storage. In reality, you can get
much better compression levels, especially when you also implement the archive
compression with the LZ77 algorithm.

However, compression is not the only advantage with large scans. Because each column is
stored separately, SQL Server can retrieve only the columns a query is referring to. This is
like having a covering nonclustered index. Each segment also has additional metadata
associated with it. This metadata includes the minimal and the maximal value in the
segment. SQL Server query optimizer can use this metadata for early segment elimination,
just as SQL Server can do early partition elimination if a table is partitioned. Finally, you
can combine partitioning with columnstore indexes to maintain even very large tables.

Columnstore Indexes

[391]

Development of columnar storage in SQL Server
SQL Server introduced columnar storage in version 2012. Only nonclustered columnstore
indexes (NCCI) were supported. This means that you still need to have the original row
storage, either organized as a heap or as a clustered index (CI). There were many other
limitations, including the following:

Nonclustered columnstore index only
One per table
Must be partition-aligned
Table becomes read-only (partition switching allowed)
Unsupported types

Decimal > 18 digits
Binary, Image, CLR (including Spatial, HierarchyId)
(n)varchar(max), XML, Text, Ntext
Uniqueidentifier, Rowversion, SQL_Variant
Date/time types > 8 bytes

SQL Server 2014 introduced clustered columnstore indexes (CCI). This means that the
original row storage does not exist anymore; the CCI is the only storage you need. Just like
in a regular clustered index, SQL Server needs to identify each row in a clustered
columnstore index as well. Note that SQL Server 2014 does not support constraints on the
columnar storage. Therefore, SQL Server 2014 adds a bookmark, which is a unique tuple id
inside a rowgroup, stored as a simple sequence number. SQL Server 2014 has still many
data types unsupported for the columnar storage, including the following:

Varbinary(MAX), Image, CLR (including Spatial, HierarchyId)
(N)Varchar(max), XML, Text, Ntext
Rowversion, SQL_Variant

SQL Server 2014 also optimizes columnstore index build. For example, SQL Server 2012
used a fixed number of threads to build the index. This number was estimated in advance.
If, for some reason, the operating system took some threads away from SQL Server while
SQL Server was building a columnstore index, the build might have failed. In SQL Server
2014, the degree of parallelism or the number of threads can be adjusted dynamically while
SQL Server builds the columnstore index.

Columnstore Indexes

[392]

The CCI in SQL 2014 is updateable. However, the columnar storage is immutable. The
following figure explains the update process:

Figure 10 9 How SQL Server updates columnar storage

The data modification is implemented as follows:

Insert: The new rows are inserted into a delta store
Delete: If the row to be deleted is in a column store row group, a record
containing its row ID is inserted into the B-tree storing the delete bitmap; if it is in
a delta store, the row is simply deleted
Update: Split into a delete and an insert
Merge: Split into a delete, an insert, and an update

A delta store can be either open or closed. When a new delta store is created, it is open.
After you insert the maximum number of rows for a rowgroup in an open delta store, SQL
Server changes the status of this delta store to closed. If you remember, this means a bit
more than one million rows. Then a background process called tuple-mover converts the
closed delta stores to column segments. This process starts by default every five minutes.
You can run it manually with the ALTER INDEX ... REORGANIZE or ALTER INDEX ...
REBUILD commands.

Non-bulk (trickle) inserts go to an open delta store. Bulk inserts up to 102,400 rows; smaller
go to an open delta store, and larger go directly to column segments. More delta stores
mean less compression. Therefore, when using bulk insert, you should try to optimize the
batches to contain close to 1,000,000 rows. You can also rebuild the index occasionally.

Columnstore Indexes

[393]

SQL Server 2016 brings many additional features to the columnstore indexes. The most
important features in version 2016 include the following:

CCI supports additional NCI (B-tree) indexes
CCI supports through NCIs primary and foreign key constraints
CCI supports snapshot and read committed snapshot isolation levels
NCCI on a heap or B-tree updateable and filtered
Columnstore indices on in-memory tables
Defined when you create the table
Must include all columns and all rows (not filtered)
NCI indexes can be filtered

Batch processing
With columnar storage, the CPU can become a bottleneck. SQL Server solves these
problems with batch mode processing. In batch mode processing, SQL Server processes
data in batches rather than processing one row at a time. A batch represents roughly 900
rows of data. Each column within a batch is stored as a vector in a separate memory area,
meaning that batch mode processing is vector-based. Batch mode processing interrupts a
processor with metadata only once per batch rather than once per row, as in row mode
processing, which lowers the CPU burden substantially. This means that the batch mode
spreads the metadata access costs over all of the 900 rows in a batch.

Batch mode processing is orthogonal to columnar storage. This means SQL Server could use
it with many different operators, no matter whether the data is stored in row or column
storage. However, batch mode processing gives the best result when combined with
columnar storage. DML operations, such as insert, update, or delete work in row mode. Of
course, SQL Server can mix batch and row mode operators in a single query.

SQL Server introduced batch mode also in version 2012. The batch mode operators in this
version include the following:

Filter
Project
Scan
Local hash (partial) aggregation
Hash inner join

Columnstore Indexes

[394]

Batch hash table build, but only in-memory, no spilling
Bitmap filters limited to a single column, data types represented with a 64-bit
integer

In SQL Server 2014, the following batch mode operators were added:

All join types
Union all
Scalar aggregation
Spilling support
Complex bitmap filters, all data types supported

SQL Server 2016 added the following improvements to the batch mode processing:

Single-threaded queries
Sort operator
Multiple distinct count operations
Left anti-semi join operators
Window aggregate functions
Window analytical functions
String predicate and aggregate pushdown to the storage engine
Row-level locking on index seeks against a nonclustered index and rowgroup-
level locking on full table scans against the columnstore

The following table summarizes the most important features and limitations of columnar
storage and batch mode processing in SQL Server versions 2012-2106:

Columnstore Index / Batch Mode Feature SQL 2012 SQL 2014 SQL 2016

Batch execution for multi-threaded queries yes yes yes

Batch execution for single-threaded queries yes

Archival compression yes yes

Snapshot isolation and read-committed snapshot isolation yes

Specify CI when creating a table yes

AlwaysOn supports CIs yes yes yes

AlwaysOn readable secondary supports read-only NCCI yes yes yes

AlwaysOn readable secondary supports updateable CIs yes

Columnstore Indexes

[395]

Read-only NCCI on heap or B-tree yes yes yes

Updateable NCCI on heap or B-tree yes

B-tree indexes allowed on a table that has a NCCI yes yes yes

Updateable CCI yes yes

B-tree index on a CCI yes

CI on a memory-optimized table yes

Filtered NCCI yes

You can check whether SQL Server uses row or batch mode for an operator by analyzing
the properties of the operator in the execution plan. Before checking the batch mode, the
following code adds nine time more rows to the test fact table:

DECLARE @i AS INT = 1;
WHILE @i < 10
BEGIN
SET @i += 1;
INSERT INTO dbo.FactTest
(SaleKey, CustomerKey,
 Customer, CityKey, City,
 DateKey, StockItemKey,
 Product, Quantity,
 TotalAmount, Profit)
SELECT @i * 1000000 + f.[Sale Key] AS SaleKey,
 cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,
 f.[Delivery Date Key] AS DateKey,
 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date;
END;

Let's check how much space this table uses now:

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

Columnstore Indexes

[396]

The result is as follows:

Name rows reserved data index_size unused
------------ ------- --------- --------- ---------- -------
dbo.FactTest 2279810 502152 KB 498528 KB 2072 KB 1552 KB

Now let's start querying this table. Before executing the following query, make sure you
turn the actual execution plan on:

SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey;

You can hover the mouse over any of the operators. For example, the following screenshot
shows the details of the Hash Match (Partial Aggregate) operator:

Figure 10-10 Row mode operators

Columnstore Indexes

[397]

You can see that SQL Server used the row mode processing. As mentioned, the batch mode
is not strictly bound to the columnar storage; however, it is much more likely that SQL
Server would use it as you use the columnar storage. The following code creates a filtered
nonclustered columnstore index. It is actually empty:

CREATE NONCLUSTERED COLUMNSTORE INDEX NCCI_FactTest
ON dbo.FactTest
(SaleKey, CustomerKey,
 Customer, CityKey, City,
 DateKey, StockItemKey,
 Product, Quantity,
 TotalAmount, Profit)
WHERE SaleKey = 0;
GO

Now, execute the same query as the aforementioned again. As you can see from the
following screenshot, this time the batch mode is used for the Hash Match (Partial
Aggregate) operator:

Figure 10 11 Batch mode operators

Columnstore Indexes

[398]

Nonclustered columnstore indexes
After all of the theoretical introduction, it is time to start using the columnar storage. You
will start by learning how to create and use nonclustered columnstore indexes (NCCI). You
already know from the previous section that a NCCI can be filtered. Now you will learn
how to create, use, and ignore a NCCI. In addition, you will measure the compression rate
of the columnar storage.

Because of the different burdens on SQL Server when a transactional application uses it
compared to analytical applications usage, traditionally, companies split these applications
and created data warehouses. Analytical queries are diverted to the data warehouse
database. This means that you have a copy of data in your data warehouse, of course with a
different schema. You also need to implement the Extract Transform Load (ETL) process
for scheduled loading of the data warehouse. This means that the data you analyze is
somehow stall. Frequently, the data is loaded overnight and is thus one day old when you
analyze it. For many analytical purposes, this is good enough. However, in some cases,
users would like to analyze the current data together with the archive data. This is called
operational analytics. SQL Server 2016 with columnar storage and in-memory tables makes
operational analytics realistically possible.

In this section, you will learn how to do the following:

Create nonclustered columnstore indexes
Ignore an NCCI in a query
Use NCCI in a query
Architecture an operational analytics solution

Compression and query performance
Without any further hesitation, let's start with the code. The first thing is to drop the filtered
(empty) NCCI created in the previous section:

DROP INDEX NCCI_FactTest
ON dbo.FactTest;
GO

Columnstore Indexes

[399]

The test fact table is organized as a B-tree with no additional nonclustered index, neither a
rowstore nor columnstore one. The clustering key is the date. In order to make a
comparison with NCCIs, let's set a baseline. First, recheck the space used by the test fact
table:

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

The result is as follows:

Name rows reserved data index_size unused
------------ ------- --------- --------- ---------- -------
dbo.FactTest 2279810 502152 KB 498528 KB 2072 KB 1552 KB

You can measure IO with the SET STATISTICS IO ON command. In addition, you can
turn on the actual execution plan. Here is the first exemplary query; let's call it the simple
query:

SET STATISTICS IO ON;
SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey;

The query did a full clustered index scan, and there were 63,601 logical reads. You can also
notice in the execution plan that only row mode operators were used.

You can get slightly different results for the IO. The exact number of pages
used by the table might vary slightly based on your dataset files
organization, parallel operations when you load the data or change the
table from a heap to a B-tree, and other possibilities. Nevertheless, your
numbers should be very similar, and the point is to show how much less
space will be used by the columnar storage because of the compression.

The next query involves multiple joins; let's call it the complex query:

SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]

Columnstore Indexes

[400]

 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date;

This time, SQL Server created a much more complex execution plan. Yet, SQL Server used
the full clustered index scan to read the data from the test fact table. SQL Server used 62,575
logical reads in this table.

The third test query is very selective—it selects only the rows for the customer 378. If you
remember, this customer has only 242 rows in the fact table. Let's call the third query the
point query:

SELECT CustomerKey, Profit
FROM dbo.FactTest
WHERE CustomerKey = 378;
SET STATISTICS IO OFF;

The query again did a full clustered index scan, and there were 63,601 logical reads.

Testing the nonclustered columnstore Index
The following code creates an NCCI on the fact table, this time without a filter, so all data is
included in the NCCI:

CREATE NONCLUSTERED COLUMNSTORE INDEX NCCI_FactTest
ON dbo.FactTest
(SaleKey, CustomerKey,
 Customer, CityKey, City,
 DateKey, StockItemKey,
 Product, Quantity,
 TotalAmount, Profit);
GO

So how much space is used by the test fact table now?

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

The result is as follows:

Name rows reserved data index_size unused
------------ ------- --------- --------- ---------- -------
dbo.FactTest 2279810 529680 KB 498528 KB 29432 KB 1720 KB

Columnstore Indexes

[401]

Note the numbers. The index size is about 17 times less than the data size! And remember,
in this size are also the non-leaf levels of the clustered index, so the actual compression rate
was even more than 17 times. This is impressive. So what does this mean for the queries?
Before measuring the improvements in queries, I want to show how you can ignore the
NCCI you just created with a specific option in the OPTION clause of the SELECT statement.
So here is the simple query that ignores the NCCI:

SET STATISTICS IO ON;
SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey
OPTION (ignore_nonclustered_columnstore_index);

Because the NCCI was ignored, the query still did the full-clustered index scan with 63,301
logical reads. However, you can see from the execution plan that this time row mode
operators were used, as shown in the following screenshot:

Figure 10-12 Row mode processing operators

Columnstore Indexes

[402]

This is different compared to the execution plan SQL Server used for the same query when
the NCCI was empty, when SQL Server used batch mode operators. The ignore option
really means that SQL Server completely ignores the NCCI. You can check that this is also
true for the other two queries, the complex and the point one. You can also check the
execution plans when ignoring the NCCI with the complex and point queries:

-- Complex query
SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date
OPTION (ignore_nonclustered_columnstore_index);
-- Point query
SELECT CustomerKey, Profit
FROM dbo.FactTest
WHERE CustomerKey = 378
OPTION (ignore_nonclustered_columnstore_index);
SET STATISTICS IO OFF;

For both queries, SQL Server did a full table scan on the fact table, with around 63,000
logical reads in this table. Now let's finally see how the queries can benefit from the NCCI.
The first query is the simple query again:

SET STATISTICS IO ON;
SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey;

Columnstore Indexes

[403]

As you can see from the following figure, the columnstore index scan was used, and only
four segments were read, with 2,001 LOB reads. Remember that the columnstore indexes
are stored in blobs in SQL Server. Compare this to the number of logical reads when the
NCCI was ignored. Of course, batch mode operators were used:

Figure 10 13 Row mode processing operators

You can check how many segments in total are occupied by the NCCI with the following
query that uses the sys.column_store_segments catalog view:

SELECT ROW_NUMBER()
 OVER (ORDER BY s.column_id, s.segment_id) AS rn,
 COL_NAME(p.object_id, s.column_id) AS column_name,
 S.segment_id, s.row_count,
 s.min_data_id, s.max_data_id,
 s.on_disk_size AS disk_size
FROM sys.column_store_segments AS s
INNER JOIN sys.partitions AS p
 ON s.hobt_id = p.hobt_id
INNER JOIN sys.indexes AS i
 ON p.object_id = i.object_id
WHERE i.name = N'NCCI_FactTest'
ORDER BY s.column_id, s.segment_id;

Here is the abbreviated result of this query:

rn column_name segment_id row_count min_data_id max_data_id disk_size
-- ----------- ---------- --------- ----------- ----------- ---------
1 SaleKey 0 1048576 1000001 10106307 4194888
2 SaleKey 1 336457 1001951 10185925 1346560
3 SaleKey 2 441851 1106610 10227981 1768336
4 SaleKey 3 452926 1001228 10213964 1812656

Columnstore Indexes

[404]

5 CustomerKey 0 1048576 0 402 773392
... ...
44 Profit 3 452926 -64500 920000 25624
45 NULL 0 1048576 0 3539 1678312
... ...
48 NULL 3 452926 0 3879 725640

The total number of segments used is 48. SQL Server created four rowgroups and then one
segment per column inside each rowgroup, plus one segment per rowgroup for the
rowgroup dictionary. You can also see the number of rows and disk space used per
segment. In addition, the min_data_id and max_data_id columns point to the minimal
and the maximal value in each segment. SQL Server query optimizer uses this information
for early segment elimination.

You can also execute the other two queries:

-- Complex query
SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date;
-- Point query
SELECT CustomerKey, Profit
FROM dbo.FactTest
WHERE CustomerKey = 378;
SET STATISTICS IO OFF;

For the complex query, the number of LOB reads is 7,128. For the point query, the number of
LOB reads is 2,351. In both cases, the columnstore index scan was used to read the data
from the fact table. The point query used less LOB reads than the complex query because the
query refers to less columns, and SQL Server retrieves only the columns needed to satisfy
the query. Still, the results for the point query are not overexciting. You should be able to get
much less IO with a B-tree nonclustered index, especially with a covering one.

Columnstore Indexes

[405]

In my case, the complex query used a serial plan. Note that depending on the hardware
resources and concurrent work, you might get a different execution plan. SQL Server sees
eight logical processors in my virtual machine, so you might have expected a parallel plan.
SQL Server 2016 is much more conservative about using a parallel plan compared to
previous versions. This is better for the majority of queries. If you really need to get a
parallel execution plan, you could change the compatibility level to the version 2014, as the
following code shows:

USE master;
GO
ALTER DATABASE WideWorldImportersDW SET COMPATIBILITY_LEVEL = 120;
GO

Now you can try to execute the complex query again:

USE WideWorldImportersDW;
SET STATISTICS IO ON;
SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date;
SET STATISTICS IO OFF;

This time, SQL Server used a parallel plan on my computer. Before continuing, reset the
compatibility level to 2016:

USE master;
GO
ALTER DATABASE WideWorldImportersDW SET COMPATIBILITY_LEVEL = 130;
GO

Columnstore Indexes

[406]

Operational analytics
Real-time operational analytics has become a viable option in SQL Server 2016, especially if
you combine columnar storage together with in-memory tables. Here is just a brief
overview of two possible solutions for operational analytics—one with on-disk and another
with in-memory storage. You will learn more about in-memory tables in Chapter 11,
Introducing SQL Server In-Memory OLTP and Chapter 12, In-Memory OLTP Improvements in
SQL Server 2016.

The following figure shows an architecture of an operational analytics solution with on-disk
tables:

Figure 10-14 On-disk operational analytics

The majority of the data does not change much (so-called warm data), or is maybe even
historical, immutable data (so-called cold data). You use a filtered nonclustered
columnstore index over this warm or cold data. For the hot data—data that is changed
frequently—you can use a regular filtered nonclustered index. You can also use additional
nonclustered indexes over the whole table. The table can be organized as a heap or as B-
tree.

For in-memory tables, you can implement a slightly different architecture. You have to take
into account that nonclustered columnstore indexes on an in-memory table cannot be
filtered. Therefore, they must cover both warm and hot data areas. However, they are
updateable, and in-memory updates are much faster than on-disk updates.

You can combine columnstore index with other in-memory index types, namely with hash
indexes and nonclustered indexes.

Columnstore Indexes

[407]

The in-memory operational analytics solution is shown in the following figure:

Figure 10-15 In-memory operational analytics

Clustered columnstore indexes
In the last section of this chapter, you will learn how to manage a clustered columnstore
index (CCI). Besides optimizing query performance, you will also learn how to add a
regular B-tree nonclustered index (NCI) to a CCI and use it instead of the primary key or
unique constraints. When creating the NCCI in the previous section, the LZ77 or the archive
compression has not been used yet. You will use it with a CCI in this section. Altogether,
you will learn how to do the following:

Create clustered columnstore indexes
Use archive compression
Add B-tree NCI to a CCI
Use B-tree NCI for a constraint
Update data in a CCI

Columnstore Indexes

[408]

Compression and query performance
Let's start by dropping both indexes from the demo fact table, the NCCI and the CI, to make
a heap again:

USE WideWorldImportersDW;
-- Drop the NCCI
DROP INDEX NCCI_FactTest
 ON dbo.FactTest;
-- Drop the CI
DROP INDEX CL_FactTest_DateKey
 ON dbo.FactTest;
GO

Now let's create the clustered columnstore index (CCI):

CREATE CLUSTERED COLUMNSTORE INDEX CCI_FactTest
 ON dbo.FactTest;
GO

And, of course, the next step is to recheck the space used by the test fact table:

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

The result is as follows:

Name rows reserved data index_size unused
------------ ------- --------- --------- ---------- -------
dbo.FactTest 2279810 23560 KB 23392 KB 0 KB 168 KB

The CCI even uses slightly less space than the NCCI. You can check the number of
segments with the following query:

SELECT ROW_NUMBER() OVER (ORDER BY s.column_id, s.segment_id) AS rn,
 COL_NAME(p.object_id, s.column_id) AS column_name,
 S.segment_id, s.row_count,
 s.min_data_id, s.max_data_id,
 s.on_disk_size
FROM sys.column_store_segments AS s
INNER JOIN sys.partitions AS p
 ON s.hobt_id = p.hobt_id
INNER JOIN sys.indexes AS i
 ON p.object_id = i.object_id
WHERE i.name = N'CCI_FactTest'
ORDER BY s.column_id, s.segment_id;

Columnstore Indexes

[409]

This time, the number of segments is 44. The CCI does not show a dictionary segment per
row group; it has a global dictionary that apparently covers the whole table. How does that
influence the queries?

Testing the clustered columnstore Index
Again, the first test is with the simple query:

SET STATISTICS IO ON;
SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey;

From the statistics IO output, you can see that SQL Server used only 82 logical reads. This
time, this is really impressive. Note that the execution plan again used the Columnstore
Index Scan operator, only this time scanning the CCI and selecting only the rowgroups
and segments needed to satisfy the query. You can see the execution plan in the following
figure:

Figure 10-16 CCI scan execution plan

Columnstore Indexes

[410]

The next query to test is the complex query:

SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date;

This time, SQL Server needed 6,101 LOB logical reads. SQL Server used a serial plan on my
virtual machine and mixed batch (for CCI scan and for hash joins) and row mode operators
(for other index scans). This is only slightly better than when using an NCCI. How about
the point query?

SELECT CustomerKey, Profit
FROM dbo.FactTest
WHERE CustomerKey = 378;
SET STATISTICS IO OFF;

The point query this time used 484 LOB logical reads. Better, but still not the best possible.

Using archive compression
You might remember that there is still one option left for the columnar storage
compression—the archive compression. Let's turn it on with the following code:

ALTER INDEX CCI_FactTest
 ON dbo.FactTest
 REBUILD WITH (DATA_COMPRESSION = COLUMNSTORE_ARCHIVE);
GO

You can imagine what comes next: recheck the space used by the test fact table:

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

Columnstore Indexes

[411]

The result is as follows:

Name rows reserved data index_size unused
------------ ------- --------- --------- ---------- -------
dbo.FactTest 2279810 19528 KB 19336 KB 0 KB 192 KB

The LZ77 algorithm added some additional compression. Compare the data size now with
the initial data size when the data size was 498,528 KB; now, it is only 19,336 KB; the
compression rate is more than 25 times! This is really impressive. Of course, you can expect
that the test queries are even more efficient now. For example, here is the simple query:

SET STATISTICS IO ON;
SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey;

This time, SQL Server needed only 23 LOB logical reads. The next query to test is the
complex query:

SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date;

This time, SQL Server needed 4,820 LOB logical reads in the test fact table. It can't get much
better than this for scanning all of the data. And what about the point query?

SELECT CustomerKey, Profit
FROM dbo.FactTest
WHERE CustomerKey = 378;

This time, it used 410 LOB logical reads. This number can still be improved.

Columnstore Indexes

[412]

Adding B-Tree indexes and constraints
There is still one query, the point query, which needs additional optimization. In SQL Server
2016, you can create regular, rowstore B-tree nonclustered indexes on a clustered
columnstore index, on the table that is organized as columnar storage. The following code
adds a nonclustered index with included column, an index that is going to cover the point
query:

CREATE NONCLUSTERED INDEX NCI_FactTest_CustomerKey
 ON dbo.FactTest(CustomerKey)
 INCLUDE(Profit);
GO

Before executing the queries, let's check the space used by the demo fact table:

EXEC sys.sp_spaceused N'dbo.FactTest', @updateusage = N'TRUE';
GO

The result is as follows:

Name rows reserved data index_size unused
------------ ------- --------- --------- ---------- -------
dbo.FactTest 2279810 90256 KB 19344 KB 70192 KB 720 KB

You can see that the row storage uses much more space than the columnar storage.
However, a regular NCI is very efficient for seeks. Let's test the queries, starting with the
simple query:

SET STATISTICS IO ON;
SELECT f.StockItemKey,
 SUM(f.TotalAmount) AS Sales
FROM dbo.FactTest AS f
WHERE f.StockItemKey < 30
GROUP BY f.StockItemKey
ORDER BY f.StockItemKey;

This query still needed 23 LOB logical reads. If you check the execution plan, you can see
that SQL Server is still using the columnstore index scan. Of course, the NCI is not very
useful for this query. How about the complex query?

SELECT f.SaleKey,
 f.CustomerKey, f.Customer, cu.[Buying Group],
 f.CityKey, f.City, ci.Country,
 f.DateKey, d.[Calendar Year],
 f.StockItemKey, f.Product,
 f.Quantity, f.TotalAmount, f.Profit
FROM dbo.FactTest AS f

Columnstore Indexes

[413]

 INNER JOIN Dimension.Customer AS cu
 ON f.CustomerKey = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.CityKey = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.StockItemKey = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.DateKey = d.Date;

Again, SQL Server needed 4,820 LOB logical reads in the test fact table. The NCI didn't
improve this query; it is already optimized. Finally, let's check the point query:

SELECT CustomerKey, Profit
FROM dbo.FactTest
WHERE CustomerKey = 378;
SET STATISTICS IO OFF;

This time, the query needed only 13 logical reads. SQL Server query optimizer decided to
use the covering NCI index, as you can see from the following figure, showing the
execution plan for the point query for this execution:

Figure 10-17 Execution plan for the point query that uses the nonclustered covering index

Columnstore Indexes

[414]

We don't need the nonclustered index anymore, so let's drop it:

DROP INDEX NCI_FactTest_CustomerKey
 ON dbo.FactTest;
GO

You can check the physical status of the rowgroups of the CCI using the
sys.dm_db_column_store_row_group_physical_stats dynamic management view,
like the following query shows:

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

Here is the result:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 343592 0
FactTest 2 3 COMPRESSED 444768 0
FactTest 3 3 COMPRESSED 442874 0

You can see that all rowgroups are closed and compressed.

In SQL 2016, you can also add primary key and unique constraints to a CCI table. The
following code adds a unique constraint to the test fact table. Note that you cannot add a
primary key constraint because the SaleKey column is nullable:

ALTER TABLE dbo.FactTest
 ADD CONSTRAINT U_SaleKey UNIQUE (SaleKey);
GO

Columnstore Indexes

[415]

You can check in Object Explorer that the Unique constraint is enforced with help from
unique rowstore nonclustered index. The following screenshot of the Object Explorer
window shows that the SaleKey column is nullable as well:

Figure 10-18 Unique constraint on a CCI table

Let's test the constraint. The following command tries to insert 75,993 rows into the test fact
table that already exist in the table:

INSERT INTO dbo.FactTest
(SaleKey, CustomerKey,
 Customer, CityKey, City,
 DateKey, StockItemKey,
 Product, Quantity,
 TotalAmount, Profit)
SELECT 10 * 1000000 + f.[Sale Key] AS SaleKey,
 cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,
 f.[Delivery Date Key] AS DateKey,

Columnstore Indexes

[416]

 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date
WHERE f.[Sale Key] % 3 = 0;

If you execute the code, you get the error 2627, violating the Unique constraint. Let's
recheck the status of the rowgroups:

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

This time, the result differs slightly:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 343592 0
FactTest 2 3 COMPRESSED 444768 0
FactTest 3 3 COMPRESSED 442874 0
FactTest 4 1 OPEN 0 0

Although the insert was rejected, SQL Server did not close or delete the delta storage. Of
course, this makes sense since this storage might become useful pretty soon for next
updates of the data. You can rebuild the index to get rid of this delta storage. The following
command rebuilds the CCI, this time without archive compression:

ALTER INDEX CCI_FactTest
 ON dbo.FactTest
 REBUILD WITH (DATA_COMPRESSION = COLUMNSTORE);
GO

Columnstore Indexes

[417]

You can check the rowgroup's status again:

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

Here is the result:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 343592 0
FactTest 2 3 COMPRESSED 444768 0
FactTest 3 3 COMPRESSED 442874 0

Note that your results for the number of rows in each row group can vary
slightly.

Updating a clustered columnstore index
So far, only an unsuccessful insert was tested. Of course, you can also try to insert some
valid data. Before that, let's drop the constraint since it is not needed for further explanation
anymore:

ALTER TABLE dbo.FactTest
 DROP CONSTRAINT U_SaleKey;
GO

Next, you can insert some valid rows. The following statement inserts 113,990 rows to the
test fact table. Note that this is more than the 102,400 rows limit for the trickle inserts;
therefore, you should expect that this is treated as a bulk insert:

INSERT INTO dbo.FactTest
(SaleKey, CustomerKey,
 Customer, CityKey, City,
 DateKey, StockItemKey,
 Product, Quantity,
 TotalAmount, Profit)
SELECT 11 * 1000000 + f.[Sale Key] AS SaleKey,
 cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,

Columnstore Indexes

[418]

 f.[Delivery Date Key] AS DateKey,
 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date
WHERE f.[Sale Key] % 2 = 0;

You can check whether this was a bulk insert by checking the rowgroups again:

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

The result shows you that you have only compressed rowgroups:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 343592 0
FactTest 2 3 COMPRESSED 444768 0
FactTest 3 3 COMPRESSED 442874 0
FactTest 4 3 COMPRESSED 113990 0

Although all rowgroups are compressed, you will notice that the last rowgroups have less
rows than the other rowgroups. It would be more efficient if you could use bulk inserts
with more rows, closer to 1,000,000 rows. Now let's try to insert a smaller amount of rows.
This time, you can also turn on the graphical execution plan:

INSERT INTO dbo.FactTest
(SaleKey, CustomerKey,
 Customer, CityKey, City,
 DateKey, StockItemKey,
 Product, Quantity,
 TotalAmount, Profit)
SELECT 12 * 1000000 + f.[Sale Key] AS SaleKey,
 cu.[Customer Key] AS CustomerKey, cu.Customer,
 ci.[City Key] AS CityKey, ci.City,
 f.[Delivery Date Key] AS DateKey,

Columnstore Indexes

[419]

 s.[Stock Item Key] AS StockItemKey, s.[Stock Item] AS Product,
 f.Quantity, f.[Total Excluding Tax] AS TotalAmount, f.Profit
FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS cu
 ON f.[Customer Key] = cu.[Customer Key]
 INNER JOIN Dimension.City AS ci
 ON f.[City Key] = ci.[City Key]
 INNER JOIN Dimension.[Stock Item] AS s
 ON f.[Stock Item Key] = s.[Stock Item Key]
 INNER JOIN Dimension.Date AS d
 ON f.[Delivery Date Key] = d.Date
WHERE f.[Sale Key] % 3 = 0;

In the plan, you can see that only row mode operators were used. SQL Server does not use
batch mode operators for DDL operations. The following screenshot shows a portion of the
execution plan, with one Hash Match operator highlighted, to show that the row mode
processing was used:

Figure 10 19 DDL operations are processed in row mode

Columnstore Indexes

[420]

Let's recheck the status of the rowgroups:

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

This time, another open rowgroup is in the result:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 343592 0
FactTest 2 3 COMPRESSED 444768 0
FactTest 3 3 COMPRESSED 442874 0
FactTest 4 3 COMPRESSED 113990 0
FactTest 5 1 OPEN 75993 0

Let's rebuild the index to get only compressed rowgroups again:

ALTER INDEX CCI_FactTest
 ON dbo.FactTest REBUILD;
GO

After the rebuild, let's see what happened to the rowgroups.

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

The result shows you that you have only compressed rowgroups:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 428566 0
FactTest 2 3 COMPRESSED 495276 0
FactTest 3 3 COMPRESSED 497375 0

Columnstore Indexes

[421]

SQL Server has added the rows from the trickle insert to other rowgroups. Let's now select
the rows from the last trickle insert:

SELECT *
FROM dbo.FactTest
WHERE SaleKey >= 12000000
ORDER BY SaleKey;

Deleting from a clustered columnstore index
Let's test what happens when you delete rows from a CCI with the following DELETE
command. Before executing the command, you can check the estimated execution plan.
Therefore, don't execute the following command yet:

DELETE
FROM dbo.FactTest
WHERE SaleKey >= 12000000;

The following screenshot shows the execution plan. Again, you can see that the DDL
operations use row mode processing operators only:

Figure 10-20 Estimated execution plan for a DELETE

Columnstore Indexes

[422]

And here is the final check of the state of the rowgroups:

SELECT OBJECT_NAME(object_id) AS table_name,
 row_group_id, state, state_desc,
 total_rows, deleted_rows
FROM sys.dm_db_column_store_row_group_physical_stats
WHERE object_id = OBJECT_ID(N'dbo.FactTest')
ORDER BY row_group_id;

The result shows you that you have only compressed rowgroups:

table_name row_group_id state state_desc total_rows deleted_rows
---------- ------------ ----- ---------- ---------- ------------
FactTest 0 3 COMPRESSED 1048576 0
FactTest 1 3 COMPRESSED 428566 0
FactTest 2 3 COMPRESSED 495276 0
FactTest 3 3 COMPRESSED 497375 75993

You can see that one of the rowgroups has deleted rows. Although the total number of rows
in this rowgroup did not change, you cannot access the deleted rows; the delete bitmap B-
tree structure for this rowgroup defines which rows are deleted. You can try to retrieve the
deleted rows:

SELECT *
FROM dbo.FactTest
WHERE SaleKey >= 12000000
ORDER BY SaleKey;

This time, no rows are returned.

Finally, let's clean the WideWorldImporters database with the following code:

USE WideWorldImportersDW;
GO
DROP TABLE dbo.FactTest;
GO

Columnstore Indexes

[423]

Before finishing this chapter, the following table summarizes the space needed for different
versions of row and columnar storage:

Storage Rows Reserved Data Index

CI 227,981 49,672 KB 48,528 KB 200 KB

CI row compression 227,981 25,864 KB 24,944 KB 80 KB

CI page compression 227,981 18,888 KB 18,048 KB 80 KB

CI (10 times more rows) 2,279,810 502,152 KB 498,528 KB 2,072 KB

CI with NCCI 2,279,810 529,680 KB 498,528 KB 29,432 KB

CCI 2,279,810 23,560 KB 23,392 KB 0 KB

CCI archive compression 2,279,810 19,528 KB 19,336 KB 0 KB

CCI archive compression and NCI 2,279,810 90,256 KB 19,344 KB 70,192 KB

Summary
Columnar storage brings a completely new set of possibilities in SQL Server. You can get
lightning performance of analytical queries right from your data warehouse, without a
special analytical database management system. This chapter started by describing features
that support analytical queries in SQL Server other that columnar storage. You can use row
or page data compression levels, bitmap filtered hash joins, filtered indexes, indexed views,
window analytical and aggregate functions, table partitioning, and more. However,
columnar storage adds an additional level of compression and performance boost. You
learned about the algorithms behind the fantastic compression with columnar storage. This
chapter also includes a lot of code, showing you how to create and use the nonclustered and
the clustered columnstore indexes, including updating the data, creating constraints, and
adding additional B-tree nonclustered indexes.

In the next two chapters, you are going to learn about a completely different way of
improving the performance of your databases: memory-optimized tables. In addition, this
chapter only started with analytics in SQL Server; the last two chapters introduce R, a whole
analytical language supported by SQL Server 2016.

11
Introducing SQL Server In-

Memory OLTP
IT systems today are required to deliver maximum performance with zero downtime and
maximum flexibility for developers and administrators. As developers, we all know that if
the performance of our applications is somehow lacking, then the cause of the slowdown
must be in the database!

Major causes of performance problems inside database projects can be followed back to
database design mistakes or to the limitations built into the database engine to ensure data
consistency for concurrent connections, or a mixture of both of these aspects.

Microsoft SQL Server adheres to the ACID theory. A simplified explanation of the ACID
theory is that it describes how changes made to a database are required to fulfil four
properties: Atomicity, Consistency, Isolation, and Durability:

Atomicity states that the contents of each transaction are either processed
successfully and completely or fail in their entirety. “Half-transactions” are not
possible.
Consistency states that a transaction brings a database from one valid state to
another. This includes the adherence to the logical model inside the database
(constraints, rules, triggers, and so on). A transaction may not change a database
from a logically valid state to a logically invalid state, for example, performing a
data change that violates a unique constraint.
Isolation states that the changes made inside a transaction are isolated from and
unaffected by other concurrent operations/transactions.
Durability states that the changes made inside a transaction remain inside the
database permanently, even a system goes offline immediately after the
transaction has completed.

Introducing SQL Server In-Memory OLTP

[425]

To adhere to the ACID theory, Microsoft SQL Server employs the pessimistic concurrency
model. Pessimistic concurrency assumes there will be conflicting concurrent transactions
attempting to change the same data simultaneously. Therefore, transactions must
(temporarily) lock the data they are changing to prevent other transactions from interfering
with the isolation of those changes.

However, a system with enough concurrent users will eventually reach a logical limitation
for transactional throughput through the design of the pessimistic concurrency model.
Assuming unlimited hardware resources, the locking of data through pessimistic
concurrency will become the bottleneck for transaction processing inside SQL Server.

Microsoft has developed a solution to this logical limitation, by implementing a method for
employing the optimistic concurrency model. This model uses row versioning to avoid the
need to lock and block data changes between concurrent users. Their implementation was
made available in SQL Server 2014 under the code name Hekaton (Greek for 100-fold,
hinting at the possible performance increases) and the official feature name In-Memory
OLTP.

This chapter will introduce the In-Memory OLTP feature as it was initially made available
in SQL Server 2014. We will discuss the feature's implementation and limitations before the
specific additions and improvements in SQL Server 2016 are expanded upon in Chapter 12,
In-Memory OLTP Improvements in SQL Server 2016.

For the examples in this chapter, we will be working with SQL Server
2014. Chapter 12, In-Memory OLTP Improvements in SQL Server 2016 will
cover the improvements and enhancements of In-Memory OLTP for SQL
Server 2016.

In-Memory OLTP architecture
In-Memory OLTP is the name of the optimistic concurrency model implementation offered
from SQL Server 2014 onwards. The challenge that In-Memory OLTP is designed to solve is
the ability to process massively concurrent transaction workloads while removing the
logical limitations of the pessimistic concurrency model present in the traditional
transaction processing engine in SQL Server. Microsoft also wanted to introduce In-
Memory OLTP as an additional transaction processing engine and not as a replacement for
the standard transaction processing engine. This decision was made to ensure that existing
applications running on SQL Server would be compatible with newer SQL Server versions,
but offer the ability to allow newer applications to take advantage of the new engine
without separating the two systems.

Introducing SQL Server In-Memory OLTP

[426]

In this section, we will take a look at the architecture of the In-Memory OLTP engine and
see how data is stored and processed.

Row and index storage
The first major difference in In-Memory OLTP is the storage structure of both tables and
indexes. The traditional storage engine in SQL Server was optimized for disk storage,
especially for the block storage of hard disk subsystems. However, In-Memory OLTP was
designed from the ground up to be memory resident, or memory-optimized. This small, but
important difference allowed a design with byte storage in mind. This means that memory-
optimized tables avoid the needs of data pages and extents that we know from the normal,
disk-optimized tables in SQL Server. Through this change, a significant overhead in page
and extent management is removed. This reduction in overhead provides a major
performance increase in itself.

Row structure
Rows in memory-optimized tables are stored as heaps. These heaps are not to be confused
with heaps in the traditional storage engine, but are memory structures storing the row data
itself. These rows have no specific physical ordering and no requirement or expectation of
being located near to other rows in memory. They also have no knowledge of connected rows
themselves; they are solely created to store row data. The connection of these rows is
controlled via the indexes created on memory-optimized tables. Knowing that the index
stores and controls the connection of the memory-optimized row data heaps, we can infer
that a table must have at least one index. This index (or indexes) must be defined during
table creation.

In the introduction to the chapter, we discussed that the In-Memory OLTP system is an
implementation of the optimistic concurrency model. This model uses row versioning to
allow concurrent connections to change data and still provide the necessary isolation. Row
versioning is an important portion of how memory-optimized tables are structured. Let's
look at how a row is structured for a memory-optimized table.

Introducing SQL Server In-Memory OLTP

[427]

In Figure 11.1, we can see a depiction of a memory-optimized table, which is split into a row
header (information about the row) and payload (the actual row data). The row header
structure is expanded in the lower part of the diagram:

Figure 11 1 Memory-optimized table row structure - Header and Payload

Row header
The row header is split into five sections:

Begin Ts: This is the timestamp of the transaction that inserted the row into the
database.
End Ts: This is the timestamp of the transaction that deleted the row from the
database. For rows that have not yet been deleted, this field contains the value
“infinity”.
StmtId: This field stores a unique statement ID corresponding to the statement
inside the transaction that created this row.
IdxLinkCount: This field is a counter for the number of indexes that reference
this row. An in-memory table stores data only and has no reference to other rows
in the table. The indexes that are linked to the table control which rows belong
together.
Finally, we have a set of pointers that reference the indexes connected to this row.
The number of pointers stored here corresponds directly to the number of
indexes that reference this row.

Introducing SQL Server In-Memory OLTP

[428]

Row payload
The row payload is where the actual row data is stored. The key columns and all other
columns are stored here. The structure of the payload depends upon the columns and data
types that make up the table from the CREATE TABLE command.

Index structure
All memory-optimized tables must have at least one index. The indexes on a memory-
optimized table store the connections between the rows. It is also important to remember
that, as the name suggests, In-Memory OLTP indexes reside inside non-permanent memory
(RAM) and are not written to disk. The only portions written to disk are the data rows of
the base memory-optimized table and data changes, which are written to the transaction log
(which is a requirement to fulfill the Durability part of the ACID concept).

There are two types of index available for memory-optimized tables: non-clustered index
and hash index.

Non-clustered Index
To be able to discuss the structure of a non-clustered index itself, we first need to
understand how the storage engine creates, references, and processes these indexes. The
name of this type of index should be well known to all SQL Server developers. A non-
clustered index for a memory-optimized table is widely similar to a non-clustered index in
the traditional storage engine. This type of index uses a variation of the B-tree structure
called a Bw-tree and is very useful for searching on ranges of data in a memory-optimized
table. A Bw-tree is essentially a B-tree structure, without the locking and latching used to
maintain a traditional B-tree. The index contains ordered key-values which themselves store
pointers to the data rows. With the Bw-tree, these pointers do not point to a physical page
number (these data page structures don't exist for memory-optimized tables); the pointers
direct to a logical Page ID (PID), which directs to an entry in a Page Mapping Table. This
Page Mapping Table stores the physical memory address of the row data. This behavior
mimics a covering index from the traditional disk-based non-clustered indexes, containing
the columns of the key columns of the index. As mentioned, memory-optimized tables run
in optimistic concurrency and use versioning to avoid the need for locks and latches. The
memory-optimized non-clustered index never updates a page when a change occurs;
updated pages are simply replaced by adding a new page to the index and adding the
physical memory address to the Page Mapping Table.

Introducing SQL Server In-Memory OLTP

[429]

In Figure 11.2, we see an example of a memory-optimized non-clustered index:

Figure 11 2 Memory-optimized non-clustered index – Bw-tree structure

The Bw-tree looks a lot like a B-tree except that we have a connection with the Page
Mapping Table (instead of an Index Allocation Map for disk-based tables), which translates
the index to the physical memory location of the row data. The root page and the non-leaf
pages store key value information and a PID of the page “below” themselves in the tree.
Particularly noteworthy here, is that the key value stored is the highest value on the page on
the next level down and not, as with a traditional B-tree, the lowest value. The leaf level also
stores the PID to the memory address of the row that the index references. If multiple data
rows have the same key, they will be stored as a “chain of rows”, where the rows reference
the same physical address for the value. Data changes in a memory-optimized non-
clustered index are processed through a delta record process. The value that was originally
referenced is then no longer referenced by the index and can be physically removed via the
Garbage Collector (GC).

A memory-optimized non-clustered index page follows a familiar pattern, with each page
having a header which carries uniform control information:

PID: The Page ID pointer which references the Page Mapping Table
Page Type: This indicates the type of the page—leaf, internal, or delta
Right PID: The PID of the page to the right of the current page in the Bw-tree
Height: The distance of the current page to the leaf
Page statistics: The count of records on the page, including the delta records
Max Key: The maximum key value on the page

Introducing SQL Server In-Memory OLTP

[430]

For pages lower down the Bw-tree structure, that is, internal and leaf, there are additional
fields containing more detailed information required for deeper traversal than the root
page:

Values: This is an array of pointers that directs to either (for internal pages) the
PID of the page on the next level down, or (for leaf pages) the memory location
for the first row in a chain of rows with the same key values
Keys: This represents the first value on the page (for internal pages) or the value
in a chain of rows (for leaf pages)
Offsets: This stores the key value start offset for indexes with variable length
keys

Hash indexes
The second type of index for memory-optimized tables is the hash index. An array of
pointers is created, with each element in the array representing a single value—this element
is known as a hash bucket. The index key column of a table that should have a hash index
created on it has a hashing function applied to it and the resulting hash value is used to
“bucketize” rows. Values that generate the same hash value are stored in the same hash
bucket as a linked chain of values. To access this data, we pass in the key value we wish to
search for; this value is also hashed to determine which hash bucket should be accessed.
The hash index translates the hash value to the pointer and allows us to retrieve all the
duplicate values in a chain.

In Figure 11.3, we can see a very simplified representation of the hashing and retrieval of
data. The row header has been removed for clarity's sake.

Figure 11 3

Introducing SQL Server In-Memory OLTP

[431]

In Figure 11.3, we can see a table storing company address information. We are interested in
the city column, which is the key for a hash index. If we were to insert a value of London
into this hash index, we will get a value 23 (the hash function is simplified here for
illustration purposes). This stores the key value London and the memory address of the
table row of the memory-optimized table. If we then insert the second row with a city value
of Lingen and our hash function hashes Lingen to 23 too, then this will be added to the
hash index in the hash bucket for the value 23 and added to the chain started with London.
Each hash index on a memory-optimized table adds an index pointer column (shown here
with a dashed outline). This is an internal column that is used to store the pointer
information for the next row in the chain. Every row of a chain has a pointer to the next
row, barring the last row, which can have no following chain row. When no pointer is in
this column, the retrieval routine knows it has reached the end of the chain and can stop
loading rows.

The creation of a hash index requires some thought. We have seen that we can have
multiple values that hash to the same hash value, which creates chains of records. However,
the idea of a hashing function is to try and keep these chains as short as possible. An
optimal hash index will have enough hash buckets to store as many unique values as
possible, but has as few buckets as possible to reduce the overhead of maintaining these
buckets (more buckets equal more memory consumption for the index). Having more
buckets than is necessary will not improve performance either but rather hinder it, as each
additional bucket makes a scan of the buckets slower. We must decide how many buckets
to create when we initially create the index, which we will see with a sample script shortly.
It is also important to realize that the hash index and hashing function consider all key
columns of an index we create. So a multi-column index raises the chances that hash values
will be unique and can require more hash buckets to assist with keeping those buckets
emptier.

Creating memory-optimized tables and
indexes
Now that we have looked at the theory behind the storage of memory-optimized tables, we
want to get to the real fun and create some of these objects.

Introducing SQL Server In-Memory OLTP

[432]

Laying the foundation
Before we can start creating our memory-optimized objects, we need to create a database
with a filegroup designed for memory-optimized objects. This can be achieved as follows:

CREATE DATABASE InMemoryTest
 ON
 PRIMARY(NAME = [InMemoryTest_disk],
 FILENAME = 'C:\temp\InMemoryTest_disk.mdf', size=100MB),
 FILEGROUP [InMemoryTest_inmem] CONTAINS MEMORY_OPTIMIZED_DATA
 (NAME = [InMemoryTest_inmem],
 FILENAME = 'C:\temp\InMemoryTest_inmem')
 LOG ON (name = [InMemoryTest_log],
Filename='c:\temp\InMemoryTest_log.ldf', size=100MB)
 COLLATE Latin1_General_100_BIN2;

The first main thing to note is that we have a separate filegroup dedicated to the memory-
optimized objects, with the keywords CONTAINS MEMORY_OPTIMIZED_DATA. This filegroup
is used to persist the memory-optimized objects between server restarts (if required). The
filestream APIs are used for this; you can observe which objects are created by navigating to
the folder location and accessing the folder (with administrator permissions).

Also of note is that the database has been created with the windows BIN2 collation. This is
an initial implementation limitation of In-Memory OLTP with SQL Server 2014 and limited
the support for comparisons, grouping and sorting with memory-optimized objects.

It is equally possible to add a filegroup to an existing database using the ALTER DATABASE
command, specifying the filegroup and then the location for the filestream folder:

ALTER DATABASE AdventureWorks2014
 ADD FILEGROUP InMemTest CONTAINS MEMORY_OPTIMIZED_DATA;
GO
ALTER DATABASE AdventureWorks2014
 ADD FILE (NAME='InMemTest', FILENAME='c:\temp\InMemTest')
 TO FILEGROUP InMemTest;
GO

As we can see, Microsoft has tried to keep the integration of the In-Memory OLTP engine as
seamless as possible. A simple filegroup addition is all it takes to be able to start creating
memory-optimized objects. We are one step closer to a faster database, let's keep going.

Introducing SQL Server In-Memory OLTP

[433]

Creating a table
Now that we have a filegroup/database that is ready for high-performance workloads, we
need to take a moment and consider what limitations there are with the In-Memory OLTP
engine.

The following data types are supported:

All integer types: tinyint, smallint, int, and bigint
All float types: float and real
All money types: smallmoney and money
Numeric and decimal
All non-LOB string types: char(n), varchar(n), nchar(n), nvarchar(n), and
sysname

Non-LOB binary types: binary(n) and varbinary(n)
Date/time types: smalldatetime, datetime, date, time, and datetime2
Uniqueidentifier

This leaves out the LOB data types, that is, XML, max types (for example, varchar(max))
and CLR types (remembering that this is valid for the initial implementation in SQL Server
2014). This also includes row lengths of more than 8,060 bytes. This limit is generally not
recommended, as it will cause issues even in regular tables. However, with memory-
optimized tables we cannot even create a table whose row length is more than 8,060 bytes.

Other than the data type limitations, the following restrictions also apply:

No FOREIGN KEY or CHECK constraints
No UNIQUE constraints (except for PRIMARY KEY)
No DML Triggers
A maximum of eight indexes (including the PRIMARY KEY index)
No schema changes after table creation

More specifically to the last restriction, absolutely no DDL commands can be issued on a
memory-optimized table: No ALTER TABLE, CREATE INDEX, ALTER INDEX, and DROP
INDEX. Effectively, once you create a memory-optimized table, it is unchangeable.

So, with the bad news out of the way, let's create our first memory-optimized table. But
before we do, we must note that memory-optimized tables cannot be created in system
databases (including tempdb). If we attempt to do so, we will receive an error message:

Msg 41326, Level 16, State 1, Line 43

Introducing SQL Server In-Memory OLTP

[434]

Memory optimized tables cannot be created in system databases.

The following code will therefore change the connection into the previously created
InMemoryTest database and then create a test memory-optimized table:

USE InMemoryTest
GO
CREATE TABLE InMemoryTable
(
 UserId INT NOT NULL PRIMARY KEY NONCLUSTERED,
 UserName VARCHAR(255) NOT NULL,
 LoginTime DATETIME2 NOT NULL,
 LoginCount INT NOT NULL,
CONSTRAINT PK_UserId PRIMARY KEY NONCLUSTERED (UserId), INDEX NCL_IDX HASH
(UserName) WITH (BUCKET_COUNT=10000)
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_AND_DATA)
GO

Let us consider a few of the lines of code above. Firstly, the table creation command
resembles that of many other tables that can be created in SQL Server. We are not
confronted with anything unfamiliar. Only in the last two lines of code do we notice
anything peculiar. We have the previously mentioned hash index, with a bucket count of
10000 on the UserName column. The last line of code has two new keywords:
MEMORY_OPTIMIZED=ON is simple enough. We are informing SQL Server that this table
should be created as a memory-optimized table. However, the DURABILITY keyword is
something that we have only tangentially mentioned so far.

The durability options available to us are either SCHEMA_AND_DATA or SCHEMA_ONLY. These
keyword options are clear enough to understand. Either the schema and the data will be
recovered after a server restart, or only the schema. With SCHEMA_ONLY, we have the ability
to completely bypass writing data changes to the transaction log, because our memory-
optimized table has no requirements in terms of data recovery. This has a major positive
performance impact if the data in a SCHEMA_ONLY table meets those requirements of not
needing recovery.

After making our decisions about columns, indexes, and the durability of our table, we
issue the CREATE TABLE command. At this point, SQL Server receives the command and
generates the table as a memory-optimized object. This results in a compiled DLL being
created for the memory-optimized table including the compiled access methods for the
memory-resident object. This compilation process is the main factor in the limitations listed
previously, especially the reason for alterations of the table and indexes after creation.

Introducing SQL Server In-Memory OLTP

[435]

Querying and data manipulation
Now that we have a memory-optimized table, the next logical step is to start querying the
table and manipulating the data stored inside it.

We have two methods of interacting with these memory-optimized objects. Firstly, we can
issue standard T-SQL queries and allow the SQL Server Query Optimizer to deal with
accessing this new type of table. The second method is to use Natively Compiled Stored
Procedures.

Figure 11 4 Overview of the SQL Server engine illustrating Query Interop between In-Memory OLTP and “normal” OLTP

In Figure 11.4, we can see a simplified diagram of a query that is either querying “normal”
tables or memory-optimized tables. In the center of the diagram is a node titled Query
Interop. This is a mechanism that is responsible for enabling “normal” interpreted T-SQL
statements to access memory optimized tables. Note that this is a one-way mechanism and
that the natively compiled stored procedures are not able to access traditional objects, only
memory-optimized objects.
Back to querying memory-optimized tables!

SELECT *
FROM dbo.InMemoryTable;

The above select statement is standard T-SQL and has no special syntax to query the
memory-optimized table we created earlier. At this point, we are unaware that this table is a
memory-optimized table and that is a good thing. This is further proof of Microsoft's
commitment to integrating this high-performance feature as a seamless extension of the
storage engine. Essentially, it should not be of major interest whether we are using In-
Memory OLTP or the traditional storage engine for our table—it should just be fast. We
could even extrapolate that in the future, it may be possible that the entire SQL Server
storage engine becomes purely memory-optimized.

Introducing SQL Server In-Memory OLTP

[436]

If we can select data without any syntax changes, then we can expect that inserting data is
equally simple:

INSERT INTO dbo.InMemoryTable
 (UserId ,
 UserName ,
 LoginTime ,
 LoginCount
)
VALUES (1 ,
 'John Smith' ,
 SYSDATETIME() ,
 1
)
;
SELECT *
FROM dbo.InMemoryTable
;

Of course, this insert works flawlessly and the final select returns a single row:

UserId UserName LoginTime LoginCount
----------- ------------- --------------------------- -----------
1 John Smith 2016-12-09 20:27:04.3424133 1

The important thing to realize here is that we are using “normal” T-SQL. This may sound
rather uninteresting; however, this means that if we want to start migrating some of our
tables to be memory-optimized, then we are free to do so without needing to refactor our
code (provided we adhere to the limitations of the engine). This makes the possibilities of
using this feature much more attractive, especially in legacy projects where logical design
limitations lead to locking and latching issues.

Due to the way that this interoperability works and the lock-free nature of memory-
optimized tables, there are some further limitations with the T-SQL language and querying
itself that we need to consider. Luckily, the large majority of T-SQL language features are
available to us, so the list of unsupported commands is mercifully short:

The MERGE statement when a memory-optimized table is the target of the MERGE
Dynamic cursors (to adhere to memory-optimized rules, these are automatically
changed to static cursors)
TRUNCATE TABLE

Cross-database transactions
Cross-database queries
Linked Servers

Introducing SQL Server In-Memory OLTP

[437]

Locking hints: XLOCK, TABLOCK, PAGLOCK, and so on
READUNCOMMITTED, READCOMMITTED, and READCOMMITTEDLOCK isolation level
hints

If we consider how each of these unsupported features work, it becomes clear that these
limitations exist. Many, if not all, of these limitations are linked to how locking and latching
is controlled in one way or another with those features. The only way to continue our high-
performance adventure is to accept these limitations and adjust our system design
accordingly.

There is a similar list of limitations for natively compiled stored procedures. This list is
unfortunately quite long, and if we look back at Figure 4 with the diagram of the SQL
Server engine, we see that natively compiled stored procedures are only able to access
memory-optimized tables and not the traditional storage engine objects. This main
limitation causes the list of unsupported features to be quite a lot longer. You can find an
exhaustive list of which features are supported and which aren't by visiting Microsoft's
Books Online site and reading the list. You will also be able to change the documentation
website to a different version of SQL Server to see that newer versions support an
increasing number of features inside the In-Memory OLTP engine. For more details, visit
h t t p s ://m s d n . m i c r o s o f t . c o m /e n - u s /l i b r a r y /d n 246937(v =s q l . 120). a s p x #A n c h o r _ 4.

Performance comparisons
We have seen the lists of limitations at both the table structure level and at the T-SQL
language level. It is not all doom and gloom, but these restrictions may cause some readers
to re-think their enthusiasm for memory-optimized objects.

In this section, we will take a look at how traditional disk-based tables compare to their
younger brothers, memory-optimized tables. According to the codename of the In-Memory
OLTP feature, Hekaton (Greek for 100-fold), the new feature should be in the order of one
hundred times faster.

We begin our test by creating a comparable disk-based table and inserting one row into it:

USE InMemoryTest
GO
CREATE TABLE DiskBasedTable
(
 UserId INT NOT NULL PRIMARY KEY NONCLUSTERED,
 UserName VARCHAR(255) NOT NULL,
 LoginTime DATETIME2 NOT NULL,
 LoginCount INT NOT NULL,

Introducing SQL Server In-Memory OLTP

[438]

 INDEX NCL_IDX NONCLUSTERED (UserName)
)
GO
INSERT INTO dbo.DiskBasedTable
 (UserId ,
 UserName ,
 LoginTime ,
 LoginCount
)
VALUES (1 ,
 'John Smith' ,
 SYSDATETIME() ,
 1
)
;

We have an identical table structure, with the only difference being that the disk based table
doesn't have a hash index but rather a normal non-clustered index.

We will now run a test, inserting 500,000 rows of data into each table and measuring solely
the execution time of each run. We begin by creating a stored procedure that will insert one
row into the disk based table:

CREATE PROCEDURE dbo.DiskBasedInsert
 @UserId INT,
 @UserName VARCHAR(255),
 @LoginTime DATETIME2,
 @LoginCount INT
AS
BEGIN

 INSERT dbo.DiskBasedTable
 (UserId, UserName, LoginTime, LoginCount)
 VALUES
 (@UserId, @UserName, @LoginTime, @LoginCount);

END;

This stored procedure is then called 500,000 times in a simple loop and the time difference
between start and finish is recorded:

USE InMemoryTest
GO
TRUNCATE TABLE dbo.DiskBasedTable
GO

DECLARE @start DATETIME2;
SET @start = SYSDATETIME();

Introducing SQL Server In-Memory OLTP

[439]

DECLARE @Counter int = 0,
 @_LoginTime DATETIME2 = SYSDATETIME(),
 @_UserName VARCHAR(255);
 WHILE @Counter < 50000
 BEGIN
 SET @_UserName = 'UserName ' + CAST(@Counter AS varchar(6))

 EXECUTE dbo.DiskBasedInsert
 @UserId = @Counter,
 @UserName = @_UserName,
 @LoginTime = @_LoginTime,
 @LoginCount = @Counter
 SET @Counter += 1;
 END;

SELECT DATEDIFF(ms, @start, SYSDATETIME()) AS 'insert into disk-based table
(in ms)';
GO

insert into disk-based table (in ms)
----------- ------------- --------------------------- -----------
6230

The execution on my machine was repeatable with an average execution time of between 6
and 7 seconds for 50,000 rows with a disk-based table.

The first step of optimizing this insert is to move from a disk-based table to a memory-
optimized table:

USE InMemoryTest
GO
SET NOCOUNT ON
GO
CREATE PROCEDURE dbo.InMemoryInsert
 @UserId INT,
 @UserName VARCHAR(255),
 @LoginTime DATETIME2,
 @LoginCount INT
AS
BEGIN

 INSERT dbo.InMemoryTable
 (UserId, UserName, LoginTime, LoginCount)
 VALUES
 (@UserId, @UserName, @LoginTime, @LoginCount);

END;
GO

Introducing SQL Server In-Memory OLTP

[440]

USE InMemoryTest
GO
DELETE FROM dbo.InMemoryTable
GO

DECLARE @start DATETIME2;
SET @start = SYSDATETIME();

DECLARE @Counter int = 0,
 @_LoginTime DATETIME2 = SYSDATETIME(),
 @_UserName VARCHAR(255);
 WHILE @Counter < 50000
 BEGIN
 SET @_UserName = 'UserName ' + CAST(@Counter AS varchar(6))

 EXECUTE dbo.InMemoryInsert
 @UserId = @Counter,
 @UserName = @_UserName,
 @LoginTime = @_LoginTime,
 @LoginCount = @Counter
 SET @Counter += 1;
 END;

SELECT DATEDIFF(ms, @start, SYSDATETIME()) AS 'insert into memory-optimized
table (in ms)';
GO

insert into memory-optimized table (in ms)
----------- ------------- --------------------------- -----------
1399

Okay. We have made a massive leap in terms of execution time. We are down from ~6
seconds to a quite respectable ~1.4 seconds. That improvement is purely down to the
difference in the locking and latching of our two tables. We swapped the disk-based table
for a memory-optimized table.

Introducing SQL Server In-Memory OLTP

[441]

Natively compiled stored procedures
When we issue T-SQL commands to SQL Server, the commands are parsed and compiled
into machine code, which is then executed. This parsing and compiling becomes a major
bottleneck when the locking and latching caused by pessimistic concurrency is removed.
This is where natively compiled stored procedures come into play. They are effectively T-
SQL code that is compiled into machine code once, and then instead of the parse and
compile of a standard T-SQL command, the compiled DLL for the stored procedure is
called. The improvements in execution time can be phenomenal.

Our next possibility for improvement is to reduce our parse and compile time of the insert
command (the Query Interop mentioned earlier in this chapter). This can be achieved by
natively compiling the insert stored procedure. Let's do just that, and run the same test with
our memory-optimized table also using a natively compiled stored procedure:

USE InMemoryTest
GO
CREATE PROCEDURE dbo.InMemoryInsertOptimized
 @UserId INT,
 @UserName VARCHAR(255),
 @LoginTime DATETIME2,
 @LoginCount INT
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC WITH
(
 TRANSACTION ISOLATION LEVEL = SNAPSHOT,
 LANGUAGE = N'English'
)

 INSERT dbo.InMemoryTable
 (UserId, UserName, LoginTime, LoginCount)
 VALUES
 (@UserId, @UserName, @LoginTime, @LoginCount);
 RETURN 0;
END;
GO

USE InMemoryTest
GO
DELETE FROM dbo.InMemoryTable
GO

DECLARE @start DATETIME2;
SET @start = SYSDATETIME();

Introducing SQL Server In-Memory OLTP

[442]

DECLARE @Counter int = 0,
 @_LoginTime DATETIME2 = SYSDATETIME(),
 @_UserName VARCHAR(255);
 WHILE @Counter < 50000
 BEGIN
 SET @_UserName = 'UserName ' + CAST(@Counter AS varchar(6))

 EXECUTE dbo.InMemoryInsertOptimized
 @UserId = @Counter,
 @UserName = @_UserName,
 @LoginTime = @_LoginTime,
 @LoginCount = @Counter
 SET @Counter += 1;
 END;

SELECT DATEDIFF(ms, @start, SYSDATETIME()) AS 'insert into memory-optimized
table & native stored procedure (in ms)';
GO

insert into memory-optimized table & native stored procedure (in ms)
----------- ------------- --------------------------- -----------
631

We can see from the results that the execution time has been reduced from ~1.4 seconds
down to ~600 milliseconds. This is an impressive improvement, considering we have again
only made minimal changes.

However, there is still room for improvement here. At present, we have created a native
compiled stored procedure, which allows us to save on compile time for the insert
statement itself. With this solution, we are still using non-compiled T-SQL for the loop. This
optimization is easily achieved and we can run the final test to see how fast we can get:

USE InMemoryTest
GOCREATE PROCEDURE dbo.FullyNativeInMemoryInsertOptimized
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC WITH
(
 TRANSACTION ISOLATION LEVEL = SNAPSHOT,
 LANGUAGE = N'English'
)

 DECLARE @Counter int = 0,
 @_LoginTime DATETIME2 = SYSDATETIME(),
 @_UserName VARCHAR(255)
 ;
 WHILE @Counter < 50000

Introducing SQL Server In-Memory OLTP

[443]

 BEGIN
 SET @_UserName = 'UserName ' + CAST(@Counter AS varchar(6))

 INSERT dbo.InMemoryTable
 (UserId, UserName, LoginTime, LoginCount)
 VALUES
 (@Counter, @_UserName, @_LoginTime, @Counter);

 SET @Counter += 1;
 END;
 RETURN 0;
END;
GO

USE InMemoryTest
GO
DELETE FROM dbo.InMemoryTable
GO

DECLARE @start DATETIME2;
SET @start = SYSDATETIME();

EXEC dbo.FullyNativeInMemoryInsertOptimized

SELECT DATEDIFF(ms, @start, SYSDATETIME()) AS 'insert into fully native
memory-optimized table (in ms)';
GO

insert into fully native memory-optimized table (in ms)
----------- ------------- --------------------------- -----------
155

With a fully optimized workflow, taking advantage of both memory-optimized tables as
well as natively compiled stored procedures, the execution time has dropped from 6.2
seconds to 155 milliseconds. With just a few simple steps, the execution time of the example
insert has been reduced by 40 times; while not quite the 100-fold improvement that the
codename suggests, this is a serious improvement by any measure.

Introducing SQL Server In-Memory OLTP

[444]

Looking behind the curtain of concurrency
So far, we have seen that we can easily create a table with indexes, query and insert data
into that table and do so with our traditional T-SQL knowledge. It is now also clear that we
are able to change an existing implementation of disk-based tables into memory-optimized
tables with some simple changes. If we want to push performance to the max, we can also
consider natively compiled stored procedures to further improve upon some quite large
performance gains. We have also seen how the two types of index: hash index and non-
clustered index are implemented in the storage engine. However, to better understand how
the magic happens, we need to have a closer look at what is happening to our sample table
and indexes while we are manipulating them.

We already mentioned at the beginning of this chapter that SQL Server uses a pessimistic
concurrency model in the disk-based storage engine and an optimistic concurrency model
for memory-optimized objects. The implementation of this optimistic concurrency model is
achieved via multi-version concurrency control (MVCC), or to describe it another way,
snapshotting the data. MVCC is not a new technology; it has been around in one form or
another since the early 1980s and has been an optional isolation level in SQL Server since
SQL Server 2005 (READ COMMITTED SNAPSHOT). This technology has been repurposed
in the In-Memory OLTP engine to allow for lock and latch-free optimistic concurrency.
Read-committed snapshot isolation level provides row-versioning for disk-based tables by
redirecting write operations into the row-version store inside tempdb. However, In-
Memory OLTP works entirely inside memory and cannot push row-versions into tempdb.

If we take a look at our row header from the beginning of the chapter again, we can
investigate the two fields—Begin Ts and End Ts:

Figure 11 5 Memory-optimized table row structure – Header and Payload

Introducing SQL Server In-Memory OLTP

[445]

When a row is inserted, the Begin Ts timestamp is filled. This timestamp is constructed
from two pieces of information: A transaction ID, which is a globally unique value on the
instance. This value increments whenever a transaction starts on the instance and is reset
when the server restarts. The second portion of this generated timestamp is created from
the Global Transaction Timestamp. This is equally unique across the instance, but is not
reset at server restart and increments whenever a transaction completes.

In order to avoid the requirements of locking records to update them, memory-optimized
tables only ever add new records to a table. Whenever an insert occurs (the simplest change
operation), a new row is added to a table, with a Begin Ts at the transaction start time. The
End Ts is left empty, allowing SQL Server to know that this row exists inside the database
from the Begin Ts and is valid until End Ts (or in the case of the row not being deleted it is
valid until “infinite”).

The interesting changes occur when we wish to update or delete an existing row. To avoid
having to lock the row and perform a delete (for a pure delete) or a delete and insert (for an
update), a memory-optimized table will simply insert the “updated” version of the row with
a Begin Ts of the transaction timestamp and insert the same timestamp in the End Ts of the
newly “deleted” row.

Figure 11 5 Update of a memory-optimized table – row versioning

In Figure 11.5, we can see this behavior illustrated. The update statement in the top-left
corner shows that an existing row (blue row) needs to be updated. The concurrency model
then creates a new copy of the row (green) while noting the current transaction timestamp
(orange). At this point, we have a new row which is valid from timestamp 0x3 and an old
row that was valid from timestamp 0x1 until 0x3. Any transaction that started at timestamp
0x2 would see the original row (blue), while any transaction from 0x3 onwards would see
the new row (green).

Introducing SQL Server In-Memory OLTP

[446]

As you may realize, the action of continually appending new versions of a row will cause
this linked list of row-versions to grow over time. This is where the Garbage Collector (GC)
comes into play. The GC is a background process which periodically traverses the tables,
indexes in the In-Memory storage engine, and removes the old and invalidated rows. In
order to further accelerate this clean-up process, user processes also assist with identifying
entries that can be cleaned up. When a user process scans across a table or index which has
stale row-version data, it will remove their links from the row chains as it passes them.

As with many features inside SQL Server, we can gain insight into the inner workings of
this row-version mechanism using Dynamic Management Objects (DMOs).

To take a look at the table we created above and to see the row version information, we
query sys.dm_db_xtp_index_stats joining to sys.indexes to retrieve the
corresponding object information:

SELECT i.name AS 'index_name',
 s.rows_returned,
 s.rows_expired,
 s.rows_expired_removed
FROM sys.dm_db_xtp_index_stats s
 JOIN sys.indexes i
 ON s.object_id = i.object_id
 AND s.index_id = i.index_id
WHERE OBJECT_ID('InMemoryTable') = s.object_id;
GO

index_name rows_returned rows_expired rows_expired_removed
----------- ------------- ------------- ---------
NULL 594115 0 0
NCL_IDX 0 0 0
PK_UserId 0 649901 399368

Here, after our data wrangling using different methods, we can see that the table has had
rows added and also “expired” (detected as stale) or “expired removed” (how many rows
have been unlinked from the index).

Introducing SQL Server In-Memory OLTP

[447]

Data durability concerns
Now that we have a better understanding of how data moves inside a memory-optimized
table, we need to also dive a little deeper into the durability of memory-optimized tables.
Earlier in the chapter, we saw that we can choose between SCHEMA_AND_DATA or
SCHEMA_ONLY for durability of these objects. The succinct description for SCHEMA_ONLY
durability is that any data (or changes) inside a memory-optimized table that has
SCHEMA_ONLY durability will be lost when the server restarts. The reason for the server
restart is irrelevant; when the server is brought back online, the table (and any associated
indexes) is recreated and will be empty.

The SCHEMA_AND_DATA option informs SQL Server that you wish the data inside the
memory-optimized table to be permanently stored on non-volatile storage. This will ensure
that the data is available even after a server restart. This initially sounds like it would be a
problem for a high-performance data processing system, especially when we consider the
speed differences between mass storage (HDDs/SSDs) versus main system memory
(DIMMs). However, the type and amount of data required to be stored on durable storage
is kept to a minimum, so that the chances of a bottleneck in making the data durable are
greatly reduced.

The data that gets written to disk contains only the data that has changed, only the row data
of the memory-optimized table, and not the index data. Only the index definitions are
stored durably, the index content is recreated every time the server is restarted. This
recreation is rapid, because SQL Server can create the index based on the data that is
already in main memory, which is extremely low latency and high throughput.

There are two streams of data processed and written to disk: checkpoint streams and log
streams.

A checkpoint stream is itself split into two files known as checkpoint file pairs (CFPs).
These CFPs utilize the filestream API which we addressed when creating our test In-
Memory OLTP database. The two file types in this file pair are data streams (containing all
row versions inserted in a timestamp interval) and delta streams (containing a list of deleted
row versions matching the data stream file pair).

The log streams contain the changes made by committed transactions, and like normal
transactions, they are stored in the SQL Server transaction log. This allows SQL Server to
use the entries in the transaction log to reconstruct information during the redo phase of
crash recovery.

Introducing SQL Server In-Memory OLTP

[448]

We can investigate the behavior of durability by running our insert stored procedures for
the disk-based table and then our SCHEMA_ONLY memory-optimized table. After running
each stored procedure, we can investigate the contents of the transaction log using the
undocumented and unsupported (but on a test machine perfectly usable) fn_dblog() to
view how these two processes affect the transaction log.

Figure 11 6 fn_dblog() output after disk-based insert run

Figure 11 7

In figures 11.6 and 11.77, we see a snapshot of the data retrieved immediately after running
first the disk-based insert (Figure 11.6) and the memory-optimized insert (Figure 11.7).

The disk-based insert created thousands of log record entries for each iteration of the loop;
this takes time to process and inflates the transaction log unnecessarily. The memory-
optimized insert causes zero entries in the transaction log, because the table was defined as
SCHEMA_ONLY and as such has no requirement for log redo or crash recovery. The schema
will be loaded at server startup and is immediately ready for normal operations.

We can now take a look at our filestream folder, where the checkpoint stream is directed.
We will find multiple checkpoint files in this folder, Each checkpoint file will contain either
data or delta streams, as described earlier in this section of the chapter. The checkpoint files
are created and filled with an append-only mechanism, adding data to the end of the file. A
single checkpoint file pair will continue to be used until either a manual CHECKPOINT
command is used, or 512 MB of transaction information has accumulated since the last
automatic checkpoint.

Introducing SQL Server In-Memory OLTP

[449]

When this occurs, the checkpoint process generates a checkpoint file inventory of multiple
data and delta files; this inventory file catalogues the data and delta files and writes this
information to the transaction log. These files are used in a recovery scenario to be able to
reconstruct data for the SCHEMA_AND_DATA defined memory-optimized tables.

Figure 11 8 Filestream folder used for storing memory-optimized checkpoint file pairs

Database startup and recovery
Recovery of memory-optimized tables is performed in an optimized manner compared to
disk-based tables.

The In-Memory OLTP engine gathers information on which checkpoints are currently valid
and their locations. Each checkpoint file pair (delta and data) is identified and the delta file
is used to filter out rows from the data file (deleted data doesn't need to be recovered). The
In-Memory OLTP engine creates one recovery thread per CPU core, allowing for parallel
recovery of memory-optimized tables. These recovery threads load the data from the data
and delta files, creating the schema and all indexes. Once the checkpoint files have been
processed, the tail of the transaction log is replayed from the timestamp of the latest valid
checkpoint.

The ability to process recovery in parallel is a huge performance gain and allows objects
that are memory-optimized to be recovered in a much shorter time than if only serial
recovery was available.

Introducing SQL Server In-Memory OLTP

[450]

Management of in-memory objects
Managing memory-optimized tables is similar to disk-based tables. SQL Server
Management Studio provides full syntax and GUI support for memory-optimized tables.
There is a long list of Dynamic Management Objects (DMOs) that provide detailed
insights into each aspect of the feature, but the legacy management objects such as
sys.tables or sys.indexes have also received some updates to include pertinent
memory-optimized information.

Dynamic management objects
The DMOs concerned with the In-Memory OLTP engine all have XTP (eXtreme
Transaction Processing) in their name:

sys.dm_db_xtp_checkpoint

sys.dm_db_xtp_checkpoint_files

sys.dm_db_xtp_gc_cycles_stats

sys.dm_xtp_gc_stats

sys.dm_xtp_system_memory_consumers

sys.dm_xtp_threads

sys.dm_xtp_transaction_stats

sys.dm_db_xtp_index_stats

sys.dm_db_xtp_memory_consumers

sys.dm_db_xtp_object_stats

sys.dm_db_xtp_transactions

sys.dm_db_xtp_table_memory_stats

Full details of the columns and meanings for each DMO can be found in Microsoft Books
Online (https://msdn.microsoft.com/library/dn133203(SQL.130).aspx).

Introducing SQL Server In-Memory OLTP

[451]

Extended Events
As with all new features inside SQL Server, In-Memory OLTP also provides Extended
Events session details. There is an extensive set of events that can be captured by Extended
Events. Using the Extended Events Wizard will allow you to easily choose which events
you wish to collect. Extended Events is the preferred method for collecting internal system
information on any feature of SQL Server (where possible). Extended Events is a
lightweight collection framework that allows you to collect system runtime statistics while
keeping resource usage to a minimum.

A T-SQL query to return a list of the Extended Events that are available for the In-Memory
OLTP engine would be:

SELECT p.name,
 o.name,
 o.description
FROM sys.dm_xe_objects o
 JOIN sys.dm_xe_packages p
 ON o.package_guid = p.guid
WHERE p.name = 'XtpEngine';

Perfmon counters
SQL Server also provides perfmon counters for the In-Memory OLTP engine. However,
perfmon is a much older technology than Extended Events and has certain limitations that
prevent it from exposing all the details that Extended Events can. Be as it may, it is still
possible to collect certain information on the In-Memory OLTP engine.

A T-SQL query to return a list of the perfmon counters that are available for the In-Memory
OLTP engine would be:

SELECT object_name,
 counter_name
FROM sys.dm_os_performance_counters
WHERE object_name LIKE '%XTP%';

Introducing SQL Server In-Memory OLTP

[452]

Assistance in migrating to In-memory OLTP
Now that we have explored the possibilities that memory-optimized tables offer, it would
be fantastic to be able to somehow evaluate our existing databases. Ideally, this evaluation
would show how many tables or stored procedures could potentially be converted from
traditional disk-based objects into ultra-fast memory-optimized objects.

Luckily for us, Microsoft has also provided us with some help here. Inside SQL Server
Management Studio are two interesting standard reports that help us to analyze our
databases and see how we can benefit from memory-optimized objects.

The first report is the Transaction Performance Analysis Overview. This report allows us
to quickly identify possible candidates for a move from disk-based to memory-optimized.
We can reach this report by navigating through SQL Server Management Studio, as shown
in Figure 11.9:

Figure 11 9 Transaction Performance Analysis Overview Report in SQL Server Management Studio

Introducing SQL Server In-Memory OLTP

[453]

Once we select the standard report Transaction Performance Analysis Overview, we are
greeted with a start page asking if we want to evaluate tables or stored procedures. Our
example queries are focused on tables, so choosing Tables Analysis will give us a little
sample data for illustration purposes:

Figure 11 10 Transaction Performance Analysis Overview Report

Figure 11 11

Introducing SQL Server In-Memory OLTP

[454]

A click on Tables Analysis brings up a detailed report of all tables in the database that are
eligible candidates for a migration to memory-optimized tables.

As the report states, eligible candidate tables are shown on this report. An entry higher up
and further to the right of the table means a higher recommendation for conversion to a
memory-optimized table. Based on our sample queries, it should be no surprise that the
table called DiskBasedTable is an ideal candidate for memory-optimized storage. The
data types are perfect, the behavior of the data movement is ideal. There is pretty much no
reason at this point to not migrate this table to the In-Memory OLTP engine.

Figure 11 12 Table level report for the Transaction Performance Analysis Overview

A further click on the table name pulls up a report based on the table itself, providing
details on lock and latch statistics for the table, along with recommendations on what
indexes are currently available and what index these should be migrated into (either hash
or non-clustered).

Introducing SQL Server In-Memory OLTP

[455]

Summary
In this chapter, we took a look at the In-Memory OLTP engine as it was introduced in SQL
Server 2014. Along the way, we investigated how the In-Memory OLTP differs from the
traditional SQL Server storage engine with respect to the concurrency model. The main
difference is the ability to allow multiple concurrent users to access the data structure
without relying on the pessimistic concurrency model of using locking and latching to
uphold data isolation within transactions.

We continued our journey by exploring what T-SQL constructs and data types the In-
Memory OLTP engine can support the first version of the feature inside SQL Server 2014.
At the same time, we were able to find out that although there are limitations, there is still a
wide range of available data types and programming approaches that can be used
immediately. Especially exciting is the fact that the T-SQL language receives (almost)
transparent support for powerful new capabilities. Memory-optimized tables appear at first
glance to be just normal tables that somehow process data at a much higher rate than
normal.

The chapter then discussed how memory-optimized tables can take advantage of different
data durability options and how this can affect both performance and recoverability of data.
The new storage engine provides solutions that were previously impossible in the
traditional storage engine.

We rounded off the first encounter with the In-Memory OLTP engine with a discussion
around how the internals of the storage engine work. We also saw how to interrogate the
system using different methods to explore how data flows through the In-Memory OLTP
engine.

Finally, we had a glimpse of a useful migration assistant that can help in the preparation or
identification of objects in existing databases that are possible candidates for a migration to
the In-Memory OLTP engine.

12
In-Memory OLTP

Improvements in SQL Server
2016

When In-Memory OLTP was introduced in SQL Server 2014, many developers were
initially excited. The hope of a new, ultra-high-performance data processing engine,
coupled with a leading relational database engine, offered a potentially massive
improvement for many SQL Server developers. However, this excitement quickly turned
into mild disappointment at the number of restrictions assigned to In-Memory OLTP. Many
of these restrictions prevented wide adoption of the technology and forced it into a niche set
of very tight implementation scenarios. Some of these restrictions, such as lacking support
for large data object types (LOBs) or the missing support for ALTER commands, dampened
many people's enthusiasm for the technology.

As with previous features inside SQL Server, In-Memory OLTP has followed a similar
pattern. SQL Server 2014 saw the introduction of the In-Memory OLTP Engine. With SQL
Server 2016, the feature has experienced an evolution: many of the restrictions that were
present in SQL Server 2014 have been removed and existing functionality has been
extended. In this chapter, we will take a look at the improvements that should now make
In-Memory OLTP really attractive to almost all developers out there.

This chapter will demonstrate these improvements and additions, including: Altering
existing memory-optimized objects, expanded data type support, expanded
functionality/reduced limitations, and integration of In-Memory OLTP into other areas of
the database engine.

In-Memory OLTP Improvements in SQL Server 2016

[457]

Ch-Ch-Changes
It's not only the legend himself, Mr. David Bowie, who could sing about changes. In SQL
Server 2014, we were destined to create In-Memory OLTP objects that were unchangeable
after creation. If we needed to change the structure of a memory-optimized table, we had to
resort to dropping and recreating the object with the new, updated structure.

For many developers/customers, this was a deal breaker. Being able to add and remove
columns or indexes is something that every SQL Server developer is used to without any
such restrictions. Especially, with the advent of agile software development and similar
development strategies such as continuous integration, making changes to software
applications is something many developers strive towards.

Now, with SQL Server 2016, it is possible to do just that. We will be continuing this chapter
using the same database as in Chapter 11, Introducing SQL Server In-Memory
OLTP, creating a simple memory-optimized table:

USE master
GO
CREATE DATABASE InMemoryTest
 ON
 PRIMARY(NAME = [InMemoryTest_disk],
 FILENAME = 'C:tempInMemoryTest_disk.mdf', size=100MB),
 FILEGROUP [InMemoryTest_inmem] CONTAINS MEMORY_OPTIMIZED_DATA
 (NAME = [InMemoryTest_inmem],
 FILENAME = 'C:tempInMemoryTest_inmem')
 LOG ON (name = [InMemoryTest_log],
Filename='c:tempInMemoryTest_log.ldf', size=100MB)
 COLLATE Latin1_General_100_BIN2;
GO
USE InMemoryTest
GO
CREATE TABLE InMemoryTable
(
 UserId INT NOT NULL,
 UserName VARCHAR(20) COLLATE Latin1_General_CI_AI NOT NULL,
 LoginTime DATETIME2 NOT NULL,
 LoginCount INT NOT NULL,
 CONSTRAINT PK_UserId PRIMARY KEY NONCLUSTERED (UserId),
 INDEX HSH_UserName HASH (UserName) WITH (BUCKET_COUNT=10000)
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_AND_DATA);
GO
INSERT INTO dbo.InMemoryTable
 (UserId, UserName , LoginTime, LoginCount)
VALUES (1, 'Mickey Mouse', '2016-01-01', 1);
GO

In-Memory OLTP Improvements in SQL Server 2016

[458]

The list of supported ALTER statements for a table in SQL Server 2016 is as follows:

Changing, adding, and removing a column
Adding and removing an index
Adding and removing a constraint
Changing the bucket count

First up, we will add a column to the demo table. Note how the DDL statement is no
different from adding a column to a disk-based table:

USE InMemoryTest;
GO
ALTER TABLE dbo.InMemoryTable ADD NewColumn INT NULL;
GO

We can also remove columns. Here, the DDL has also not changed:

USE InMemoryTest;
GO
ALTER TABLE dbo.InMemoryTable DROP COLUMN NewColumn;
GO

We are also able to add indexes after a table has already been created:

USE InMemoryTest;
GO
ALTER TABLE dbo.InMemoryTable ADD INDEX HSH_LoginTime NONCLUSTERED HASH
(LoginTime) WITH (BUCKET_COUNT = 250);
GO

Until now, the DDL statements looked normal. However, adding an index to a memory-
optimized table is done using ALTER TABLE rather than CREATE INDEX. The same can be
said for dropping or altering an index:

USE InMemoryTest;
GO
ALTER TABLE dbo.InMemoryTable ALTER INDEX HSH_LoginTime REBUILD WITH
(BUCKET_COUNT=10000);
GO
ALTER TABLE dbo.InMemoryTable DROP INDEX HSH_LoginTime;
GO

In-Memory OLTP Improvements in SQL Server 2016

[459]

In the previous chapter, we discovered how the indexes on a memory-optimized table are
the Bw-tree linked lists, which actually provide us with an access path to the memory pages
of the actual data in a memory-optimized table. As such, they are more an extension of the
table definition (similar to constraints) than an index on a disk-based table can be
considered. This is reflected in the requirement for issuing an ALTER TABLE command to
add, remove, or alter an index on a memory-optimized table.

Altering the bucket count of an index (as shown in the previous listing) is quite interesting.
We always strive to implement new code with the plan of ensuring it is fit for purpose before
we deploy to production. We also know that the first implementation of code rarely
survives the first encounter with production usage. Predicting the correct bucket count is
like predicting the future; the more information we have, the better our predictions can be.
But who has full knowledge of how a new feature will be used? It is rarely possible to get a
1:1 comparison of production into a development environment. As such, changing the
bucket count is likely something that we will need to do. Later in this chapter, we will be
looking at the internals of indexing memory-optimized tables and will cover bucket counts
in more detail.

A further interesting addition to SQL Server 2016 is the ability to bundle multiple changes
(specifically, multiple change types—columns and indexes) together in one ALTER
statement:

USE InMemoryTest
GO
ALTER TABLE dbo.InMemoryTable
ADD ANewColumn INT NULL,
 AnotherColumn TINYINT NULL,
INDEX HSH_ANewColumn NONCLUSTERED HASH (ANewColumn) WITH (BUCKET_COUNT =
250);

Adding multiple columns was possible in previous versions of SQL Server, but the ability to
add an index in the same statement is new. This has to do with how the In-Memory OLTP
Engine creates and manages memory-optimized objects in general. In Chapter 11,
Introducing SQL Server In-Memory OLTP, we saw that memory-optimized objects are
memory-resident objects with matching access methods (in fact, compiled C code). Indexes
for memory-optimized tables are part of the memory-optimized table insofar as they
require the C constructs and access methods to ensure SQL Server can work with them.
Because these objects require compilation into machine code, they are somewhat static, even
with the new ability to issue ALTER commands to them.

In-Memory OLTP Improvements in SQL Server 2016

[460]

To overcome this logical limitation of compiled code being unchangeable, SQL Server
receives the desired changes inside the ALTER statement and proceeds to create a new
version of the existing object. Upon creation of this copy, the desired changes are
incorporated into the new version. If the object being changed is a table, the rows from the
old version are copied to the new version. The background process then compiles the access
methods (including the changed columns) and the new version is ready for use. At this
point, SQL Server dereferences the old version and redirects future calls to the new version.

As the ALTER of a table requires that the entire contents of a table be copied from the old
version to the new version, we must be mindful of the fact that we are doubling the
memory requirements for the table for the duration of the ALTER transaction (and until the
background garbage collection cleans up the old structure). Equally, ALTER commands for
memory-optimized tables are offline operations. This means that the memory-optimized
table is blocked for the duration of the ALTER transaction.

As such, if we are manipulating a large table, we must ensure that we have enough memory
available for the operation to succeed and understand that the table will be blocked for the
duration of the transaction. It may, therefore, be prudent to consider emptying extremely
large tables before issuing the ALTER command, to allow the change to complete quicker.

Many ALTER statements are metadata changes only. These types of change can be processed
in parallel and have a greatly reduced impact on the transaction log. When only the
metadata changes need to be processed, only these metadata changes are processed through
the transaction log. Coupled with parallel processing, we can expect the execution of these
changes to be extremely fast.

However, parallel processing is excluded for a few operations that require more than simple
metadata changes; these are:

Altering or adding a column to use a large object (LOB) type: nvarchar(max),
varchar(max), or varbinary(max)
Adding or dropping a COLUMNSTORE index
Almost anything that affects an off-row column:

Causing an on-row column to move off-row
Causing an off-row column to move on-row
Creating a new off-row column
Exception: Lengthening an already off-row column is logged in the
optimized way

In-Memory OLTP Improvements in SQL Server 2016

[461]

As well as serial processing being forced for these operations, making changes to these data
types causes a complete copy of the table being processed to be copied into the transaction
log. This can cause the transaction log to fill up and also produce extra load on the storage
subsystem.

The removal of restrictions on altering tables extends to altering natively compiled stored
procedures. The well-known ALTER PROCEDURE command can now be used to make
changes to previously created natively compiled stored procedures (the following demo
code creates the stored procedure with no content to allow the ALTER statement to then be
run):

USE InMemoryTest
GO
CREATE PROCEDURE dbo.InMemoryInsertOptimized
 @UserId INT,
 @UserName VARCHAR(255),
 @LoginTime DATETIME2,
 @LoginCount INT
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC WITH
(
 TRANSACTION ISOLATION LEVEL = SNAPSHOT,
 LANGUAGE = N'English'
)
 RETURN 0;
END;
GO

ALTER PROCEDURE dbo.InMemoryInsertOptimized
 @UserId INT,
 @UserName VARCHAR(255),
 @LoginTime DATETIME2,
 @LoginCount INT
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER
AS
BEGIN ATOMIC WITH
(
 TRANSACTION ISOLATION LEVEL = SNAPSHOT,
 LANGUAGE = N'English'
)
 -- Add an Insert
 INSERT dbo.InMemoryTable
 (UserId, UserName, LoginTime, LoginCount)
 VALUES
 (@UserId, @UserName, @LoginTime, @LoginCount);
 RETURN 0;

In-Memory OLTP Improvements in SQL Server 2016

[462]

END;
GO

The following aspects of an existing natively compiled stored procedure can be changed
using the ALTER PROCEDURE syntax:

Parameters
EXECUTE AS

TRANSACTION ISOLATION LEVEL

LANGUAGE

DATEFIRST

DATEFORMAT

DELAYED_DURABILITY

However, it is important to note that it is not possible to ALTER a natively
compiled stored procedure to become non-native compiled, and the
reverse is equally not supported.

If we wish to make such a change, we are required to perform a DROP PROCEDURE and
CREATE PROCEDURE. This should make sense, as we are moving from the In-Memory into
the normal Relational Engine (respectively). As such, we are recreating these objects in their
entirety to achieve the desired change. This also means that we have to consider that any
permissions assigned to such an object need to be re-assigned at (re)creation time.

During the recompile process, when an ALTER command is issued, the old version of the
natively compiled stored procedure can still be executed. Upon compilation of the altered
stored procedure, the old version will be destroyed and all subsequent calls of the stored
procedure will use the new definition. This allows an ALTER command to be issued without
causing long waiting periods, but may allow transactions to execute using potentially old
code.

Feature improvements
While it is welcome that we can now alter existing objects without having to drop them
first, many developers are more interested in finally being able to use data types and T-SQL
syntax in the In-Memory OLTP engine that go beyond just the basics. In SQL Server 2016,
we have been presented with a great deal of extra support, as is typical with version 2 of a
product. In this section of the chapter, we will take a look at what areas of the database
engine are now supported in the In-Memory OLTP engine.

In-Memory OLTP Improvements in SQL Server 2016

[463]

Collations
The first major addition is the fact that both memory-optimized tables and natively
compiled stored procedures support all code pages and collations that SQL Server supports.
The previous limitation of only supporting a subset of collations otherwise available in SQL
Server has been completely removed from the product (a newly supported collation has
been used in the test table in the demo scripts in this chapter).

This improvement allows us to incorporate tables and stored procedures using the
collations that we are used to or already using in our database designs.

Data types and types of data
SQL Server 2016 now supports the vast majority of data types in the In-Memory OLTP
engine. In fact, the list of supported data types is now so long that it is easier to list the
unsupported types instead. The data types that are currently unsupported are as follows:

Datetimeoffset

Geography

Geometry

Hierarchyid

Rowversion

Xml

Sql_variant

This means that (except for XML), Large Binary Objects (LOBs) are supported; this covers
the max datatypes varchar(max), nvarchar(max), and varbinary(max). This is great
news, as there are many cases where disk-based tables that had only one LOB column but
multiple supported columns were barred from the In-Memory OLTP engine.

LOB data type support is not limited to tables and indexes; it is now also possible to use
LOB data types in memory-optimized stored procedures. This will allow parameters to be
passed into and out of natively compiled stored procedures.

An exhaustive list of current In-Memory OLTP limitations can be found in Microsoft Books
Online: https://msdn.microsoft.com/en-us/library/dn246937.aspx

Microsoft Books Online also has indications of which commands or DDL/data types will be
made available to the In-Memory OLTP engine in the next version of SQL Server. One such
example is the upcoming support of Computed Columns.

In-Memory OLTP Improvements in SQL Server 2016

[464]

What's new with indexes?
Indexing memory-optimized tables was quite restrictive in the initial version of the In-
Memory OLTP engine. So far in the chapter, we have seen that there have been a number of
improvements (adding, removing, and rebuilding indexes), but that is not all!

It is now possible to define non-unique indexes with NULLable key columns for memory-
optimized tables. NULLability is something that is widely used and the move toward parity
between memory-optimized and disk-based indexes is continued here.

Similarly, it is possible to declare UNIQUE indexes (other than the primary key) for memory-
optimized tables.

We will take a deeper look at indexing later in this chapter, in the section titled Down the
index rabbit-hole.

Unconstrained integrity
Referential integrity and data integrity are important foundational rules inside relational
databases. The In-Memory OLTP Engine introduced an extremely limited set of constraints
that could be used in SQL Server 2014. This meant that solutions had to widely forego many
expectations of assigning referential and data integrity to memory-optimized tables.

With SQL Server 2016, it is now possible to implement the following referential and data
integrity rules for memory-optimized tables:

FOREIGN KEY constraints (between memory-optimized tables).
CHECK constraints.
DEFAULT constraints.
UNIQUE constraints.
AFTER triggers for INSERT, UPDATE, and DELETE operations. Triggers for
memory-optimized tables must be created using WITH NATIVE_COMPILATION so
that the trigger is natively compiled at creation time.

This will now allow developers to create tables with some semblance of sane referential and
data integrity rules (as they are used to with disk-based tables).

In-Memory OLTP Improvements in SQL Server 2016

[465]

Not all operators are created equal
While the number of commands that are supported for natively compiled T-SQL in SQL
Server 2016 has expanded, unfortunately a wide range of the most powerful T-SQL
commands are still not available for In-Memory OLTP solutions.

The following notable operators are unsupported in SQL Server 2016:

LIKE

CASE

INTERSECT

EXCEPT

APPLY

Attempting to use these operators inside a natively compiled stored procedure or scalar
function will result in an error message explaining that the syntax is not supported:

The operator 'LIKE' is not supported with natively compiled modules.

We can expect these and other currently unsupported operators to be added to future
releases of SQL Server.

A full list of unsupported operators can be found on the Microsoft Books Online
page: https://msdn.microsoft.com/en-us/library/dn246937.aspx#Anchor_4

It is important to understand that these T-SQL limitations are for natively compiled T-SQL
(stored procedures and scalar functions). You are still able to write interpreted T-SQL (non-
natively compiled T-SQL) using these commands. For example, it is perfectly fine to query a
memory-optimized table and issue a LIKE operator to search in a character column.

Size is everything!
When the In-Memory OLTP engine was initially introduced in SQL Server 2014 Microsoft
announced that the maximum size of any memory-optimized table was 256 GB. This limit
was reached via internal testing at Microsoft and named to ensure stability and reliability of
the feature in production environments. The main decision here was the design of the
storage subsystem, particularly around the checkpoint file pairs. There was a hard limit of
8,192 checkpoint file pairs, each capable of storing 128 MB of data. The limit of 256 GB was
not a hard limit but rather a suggested maximum. The memory requirements for a memory-
optimized table are dynamic. This dynamism is grounded in the memory requirements for
merging data changes into the memory-optimized tables (insert, deletes, updates) and the
follow-on redundancies of versioned rows and rows waiting for garbage collection.

In-Memory OLTP Improvements in SQL Server 2016

[466]

When SQL Server 2016 was released, Microsoft quoted a maximum size of 2 TB for a
memory-optimized table. Again, this was due to testing and reliability measurements inside
the development team at Microsoft. The development team has re-architected the storage
subsystem for the checkpoint file pairs, removing the 8,192-pair limit, effectively allowing a
memory-optimized table to have no upper size limit (as long as you have memory
available, the table can grow). This does not mean that any and all tables should be memory-
optimized, but it does mean that we are now able to consider using the In-Memory OLTP
Engine to store any size of table that we can design.

Improvements in the In-Memory OLTP Engine
Further to the above-mentioned size limitation removal, there are a number of
improvements under the hood of the In-Memory OLTP Engine that may not be
immediately apparent, but can drastically improve performance and scalability.

First up is a range of improvements to the storage subsystem: not only the previously
mentioned removal of the checkpoint file pair limit, but also the introduction of multi-
threaded checkpointing. In SQL Server 2014, the offline checkpoint process was a single-
threaded system. This thread would scan the transaction log for changes to memory-
optimized tables and write those changes to the checkpoint file pairs. This meant that a
potentially multi-core system would have a “busy” core for the checkpointing process. With
SQL Server 2016, this checkpointing system has now been redesigned to run on multiple
threads, thereby increasing throughput to the checkpoint file pairs and thus increasing
overall performance and scalability of the In-Memory OLTP Engine.

Similar improvements have been made to the recovery process. When the server is
performing crash recovery, or bringing a database online after a server was taken offline,
the log apply operations are now also processed using multiple threads.

The theme of multi-threading or parallel processing has also been continued in the query
processing portion of the In-Memory OLTP Engine. Here we can expect performance
improvements for a range of queries, both interpreted and natively compiled. The query
processing engine is now able to process the MERGE statement using multiple threads (as
long as your server/database MAXDOP settings allow for this). This allows the query
optimizer to use parallelism where it deems parallel processing to be more efficient than
serial processing.

Equally, in SQL Server 2014, hash indexes could only be scanned using a single-
thread/serial scan rather than a parallel scan. SQL Server 2016 has now implemented a
parallel scan method to provide a significant performance gain when scanning a hash
index. This helps to mitigate the inherent performance pain that is experienced when
performing an index scan over a hash index.

In-Memory OLTP Improvements in SQL Server 2016

[467]

Down the index rabbit-hole
So far in this chapter, we have seen the additions of features and functionalities that were
available in disk-based objects, into the In-Memory OLTP Engine. The improvements in
indexing and the ability to alter your indexing strategy with memory-optimized tables
without dropping the table are particularly attractive. With that in mind, we will spend
some time investigating how the indexes are treated inside the storage engine. This will
include a journey through the system catalogs and Dynamic Management Views (DMVs),
to allow us to see how index information can be queried.

We will now take this opportunity to explore what the alteration of a bucket count can have
on the data in our demonstration table.

Let us begin by rolling back two of our changes from earlier in the chapter by dropping the
hash index HSH_ANewColumn, dropping the two columns ANewColumn and
AnotherColumn and finally, recreating a hash index HSH_LoginTime using an extremely
irregular and sub-optimal value of 2:

USE InMemoryTest
GO
ALTER TABLE dbo.InMemoryTable DROP INDEX NCL_ANewColumn
GO
ALTER TABLE dbo.InMemoryTable DROP COLUMN ANewColumn
GO
ALTER TABLE dbo.InMemoryTable DROP COLUMN AnotherColumn
GO
ALTER TABLE dbo.InMemoryTable ADD INDEX HSH_LoginTime NONCLUSTERED HASH
(LoginTime) WITH (BUCKET_COUNT=2);
GO

We will begin by taking a look into the system catalog views that we have used in past
versions of SQL Server to inspect the table and indexes we have created so far:

USE InMemoryTest
GO
SELECT OBJECT_NAME(i.object_id) AS [table_name],
 COALESCE(i.name,'--HEAP--') AS [index_name],
 i.index_id,
 i.type,
 i.type_desc
FROM sys.indexes AS i
WHERE i.object_id = OBJECT_ID('InMemoryTable');

table_name index_name index_id type type_desc
------------- -------------- -------- ---- ----------

In-Memory OLTP Improvements in SQL Server 2016

[468]

InMemoryTable --HEAP-- 0 0 HEAP
InMemoryTable HSH_UserName 2 7 NONCLUSTERED HASH
InMemoryTable PK_InMemory 3 2 NONCLUSTERED
InMemoryTable HSH_LoginTime 4 7 NONCLUSTERED HASH

The results of this first query against sys.indexes shows us that we have a HEAP (the data
pages of the memory-optimized table) and three additional indexes that we have created so
far. Particularly noteworthy here are the two non-clustered hash indexes that we created:
HSH_UserName and HSH_LoginTime. Both appear as index type 7 and index description
NONCLUSTERED HASH. This should come as no great surprise, but shows us that the old
system views have been extended to include information regarding memory-optimized
tables and indexes. The listing above may be executed without the WHERE clause to see that
the details for both memory-optimized and disk-based tables and indexes can be queried
simultaneously.

We already know that hash indexes are exclusive to memory-optimized tables. However, if
we go through the demo code so far, we also know that the primary key of this table is also
memory-optimized. The query referencing sys.indexes, however, only shows us that the
primary key is a non-clustered index. So, we have no way of knowing if this non-clustered
index is a memory-optimized or a disk-based index.

The information about whether a table is a memory-optimized or disk-based table is stored
in the newly extended sys.tables catalog view:

SELECT COALESCE(i.name,'--HEAP--') AS [index_name],
 i.index_id,
 i.type,
 t.is_memory_optimized,
 t.durability,
 t.durability_desc
FROM sys.tables t
 INNER JOIN sys.indexes AS i
 ON i.object_id = t.object_id
WHERE t.name = 'InMemoryTable'

index_name index_id type is_memory_optimized durability durability_desc
---------- -------- ---- ------------------- ---------- ---------
--HEAP-- 0 0 1 0 SCHEMA_AND_DATA
HSH_UserName 2 7 1 0 SCHEMA_AND_DATA
PK_InMemory 3 2 1 0 SCHEMA_AND_DATA
HSH_LoginTime 4 7 1 0 SCHEMA_AND_DATA

As the results of the query show, the table and all indexes are memory-optimized
(is_memory_optimized = 1). We are also able to determine which durability option has
been chosen for the table.

In-Memory OLTP Improvements in SQL Server 2016

[469]

With these two queries, we are able to take our first look at the index information for
memory-optimized tables. However, we are not able to see any particular information
regarding our hash index (bucket counts or chain lengths). To access that information, we
leave the general system catalog views sys.indexes and sys.tables behind and
venture forwards into more feature specific catalog views.

Our first port of call is the obviously named sys.hash_indexes, which displays
information on any hash indexes in a database. The catalog view sys.hash_indexes has
the same columns as the catalog view sys.indexes, with the exception of the column
bucket_count. This column displays the bucket count for the index from the creation time
/ last rebuild, with the option BUCKET_COUNT supplied:

USE InMemoryTest
GO
SELECT hi.name AS [index_name],
 hi.index_id,
 hi.type,
 hi.bucket_count
FROM sys.hash_indexes AS hi;

index_name index_id type bucket_count
------------- ----------- ---- ------------
HSH_UserName 2 7 16384
HSH_LoginTime 4 7 2

This catalog view only provides us with information about the index structure from the
time of creation; it does not provide us with any details on chain length inside each bucket
(the number of rows that are assigned to each bucket via the hashing algorithm).

To access this much more important and relevant information, we must access another
catalog view specifically created for the memory-optimized
indexes—sys.dm_db_xtp_hash_index_stats:

SELECT COALESCE(i.name, '--HEAP--') AS [index_name],
 i.index_id,
 i.type,
 ddxhis.total_bucket_count AS [total_buckets],
 ddxhis.empty_bucket_count AS [empty_buckets],
 ddxhis.avg_chain_length,
 ddxhis.max_chain_length
FROM sys.indexes AS i
 LEFT JOIN sys.dm_db_xtp_hash_index_stats AS ddxhis
 ON ddxhis.index_id = i.index_id
 AND ddxhis.object_id = i.object_id
WHERE i.object_id = OBJECT_ID('InMemoryTable');

In-Memory OLTP Improvements in SQL Server 2016

[470]

index_name index_id type total_buckets empty_buckets avg_chain_length
max_chain_length
--------- -------- ---- ------------- ------------- ---------------- --

--HEAP-- 0 0 NULL NULL NULL
NULL
HSH_UserName 2 7 16384 16383 1
1
PK_UserId 3 2 NULL NULL NULL
NULL
HSH_LoginTime 4 7 2 1 1
1

By joining the system catalog view sys.dm_db_xtp_hash_index_stats to sys.indexes
(or even directly to sys.hash_indexes), we are able to finally see our bucket count and
our usage statistics. We see how many buckets are empty, the average chain length, and
max chain length for each hash index.

We will want to monitor the statistics of our hash indexes to see if the bucket count is
optimal or not. As each bucket takes up 8 bytes of memory, the higher the bucket count, the
more memory we will use for the index. A higher bucket count also results in slower
traversal of the index when performing index scans. So, if we note a high number of empty
buckets, we may consider reducing the bucket count to improve potential scan speeds. In
general, it is best to avoid performing index scans on a hash index, as the scan must first
scan the hash buckets and then the chains of rows for each bucket. This has considerable
overhead versus scanning a non-clustered index, which doesn't have the added complexity
of the bucket structure to traverse.

Equally, if we see a high average or maximum chain length, this could indicate that there
are not enough buckets available for the data coming into the index. Higher chain lengths
can also impact performance when performing seeks or inserts.

The general idea of a hash index is to have just enough buckets to cover all possible unique
values going into the index (or as near to this as possible), so that when a query seeks for a
single hash value, the storage engine can retrieve the one (or very few) row(s) that belong to
that hash value.

The recommendation from Microsoft is to aim for an empty bucket percentage of 33% or
above. If the bucket count matches the number of unique values for the index, the hashing
algorithm's distribution will cause around 33% of buckets to remain empty.

The recommendation from Microsoft is to aim for a chain length of less than 10, with the
ideal value being 1 (one row per hash value and therefore bucket).

In-Memory OLTP Improvements in SQL Server 2016

[471]

If you have wildly non-unique values with many duplicates, a non-clustered index would
more likely be a better choice versus a hash index.

We can see how the empty buckets and chain lengths are affected by inserting a handful of
rows into the test table and re-running the previous query to show how the chain length
and bucket “fullness” has changed:

USE InMemoryTest
GO
INSERT INTO dbo.InMemoryTable
 (UserId, UserName , LoginTime, LoginCount)
VALUES
 (2, 'Donald Duck' , '2016-01-02', 1),
 (3, 'Steve Jobs' , '2016-01-03', 1),
 (4, 'Steve Ballmer' , '2016-01-04', 1),
 (5, 'Bill Gates' , '2016-01-05', 1),
 (6, 'Ted Codd' , '2016-01-06', 1),
 (7, 'Brian Kernighan', '2016-01-07', 1),
 (8, 'Dennis Ritchie' , '2016-01-08', 1);
GO
SELECT COALESCE(i.name, '--HEAP--') AS [index_name],
 i.index_id,
 i.type,
 ddxhis.total_bucket_count AS [total_buckets],
 ddxhis.empty_bucket_count AS [empty_buckets],
 ddxhis.avg_chain_length,
 ddxhis.max_chain_length
FROM sys.indexes AS i
 LEFT JOIN sys.dm_db_xtp_hash_index_stats AS ddxhis
 ON ddxhis.index_id = i.index_id
 AND ddxhis.object_id = i.object_id
WHERE i.object_id = OBJECT_ID('InMemoryTable');

In-Memory OLTP Improvements in SQL Server 2016

[472]

Here we can see that the two hash indexes now have slightly different information in them.
We now have a total of eight rows in the table (and the indexes). HSH_UserName has 16376
buckets with a hash function applied to the UserName column. As we inserted seven new
rows, each with a unique value for UserName, they will all be stored in an empty bucket.
This leaves the average and max chain lengths at 1. The data inserted into LoginTime was
also unique for each of the 7 rows. However, there are only 2 buckets assigned to the
HSH_LoginTime. This results in the 7 rows hashing to one of two possible values and being
placed in one of the two available buckets. The average and max chain lengths are then no
longer 1.

This example is very simplified, but would allow us to recognize that the implementation of
the hash index on LoginTime requires attention. Either the bucket count needs raising or
the choice of a hash index is possibly incorrect. Equally, the hash index on UserName is
providing ideal chain lengths, but has an excessive empty bucket count. The index is using
more memory than is necessary and may need the bucket count reducing to release
memory for other memory-optimized objects. Now that we know that the bucket counts
and chain lengths can affect the amount of memory required to store our memory-
optimized tables and indexes, we should also take a quick look at how the two hash indexes
in the example can differ:

USE InMemoryTest
GO
SELECT COALESCE(i.name, '--HEAP--') AS [index_name],
 i.index_id,
 i.type,
 c.allocated_bytes,
 c.used_bytes
FROM sys.dm_db_xtp_memory_consumers c
 JOIN sys.memory_optimized_tables_internal_attributes a
 ON a.object_id = c.object_id
 AND a.xtp_object_id = c.xtp_object_id
 LEFT JOIN sys.indexes i
 ON c.object_id = i.object_id
 AND c.index_id = i.index_id
WHERE c.object_id = OBJECT_ID('InMemoryTable')
 AND a.type = 1
ORDER BY i.index_id;

index_name index_id type allocated_bytes used_bytes
---------- -------- ---- --------------- -------------
--HEAP-- NULL NULL 131072 696
HSH_UserName 2 7 131072 131072
PK_UserId 3 2 196608 1368
HSH_LoginTime 4 7 16 16

In-Memory OLTP Improvements in SQL Server 2016

[473]

The results show an interesting fact. The HSH_LoginTime index was created with two
buckets and has 16 bytes allocated and used. This makes sense when we think about how
each bucket takes up 8 bytes of memory. However, HSH_UserName takes up 128 MB of
memory, although the index has 10,000 buckets. We would expect ~78 MB (10,000 * 8 bytes
= 80,000 bytes); however, the memory allocation follows base—2 size allocations. As the size
is larger than 64 MB, the next largest size in base—2 is 128 therefore 128 MB are allocated.
We can test this theory by altering the number of buckets to a value low enough for the size
to be below 64 (the next step down the base—2 scale):

USE InMemoryTest
GO
ALTER TABLE dbo.InMemoryTable ALTER INDEX HSH_UserName REBUILD WITH
(BUCKET_COUNT=8000);
GO
SELECT COALESCE(i.name, '--HEAP--') AS [index_name],
 i.index_id,
 i.type,
 c.allocated_bytes,
 c.used_bytes
FROM sys.dm_db_xtp_memory_consumers c
 JOIN sys.memory_optimized_tables_internal_attributes a
 ON a.object_id = c.object_id
 AND a.xtp_object_id = c.xtp_object_id
 LEFT JOIN sys.indexes i
 ON c.object_id = i.object_id
 AND c.index_id = i.index_id
WHERE c.object_id = OBJECT_ID('InMemoryTable')
 AND a.type = 1
ORDER BY i.index_id;

index_name index_id type allocated_bytes used_bytes
---------- -------- ---- --------------- -----------
--HEAP-- NULL NULL 131072 760
HSH_UserName 2 7 65536 65536
PK_InMemory 3 2 196608 1368
HSH_LoginTime 4 7 16 16

We now see that the HSH_UserName index has 64 MB allocated, although 8,000 buckets
equate to ~62.5 MB. This gives us further information regarding memory use for indexing
memory-optimized tables and that we have a certain amount of overhead for the storage of
indexes in relation to the number of buckets we assign to a hash index.

In-Memory OLTP Improvements in SQL Server 2016

[474]

Large object support
We will now take a look at exactly what LOB data types are supported in SQL Server 2016
and what aspects of these data types need to be considered when using them with memory-
optimized objects.

Let's begin by adding a LOB column to our test table:

USE InMemoryTest
GO
ALTER TABLE dbo.InMemoryTable Add NewColumnMax VARCHAR(MAX) NULL
GO

This follows the same scheme as the previous code examples; adding a LOB column is no
different with a memory-optimized table than a disk-based table. At least on the surface!

Let's take another look into our index metadata to see how exactly LOB columns are
handled by the storage engine:

USE InMemoryTest
GO
SELECT COALESCE(i.name, '--HEAP--') AS [index_name],
 c.allocated_bytes AS allocated,
 c.used_bytes AS used,
 c.memory_consumer_desc AS memory_consumer,
 a.type_desc
FROM sys.dm_db_xtp_memory_consumers c
 JOIN sys.memory_optimized_tables_internal_attributes a
 ON a.object_id = c.object_id
 AND a.xtp_object_id = c.xtp_object_id
 LEFT JOIN sys.indexes i
 ON c.object_id = i.object_id
 AND c.index_id = i.index_id
WHERE c.object_id = OBJECT_ID('InMemoryTable')
 AND i.index_id IS NULL;
GO

index_name allocated used memory_consumer type_desc
---------- --------- ---- --------------- --------------------
--HEAP-- 131072 760 Table Heap USER_TABLE
--HEAP-- 0 0 LOB Page Allocator INTERNAL OFF-ROW DATA TABLE
--HEAP-- 0 0 Table heap INTERNAL OFF-ROW DATA TABLE

In-Memory OLTP Improvements in SQL Server 2016

[475]

There are a number of things to note here:

We are filtering on the table/heap only (AND i.index_id IS NULL). This will
allow us to concentrate on the base table only.
Two additional columns have been added, showing what type of memory
consumer each row represents.
We now see two additional rows displayed.

The preceding listing returns two additional rows, one marked LOB Page Allocator and
one marked Table heap, and both with an internal table attribute of Internal off row
data table. These are references to how the LOB data is stored for memory-optimized
tables.

LOB data is not stored along with the other data pages for a memory-optimized table.
Rather, the LOB data is stored in a separate data structure that is optimized for LOB style
data. The LOB Page Allocator stores the actual LOB data, while the Table heap stores the
references to the LOB data and references back to the original data pages. This arrangement
has been designed so that the row-versioning mechanism, which is the foundation of the
multi-version concurrency control inside the In-Memory OLTP engine (described in
Chapter 11, Introducing SQL Server In-Memory OLTP) doesn't need to keep multiple
versions of the LOB data in the same way it must do for the regular columns. By decoupling
the two data storage classes, SQL Server can be much more efficient with the storage of
these two quite different data types. In particular, LOB data has been regarded as a data
type that is likely to be modified less often compared to non-LOB columns. As such,
processing the LOB data separately will greatly reduce the memory resource usage and this
reduces the overhead of storing LOB data in a memory-optimized table while still affording
the ability of processing the data types through one interface.

At the moment, the LOB column is empty (allocated = 0 and used = 0); if we now run
a simple update to copy the UserName column data into the LOB column, we can run the
same query and investigate how the data is stored in the LOB data structures:

USE InMemoryTest
GO
UPDATE dbo.InMemoryTable
SET NewColumnMax = UserName
GO
SELECT COALESCE(i.name, '--HEAP--') AS [index_name],
 c.allocated_bytes AS allocated,
 c.used_bytes AS used,
 c.memory_consumer_desc AS memory_consumer,
 a.type_desc
FROM sys.dm_db_xtp_memory_consumers c

In-Memory OLTP Improvements in SQL Server 2016

[476]

 JOIN sys.memory_optimized_tables_internal_attributes a
 ON a.object_id = c.object_id
 AND a.xtp_object_id = c.xtp_object_id
 LEFT JOIN sys.indexes i
 ON c.object_id = i.object_id
 AND c.index_id = i.index_id
WHERE c.object_id = OBJECT_ID('InMemoryTable')
 AND i.index_id IS NULL;
GO

index_name allocated used memory_consumer type_desc
---------- --------- ---- ----------------- -----------------------
--HEAP-- 131072 1520 Table Heap USER_TABLE
--HEAP-- 131072 376 LOB Page Allocator INTERNAL OFF-ROW DATA TABLE
--HEAP-- 65536 512 Table heap INTERNAL OFF-ROW DATA TABLE

We are observing a similar behavior as earlier in the chapter, where allocation is occurring
in base-2 steps. The LOB Page Allocator has allocated 128 MB and the supporting Table
heap has allocated 64 MB, although both are using much less space. This is a pure efficiency
step to avoid having to perform unnecessary additional allocations too often. However, we
notice a behavior that could cause memory resource contention if large amounts of LOB
data were to be processed in this way.

If you run the index metadata queries shortly after modifying the table
structure, you may notice that the memory allocations of the table are
larger than shown in the example results here. This has to do with how
ALTER statements are processed by the In-Memory OLTP Engine. Earlier
in the chapter, this mechanism was described and it was stated that an
ALTER makes a copy of the original table, incorporating the desired
changes into the new copy. This leads to a doubling of the memory
allocation until the ghost record cleanup can remove the old copy of the
data from memory.

When SQL Server processes LOB data in the In-Memory OLTP Engine, the decision on
whether or not to push the data from in-row to off-row storage is made according to the
table schema. This is a different mechanism than the disk-based storage engine, which bases
the decision on the data being processed at execution time. Disk-based storage only places
data off-row when it won't fit on a data page, while memory-optimized tables place data
off-row when the table schema describes a column as being either a max data type or that
the row can store more than 8,060 bytes when completely full. When LOB data is stored off-
row for a memory-optimized table, there is a significant overhead associated with that
storage. A reference must be stored for the in-row data (the base memory-optimized table),
the off-row data (the LOB data itself in the LOB Page Allocator), and the leaf level of the
range index (the intermediary heap referencing between the on-row and off-row data).

In-Memory OLTP Improvements in SQL Server 2016

[477]

In addition to this, the actual data must be stored in the LOB Page Allocator. This
overhead can go beyond 50 bytes per row. This additional overhead is created and must be
maintained for each and every LOB column that a memory-optimized table has. The more
LOB columns, the more overhead and bloated referencing required. As you may see,
writing an additional 50+ bytes for each row with a LOB column (or multiples of this) can
quickly cause significant resource and performance issues.

Storage differences of on-row and off-row data
Let's now take a look at the difference in storage and processing between two tables with
variable length character columns. One table has varchar(5) columns, which will be small
enough to fit in the in-row storage. The other table will have a series of varchar(max)
columns, which will automatically be stored in the off-row storage. These tables will be
created and filled with 100,000 rows each to demonstrate both the storage and also
performance differences between the two storage types:

USE InMemoryTest
GO
DROP TABLE IF EXISTS dbo.InMemoryTableMax
DROP TABLE IF EXISTS dbo.InMemoryTableNotMax
GO

CREATE TABLE dbo.InMemoryTableMax
(
 UserId INT NOT NULL IDENTITY (1,1),
 MaxCol1 VARCHAR(max) COLLATE Latin1_General_CI_AI NOT NULL ,
 MaxCol2 VARCHAR(max) COLLATE Latin1_General_CI_AI NOT NULL ,
 MaxCol3 VARCHAR(max) COLLATE Latin1_General_CI_AI NOT NULL ,
 MaxCol4 VARCHAR(max) COLLATE Latin1_General_CI_AI NOT NULL ,
 MaxCol5 VARCHAR(max) COLLATE Latin1_General_CI_AI NOT NULL ,
 CONSTRAINT PK_InMemoryTableMax PRIMARY KEY NONCLUSTERED (UserId),

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_AND_DATA)
GO

CREATE TABLE dbo.InMemoryTableNotMax
(
 UserId INT NOT NULL IDENTITY (1,1),
 Col1 VARCHAR(5) COLLATE Latin1_General_CI_AI NOT NULL ,
 Col2 VARCHAR(5) COLLATE Latin1_General_CI_AI NOT NULL ,
 Col3 VARCHAR(5) COLLATE Latin1_General_CI_AI NOT NULL ,
 Col4 VARCHAR(5) COLLATE Latin1_General_CI_AI NOT NULL ,
 Col5 VARCHAR(5) COLLATE Latin1_General_CI_AI NOT NULL ,
 CONSTRAINT PK_InMemoryTableNotMax PRIMARY KEY NONCLUSTERED (UserId),

In-Memory OLTP Improvements in SQL Server 2016

[478]

) WITH (MEMORY_OPTIMIZED = ON, DURABILITY=SCHEMA_AND_DATA)
GO

The only difference between these two tables are the column data types; one uses the
varchar(max), while the other uses a varchar(5) data type. We are leaving the tables
with only a primary key and no other indexes, because we only want to investigate the on-
row and off-row storage differences.

If we now run our memory consumers query from earlier in this section, we can investigate
how the LOB Page Allocator and matching Table heap objects are created for each table:

SELECT OBJECT_NAME(c.object_id) AS [table_name],
 c.allocated_bytes AS allocated,
 c.used_bytes AS used,
 c.memory_consumer_desc AS memory_consumer,
 a.type_desc
FROM sys.dm_db_xtp_memory_consumers c
 JOIN sys.memory_optimized_tables_internal_attributes a
 ON a.object_id = c.object_id
 AND a.xtp_object_id = c.xtp_object_id
 LEFT JOIN sys.indexes i
 ON c.object_id = i.object_id
 AND c.index_id = i.index_id
WHERE
(
 c.object_id = OBJECT_ID('InMemoryTableNotMax')
 OR c.object_id = OBJECT_ID('InMemoryTableMax')
)
AND i.index_id IS NULL

In-Memory OLTP Improvements in SQL Server 2016

[479]

The results of the memory consumer query show that we have a single Table heap for the
table InMemoryTableNotMax (the table with the varchar(5) columns) and we have
several internal off-row data tables for the InMemoryTableMax table. In fact, we have a LOB
Page Allocator and a matching Table heap for each varchar(max) column in the
table.

We then fill each table with 100,000 rows of data while running a basic timing comparison
to see what performance overhead the LOB Page Allocator and Table heap
maintenance causes:

SET NOCOUNT ON
GO

SET STATISTICS TIME ON
GO

INSERT INTO dbo.InMemoryTableMax
 (MaxCol1 ,
 MaxCol2 ,
 MaxCol3 ,
 MaxCol4 ,
 MaxCol5
)
SELECT TOP 100000
 'Col1',
 'Col2',
 'Col3',
 'Col4',
 'Col5'
FROM sys.columns a
 CROSS JOIN sys.columns;
GO

INSERT INTO dbo.InMemoryTableNotMax
 (Col1 ,
 Col2 ,
 Col3 ,
 Col4 ,
 Col5
)
SELECT TOP 100000
 'Col1',
 'Col2',
 'Col3',
 'Col4',
 'Col5'
FROM sys.columns a

In-Memory OLTP Improvements in SQL Server 2016

[480]

 CROSS JOIN sys.columns
GO

SET STATISTICS TIME OFF
GO

SQL Server Execution Times:
 CPU time = 1797 ms, elapsed time = 1821 ms.

SQL Server Execution Times:
 CPU time = 281 ms, elapsed time = 382 ms.

The results at the end of this listing show that the elapsed time for inserting 100,000 rows
into the table with varchar(max) columns took roughly five times longer than inserting
the same rows into the table with varchar(5) columns. This timing difference is down to
the overhead of inserting the data into the off-row storage (the LOB Page Allocator and
matching Heap table).

If we also take another look into the memory consumption statistics, we can see that there is
also a significant difference in memory consumption between the two tables:

SELECT OBJECT_NAME(c.object_id) AS [table_name],
 SUM(c.allocated_bytes) / 1024. AS allocated,
 SUM(c.used_bytes) / 1024. AS used
FROM sys.dm_db_xtp_memory_consumers c
 JOIN sys.memory_optimized_tables_internal_attributes a
 ON a.object_id = c.object_id
 AND a.xtp_object_id = c.xtp_object_id
 LEFT JOIN sys.indexes i
 ON c.object_id = i.object_id
 AND c.index_id = i.index_id
WHERE
(
 c.object_id = OBJECT_ID('InMemoryTableNotMax')
 OR c.object_id = OBJECT_ID('InMemoryTableMax')
)
AND i.index_id IS NULL
GROUP BY c.object_id;

table_name allocated used
------------------- ------------ ------------
InMemoryTableMax 59392.000000 58593.750000
InMemoryTableNotMax 7104.000000 7031.250000

In-Memory OLTP Improvements in SQL Server 2016

[481]

We can see that we should very carefully consider the use of LOB data types for memory-
optimized tables. If LOB data types are required, then the performance and resource
consumption overhead should be noted, especially where high performance is the driving
factor for adoption of a memory-optimized solution.

Cross-feature support
We have seen that the In-Memory OLTP Engine has increasingly added support for features
outside the engine itself, allowing interoperability between disk-based and memory-
optimized objects with increasing parity with each new release. However, developers need
to also be aware of how the feature support of In-Memory OLTP is also expanding into the
more administrator focused areas of SQL Server.

Security
The first important feature we will discuss under the subtitle cross-feature support is the
ability to use Transparent Data Encryption (TDE) on memory-optimized objects. TDE, as
the name suggests, allows a database administrator to apply an encryption mechanism to
an entire database. This encryption will protect all the data stored inside the database. The
encryption is designed in such a way that should the database fall into the wrong hands
(the data and log files are copied or a backup is misplaced), then the data inside those files
is completely encrypted and useless without the encryption key(s) and certificate(s), which
are stored separately from the database files themselves. The scope of this chapter/book
does not allow for a full excursion into the inner workings of TDE. However, it is enough to
know that should you wish to use this simple, but effective encryption solution, you are
now able to also use memory-optimized objects in such a database without any restrictions.

For developers wishing to implement In-Memory OLTP using the newest security features
introduced in SQL Server 2016—Always Encrypted, Row-Level Security, and Dynamic Data
Masking (all explained in detail in Chapter 8, Tightening the Security)—can also rest assured
that Microsoft was paying attention during the design of these features and memory-
optimized tables can also take advantage of these improved security features.

In-Memory OLTP Improvements in SQL Server 2016

[482]

Programmability
We are also able to take full advantage of the extremely useful Query Store feature, which
was also introduced in SQL Server 2016 and has a chapter dedicated to it: Chapter 9, Query
Store. There is no additional configuration required to include memory-optimized tables or
natively compiled code; when Query Store is activated, the memory-optimized objects will
be collected in the Query Store analysis along with disk-based objects and queries.

The focus on feature inclusion continues to also cover Temporal Tables, a chapter
explaining what Temporal Tables are and how they can be implemented is available:
Chapter 7, Temporal Tables. Similar to the other cross-feature support items, Temporal
Tables allows for a transparent implementation of memory-optimized tables versus disk-
based tables. There are no special requirements to accommodate memory-optimized tables
with this feature.

High availability
High availability support is of great importance for systems that are processing large
volumes of data requiring the performance of the In-Memory OLTP Engine.

SQL Server 2016 fully supports the use of memory-optimized objects in conjunction with
Always On Availability Groups. Any memory-optimized table will be replicated to the
secondary server(s) in the same way that disk-based tables are. For SCHEMA_ONLY tables, the
table schema will be replicated to the secondary server(s), but not the data (because the data
is never logged for schema only tables). As such, if SCHEMA_ONLY tables are replicated, a
mechanism to refill these tables must be included for a failover scenario. If the memory-
optimized tables are defined as SCHEMA_AND_DATA, the data will be replicated to the
secondary server(s) and will be available to any readable secondary connections that may
be reading from the secondary server(s).

Failover Cluster Instances are also fully supported for high availability with the In-Memory
OLTP Engine. The memory-optimized tables behave in exactly the same way as with a
standalone instance, meaning that tables defined with the SCHEMA_AND_DATA property will
be instantiated at server startup, which means that they are created and filled using the
checkpoint file pairs at startup. Depending on how large these tables are, this initialization
can take some time. This is not unique to Failover Cluster Instances, but rather for any SQL
Server that uses the In-Memory OLTP Engine.

In-Memory OLTP Improvements in SQL Server 2016

[483]

It is now also possible to use replication in conjunction with memory-optimized tables. The
initial implementation inside SQL Server 2016 allows for a transactional or snapshot
replication publisher to publish tables to a subscriber and for the subscriber tables to be
created as memory-optimized tables. This means that the memory-optimized tables are in
fact available on the subscriber side of the replication topology. Using this topology
removes the bottleneck of locking and blocking on the subscriber side and would allow the
subscriber to easily keep up with the replication data flow.

Tools and wizards
As with many of the features in SQL Server, In-Memory OLTP also has some useful tools to
assist in working with the technology.

The main desire for many developers is to take their existing database solutions and to
convert them to memory-optimized solutions (ideally automatically). Microsoft has
provided a few options to investigate a database and deliver feedback on the database
design with suggestions where memory-optimized solutions would be possible and
feasible.

We can begin with the simplest of these tools: the In-Memory OLTP Migration Checklist.
This is a wizard provided inside SQL Server Management Studio (SSMS), which will
perform a variety of checks against an entire database and provide a set of
checklists/reports that inform exactly what objects inside a database are candidates for
conversion into memory-optimized objects. An overview of the work required is also
provided (for example, supported and unsupported data types). The checklist wizard can
be found by right-clicking a database and choosing Tasks and then Generate In-Memory
OLTP Migration Checklists:

In-Memory OLTP Improvements in SQL Server 2016

[484]

Figure 12 1 Generating In-Memory OLTP Migration Checklists

This will then launch the wizard for the chosen database, which guides us through the
process of evaluating a database for compatibility with the In-Memory OLTP Engine. After
choosing the objects to be processed by the wizard and where to store the resulting report,
the wizard can be started.

In-Memory OLTP Improvements in SQL Server 2016

[485]

The wizard then runs through all the chosen objects in the database; depending on the
number of objects, this can take some time:

Figure 12 2 In-Memory OLTP Migration Checklist progress

In-Memory OLTP Improvements in SQL Server 2016

[486]

Upon completion, the wizard can be closed and the reports found in the location specified
before running the analysis. The resulting report files are HTML files, one per database
object that has been analyzed, showing what changes (if any) are required to make the
object compatible with the In-Memory OLTP Engine:

Figure 12 3 Example Migration Checklist Report for a table

As we can see in Figure 12.3, the report files generated by the wizard provide an overview
of what properties of an object are or are not supported by the In-Memory OLTP Engine.
Where appropriate, a link is supplied that loads a Books Online support page, describing
the issue found and possible solutions.

In-Memory OLTP Improvements in SQL Server 2016

[487]

The next tool to assist in evaluating a database for a possible migration of objects into the
In-Memory OLTP Engine is a standard report delivered with SSMS, the Transaction
Performance Analysis Overview. This report requires no pre-configuration of a database,
except for the database being hosted on a SQL Server 2016 instance. The report collects
execution statistics for queries in the database and shows which tables or stored procedures
are possible candidates for a migration to the In-Memory OLTP Engine. This means that the
report will only have meaningful data in it after the database has been in use for a few hours
or days:

Figure 12 4 Transaction Performance Analysis Overview report

The report loads inside SSMS and offers the choice of table or stored procedure analysis.
Both options deliver a similar report, displaying the objects that have been recently
accessed. These objects are plotted on a graph showing the potential performance impact of
a migration to the In-Memory OLTP Engine versus the estimated work required to make
the change. The best candidates are objects plotted toward the top-right of the graph (high
impact, minimal migration work).

In-Memory OLTP Improvements in SQL Server 2016

[488]

These two analysis options allow us to get an idea of how much impact and how much
work would be involved in migrating to the In-Memory OLTP Engine. The results should
be considered a basic indication and by no means offer a guarantee of accuracy:

Figure 12 5 Transaction Performance Analysis Overview result

Summary
In this chapter, we covered how the In-Memory OLTP Engine has evolved from the first
version released with SQL Server 2014 to the latest version in SQL Server 2016.

Many of the restrictions around data types, constraints, large binary objects, and collations,
along with the ability to alter objects without having to drop and recreate them, provide us
all with huge improvements for developers. However, we have also seen that there are still
limitations and areas where the use of In-Memory OLTP is not the best choice, or must at
least be carefully considered before being chosen for a particular implementation.

In-Memory OLTP Improvements in SQL Server 2016

[489]

A vastly more efficient processing engine allows us to consider scenarios where current
implementations may benefit from the reduced overhead of the In-Memory OLTP Engine.
The ability to seamlessly interact between memory-optimized and disk-based objects makes
for a very compelling programming experience. The tooling that Microsoft provides allows
us to quickly create an overview of how/where time and resources need investing to take a
disk-based implementation and convert it to a memory-optimized solution.

The In-Memory OLTP Engine has made good progress from its initial incarnation in SQL
Server 2014 and it is clear that the feature is here to stay. Future versions of SQL Server will
no doubt build on the evolution of the engine and provide further integration and support
for the remaining data types and programming constructs that are currently unsupported. I
for one look forward to seeing this evolution take place and am excited to see developers
adopting this fantastic technology in their projects. Now, go forth and see where you can
accelerate your SQL Server database projects, by removing those locks and blocks!

13
Supporting R in SQL Server

SQL Server R Services combines the power and flexibility of the open source R language
with enterprise-level tools for data storage and management, workflow development, and
reporting and visualization. This chapter introduces R Services and the R language. R is
developing quite fast, so it is worth mentioning that the R version used in this book is 3.2.2
(2015-08-14).

In the first section, you will learn about the free version of the R language and engine. You
will also become familiar with the basic concepts of programming in R.

When developing an advanced analytical solution, you spend the vast majority of time with
data. Typically, data is not in a shape useful for statistical and other algorithms. Data
preparation is not really glorious but is an essential part of analytical projects. You will
learn how to create a new or use an existing dataset and learn about basic data
manipulation with R in the second section of this chapter.

The data preparation part of an analytical project is interleaved with the data
understanding part. You need to gather in-depth knowledge of your data and data values
before you can analyze it. Showing data graphically is a very efficient and popular method
of data understanding. Fortunately, R support for data visualization is really
comprehensive. However, sometimes numbers tell us more or in a more condensed way
than graphs. Introductory statistics, like descriptive statistics, provide you with the
numbers you need to understand your data. Again, R support for introductory statistics is
astonishing.

Open source products also have some disadvantages. For example, scalability might be an
issue. SQL Server 2016 brings R support inside the database engine. With this support,
many of your problems are solved. You get many scalable procedures and enhanced
security for your R applications.

Supporting R in SQL Server

[491]

This chapter will cover the following points:

R: basics and concepts
Core elements of the R language
R data structures
Basic data management
Simple visualizations
Introductory statistics
SQL Server R Services architecture
Creating and using scalable R solutions in SQL Server

Introducing R
R is the most widely used language for statistics, data mining, and machine learning.
Besides the language, R is also the environment and the engine that executes the R code.
You need to learn how to develop R programs, just as you need to learn any other
programming language you intend to use.

Before going deeper into the R language, let's explain what the terms statistics, data
mining, and machine learning mean. Statistics is the study and analysis of data collections,
and interpretation and presentation of the results of the analysis. Typically, you don't have
all population data, or census data, collected. You have to use samples—often survey
samples. Data mining is again a set of powerful analysis techniques used on your data in
order to discover patterns and rules that might improve your business. Machine learning is
programming to use data to solve a given problem automatically. You can immediately see
that all three definitions overlap. There is not a big distinction between them; you can even
use them as synonyms. Small differences are visible when you think of the users of each
method. Statistics is a science, and the users are scientists. Data mining users are typically
business people. Machine learning users are, as the name suggests, often machines.
Nevertheless, in many cases, the same algorithms are used, so there is really a lot of
overlapping among the three branches of applied mathematics in analytical applications.

Let's not get lost in these formal definitions and start with R immediately. You will learn
about:

Parts of open source R
Basic description of the R language
Obtaining help
R core syntax elements

Supporting R in SQL Server

[492]

R variables
R vectors
R packages

This chapter assumes that you are already familiar with the SQL Server and R tools,
including SQL Server Management Studio, RStudio, or R Tools for Visual Studio, so you
can start to write the code immediately.

Starting with R
You can download R from the Comprehensive R Archive Network (CRAN) site at
http://cran.r-project.org. You can get the R engine for Windows, Linux, or Mac OS X.
Microsoft also maintains its own R portal, the Microsoft R Application Network (MRAN)
site at https://mran.revolutionanalytics.com/. You can use this site to download
Microsoft R Open, the enhanced distribution of open source R from Microsoft. After
installation, you start working in an interactive mode. You can use the R console client tool
to write code line by line. As you already know, there are many additional tools. Let's just
repeat here that the most widely used free tool for writing and executing R code is RStudio.
It is free and you can download it from https://www.rstudio.com/. This section assumes
you use RStudio for the code examples.

R is a case-sensitive, functional, and interpreted language. The R engine interprets your
commands one by one. You don't type commands but rather call functions to achieve
results, even a function called q() to quit an R session. As in any programming language, it
is good practice to comment the code well. You can start a comment with a hash mark (#)
anywhere in the line; any text after the hash mark is not executed and is treated as a
comment. You end a command with a semicolon (;) or a new line. Commands finished by a
semicolon can be combined in a single line. Similarly, as in T-SQL, the explicit end of a
command with a semicolon is a better practice than just entering a new command on a new
line. Here is the first example of the R code, showing a comment and using the
contributors() function to list the authors and other contributors to the language:

R Contributors
contributors();

Supporting R in SQL Server

[493]

The abbreviated results are:

R is a project which is attempting to provide a modern piece of
statistical software for the GNU suite of software.
The current R is the result of a collaborative effort with
contributions from all over the world.
Authors of R.
R was initially written by Robert Gentleman and Ross Ihaka-also known as "R
& R"
of the Statistics Department of the University of Auckland.
Since mid-1997 there has been a core group with write access to the R
source, currently consisting of
...

In R, help is always at your fingertips. With the help() function, you can get onto help
first, and then search for the details you need. Using help.start() gives you the links to
the free documentation about R. With help("options"), you can examine the global
options that are used to affect the way in which R computes and displays the results. You
can get help for a specific function. For example, help("exp") displays the help for the
exponential function. You can use the shorter version of the help function—just the
question mark. For example, ?"exp" also displays help for the exponential function. With
example("exp"), you can get examples of usage of the exponential function. You can also
search in help using a command—either help.search("topic") or ??"topic". With
RSiteSearch("exp"), you can perform an online search for documentation about
exponential functions over multiple R sites. The following code summarizes these help
options:

Getting help on help
help();
General help
help.start();
Help about global options
help("options");
Help on the function exp()
help("exp");
Examples for the function exp()
example("exp");
Search
help.search("constants");
??"constants";
Online search
RSiteSearch("exp");

Supporting R in SQL Server

[494]

Finally, there is also the demo() function. This function runs some more advanced demo
scripts, showing you the capabilities of R code. For example, the following call to this
function shows you some graphic capabilities:

demo("graphics");

In RStudio, you get the code to execute in the Console window (bottom-left window by
default). You need to move the cursor to that window and hit the Enter key to execute the
first part of the code. You get the first graph in the bottom-right window. Then you hit the
Enter key a couple of times more to scroll through all demo graphs. One part of the code
that creates a nice pie chart is shown here:

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12);
names(pie.sales) <- c("Blueberry", "Cherry", "Apple",
 "Boston Cream", "Other", "Vanilla Cream");
pie(pie.sales,
 col = c("purple","violetred1","green3","cornsilk","cyan","white"));

title(main = "January Pie Sales", cex.main = 1.8, font.main = 1);
title(xlab = "(Don't try this at home kids)", cex.lab = 0.8, font.lab = 3);

The graphical results are shown in the following figure:

Figure 13 1 Demo pie chart

Supporting R in SQL Server

[495]

All of the objects created exist in memory. Each session has its own workspace. When you
finish a session, you can save the workspace or the objects from memory to disk in an
.RData file and load them in the next session. The workspace is saved in the folder from
which R reads the source code files, or in a default folder. You can check the objects in the
current workspace with the objects() function or with the ls() function. You can check
the working folder, or directory, with the getwd() call. You can change it interactively with
the setwd(dir) function, where the dir parameter is a string representing the new
working directory. You can remove single objects from the workspace and memory with
the rm(objectname) function, or a full list of objects using the same function with the list
of objects as a parameter (you will learn about lists and other data structures later in this
chapter). There are many more possibilities, including saving images, getting the history of
last commands, saving the history, reloading the history, and even saving a specific object
to a specific file. You will learn about some of them later in this chapter.

R language Basics
You can start investigating R by writing simple expressions that include literals and
operators. Here are some examples:

1 + 1;
2 + 3 * 4;
3 ^ 3;
sqrt(81);
pi;

This code evaluates three mathematical expressions first using the basic operators. Check
the results and note that R, as expected, evaluates the expressions using operator
precedence as we know from mathematics. Then it calls the sqrt() function to calculate
the square root of 81. Finally, the code checks the value of the base package built-in constant
for the number pi (π). R has some built-in constants. Check them by searching help for them
with ??"constants".

It is easy to generate sequences. The following code shows some examples:

rep(1,10);
3:7;
seq(3,7);
seq(5,17,by=3);

Supporting R in SQL Server

[496]

The first command replicates number 1 ten times using the rep() function. The second line
generates the sequence of numbers between three and seven. The third line does exactly the
same, just this time using the seq() function. This function gives you additional
possibilities, as the fourth line shows. This command generates a sequence of numbers
between 5 and 17, but this time with an increment of 3.

Writing ad hoc expressions means you need to rewrite them whenever you need them. To
reuse the values, you need to store them in variables. You assign a value to a variable with
an assignment operator. R supports multiple assignment operators. You can use the left
assignment operator (<-), where the variable name is on the left side, or right assignment
operator (->), where the variable name is on the right side. You can also use the equals (=)
operator. The left assignment operator is the one you will see most commonly in R code.
The following code stores the numbers 2, 3, and 4 in variables and then performs a
calculation using the variables:

x <- 2;
y <- 3;
z <- 4;
x + y * z;

The result is 14. Note again that R is case sensitive. For example, the following line of code
produces an error, because variables X, Y, and Z are not defined:

X + Y + Z;

You can separate part of a variable name with a dot. This way, you can organize your
objects into namespaces, just as you can in .NET languages. Here is an example:

This.Year <- 2016;
This.Year;

You can check whether the equals assignment operator really works:

x = 2;
y = 3;
z = 4;
x + y * z;

If you executed the last code, you would get the same result as with the code that used the
left assignment operator instead of the equals operator.

Supporting R in SQL Server

[497]

Besides mathematical operators, R supports logical operators as well. To test the exact
equality, use the double equals (==) operator. Other logical operators include <, <=, >, >=,
and != to test the inequality. In addition, you can combine two logical expressions into a
third one using the logical AND (&) and logical OR (|) operators. The following code checks
a variable for exact equality with a number literal:

x <- 2;
x == 2;

The result is TRUE.

Every variable in R is actually an object. A simple scalar variable is a vector of length one. A
vector is a one-dimensional array of scalars of the same type, or mode: numeric, character,
logical, complex (imaginary numbers), and raw (bytes). You use the combine function c()
to define the vectors. Here are the ways to assign variable values as vectors. Note that the
variables with the same names will be overwritten:

x <- c(2,0,0,4);
assign("y", c(1,9,9,9));
c(5,4,3,2) -> z;
q = c(1,2,3,4);

The first line uses the left assignment operator. The second assigns the second vector to the
variable y using the assign() function. The third line uses the right assignment operator,
and the fourth line the equals operator.

You can perform operations on vectors just like you would perform them on scalars
(remember, after all, a scalar is just a vector of length one). Here are some examples of
vector operations:

x + y;
x * 4;
sqrt(x);

The results of the previous three lines of code are:

3 9 9 13
8 0 0 16
1.414214 0.000000 0.000000 2.000000

You can see that the operations were performed element by element. You can operate on a
selected element only as well. You use numerical index values to select specific elements.
Here are some examples:

x <- c(2,0,0,4);
x[1];

Supporting R in SQL Server

[498]

x[-1];
x[1] <- 3; x;
x[-1] = 5; x;

First, the code assigns a vector to a variable. The second line selects the first element of the
vector. The third line selects all elements except the first one and returns a vector of three
elements. The fourth line of the code assigns a new value to the first element and then
shows the vector. The last line assigns new values to all elements but the first one, and then
shows the vector. The results are, therefore:

2
0 0 4
3 0 0 4
3 5 5 5

You can also use logical operators on vectors. Here are some examples:

y <- c(1,9,9,9);
y < 8;
y[4] = 1;
y < 8;
y[y<8] = 2; y;

The first line assigns a vector to variable y. The second line compares each vector value to a
numeric constant 8 and returns TRUE for those elements where the value is lower than the
given value. The third line assigns a new value to the fourth element of the vector. The
fourth line performs the same comparison of the vector elements to number 8 again and
returns TRUE for the first and fourth element. The last line edits the elements of vector y
that satisfy the condition in the parenthesis—those elements where the value is less than 8.
The result is:

TRUE FALSE FALSE FALSE
TRUE FALSE FALSE TRUE
2 9 9 2

Vectors and scalars are very basic data structures. You will learn about more advanced data
structures in the next section of this chapter. Before that, it is high time to mention a very
important concept in R: packages.

The R code shown in this chapter has used only core capabilities so far;
capabilities that you get when you install the R engine. Although these
capabilities are already very extensive, the real power of R comes with
additional packages.

Supporting R in SQL Server

[499]

Packages are optional modules you can download and install. Each package brings
additional functions, or demo data, in a well-defined format. The number of available
packages is growing year by year. At the time of writing this book, in summer 2016, the
number of downloadable packages was already nearly 9,000. A small set of standard
packages is already included when you install the core engine. You can check out installed
packages with the installed.packages() command. Packages are stored in the folder
called library. You can get the path to the library with the .libPaths() function (note
the dot in the name). You can use the library() function to list the packages in your
library.

The most important command to learn is the install.packages("packagename"). This
command searches the CRAN sites for the package, downloads it, unzips it, and installs it.
Of course, you need a web connection in order to execute it successfully. You can imagine
that such a simplistic approach is not very welcome in highly secure environments. Of
course, in order to use R Services in SQL Server, the package installation is more secure and
more complex, as you will learn later in this chapter.

Once a package is installed, you load it into memory with the library(packagename)
command. You can get help on the content of the package with the help(package =
"packagename") command. For example, if you want to read the data from a SQL Server
database, you need to install the RODBC library. The following code installs this library,
loads it, and gets the help for functions and methods available in it:

install.packages("RODBC");
library(RODBC);
help(package = "RODBC");

Before reading the data from SQL Server, you need to perform two additional tasks. First,
you need to create a login and a database user for the R session and give the user the
permission to read the data. Then, you need to create an ODB data source name (DSN) that
points to this database. In SQL Server Management Studio, connect to your SQL Server, and
then in Object Explorer, expand the Security folder. Right-click on the Logins subfolder.
Create a new login and a database user in the WideWorldImportersDW database, and add
this user to the db_datareader role.

Supporting R in SQL Server

[500]

I created a SQL Server login called RUser with password Pa$$w0rd, and a user with the
same name, as the following screenshot shows:

Figure 13 2 Generating the RUser login and database user

After that, I used the ODBC Data Sources tool to create a system DSN called WWIDW. I
configured the DSN to connect to my local SQL Server with the RUser SQL Server login and
appropriate password, and change the context to the WideWorldImportersDW database. If
you've successfully finished both steps, you can execute this R code to read the data from
SQL Server:

con <- odbcConnect("WWIDW", uid="RUser", pwd="Pa$$w0rd");
sqlQuery(con,
 "SELECT c.Customer,
 SUM(f.Quantity) AS TotalQuantity,
 SUM(f.[Total Excluding Tax]) AS TotalAmount,
 COUNT(*) AS SalesCount
 FROM Fact.Sale AS f
 INNER JOIN Dimension.Customer AS c
 ON f.[Customer Key] = c.[Customer Key]

Supporting R in SQL Server

[501]

 WHERE c.[Customer Key] <> 0
 GROUP BY c.Customer
 HAVING COUNT(*) > 400
 ORDER BY SalesCount DESC;");
close(con);

The code returns the following (abbreviated) result:

 Customer TotalQuantity TotalAmount SalesCount
1 Tailspin Toys (Vidrine, LA) 18899 340163.8 455
2 Tailspin Toys (North Crows Nest, IN) 17684 313999.5 443
3 Tailspin Toys (Tolna, ND) 16240 294759.1 443
4 Wingtip Toys (Key Biscayne, FL) 18658 335053.5 441
5 Tailspin Toys (Peeples Valley, AZ) 15874 307461.0 437
6 Wingtip Toys (West Frostproof, FL) 18564 346621.5 436
7 Tailspin Toys (Maypearl, TX) 18219 339721.9 436

Manipulating data
Before you can extract some information from your data, you need to understand how the
data is stored. First, you need to understand data structures in R.

Scalars and vectors are the most basic data structures. In R terminology, you analyze a
dataset. A dataset consists of rows with cases or observations to analyze and columns
representing the variables or attributes of the cases. This definition of a dataset looks like a
SQL Server table. However, R does not work with tables in the relational sense. For
example, in a relational, the order of rows and columns is not defined. In order to get a
value, you need the column name and the key of the row. However, in R, you can use the
position of a cell for most of the data structures. You have already seen this position
reference for vectors.

Supporting R in SQL Server

[502]

In this section, you will learn about the data structures in R and the basic manipulation of
datasets, including:

Arrays and matrices
Factors
Data frames
Lists
Creating new variables
Recoding variables
Dealing with missing values
Type conversions
Merging datasets

Introducing data structures in R
A matrix is a two-dimensional array of values of the same type, or mode. You generate
matrices from vectors with the matrix() function. Columns and rows can have labels. You
can generate a matrix from a vector by rows or by columns (default). The following code
shows some matrices and the difference of generation by rows or by columns:

x = c(1,2,3,4,5,6); x;
Y = array(x, dim=c(2,3)); Y;
Z = matrix(x,2,3,byrow=F); Z
U = matrix(x,2,3,byrow=T); U; # A matrix - fill by rows
rnames = c("Row1", "Row2");
cnames = c("Col1", "Col2", "Col3");
V = matrix(x,2,3,byrow=T, dimnames = list(rnames, cnames)); V;

The first line generates and shows a one-dimensional vector. The second line creates a two-
dimensional array, which is the same as a matrix, with two rows and three columns. The
matrix is filled from a vector column by column. The third row actually uses the matrix()
function to create a matrix, and fill it by columns. The matrix is equivalent to the previous
one. The fourth row fills the matrix by rows. The fifth and sixth rows define row and
column names. The last row again creates a matrix filled by rows; however, this time it adds
row and column names in a list of two vectors. Here are the results:

[1] 1 2 3 4 5 6
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
 [,1] [,2] [,3]
[1,] 1 3 5

Supporting R in SQL Server

[503]

[2,] 2 4 6
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
 Col1 Col2 Col3
Row1 1 2 3
Row2 4 5 6

You can see the difference between filling by rows or by columns. The following code
shows how you can refer to matrix elements by position, or even by name, if you've named
columns and rows:

U[1,];
U[1,c(2,3)];
U[,c(2,3)];
V[,c("Col2", "Col3")];

The results are:

[1] 1 2 3
[1] 2 3
 [,1] [,2]
[1,] 2 3
[2,] 5 6
 Col2 Col3
Row1 2 3
Row2 5 6

As you can see from the matrix examples, a matrix is just a two-dimensional array. You
generate arrays with the array() function. This function again accepts a vector of values as
the first input parameter, then a vector specifying the number of elements on dimensions,
and then a list of vectors for the names of the dimensions' elements. An array is filled by
columns, then by rows, then by the third dimension (let's call it pages), and so on. Here is
an example that generates a three-dimensional array:

rnames = c("Row1", "Row2");
cnames = c("Col1", "Col2", "Col3");
pnames = c("Page1", "Page2", "Page3");
Y = array(1:18, dim=c(2,3,3), dimnames = list(rnames, cnames, pnames)); Y;

Supporting R in SQL Server

[504]

The result is as follows:

, , Page1
 Col1 Col2 Col3
Row1 1 3 5
Row2 2 4 6
, , Page2
 Col1 Col2 Col3
Row1 7 9 11
Row2 8 10 12
, , Page3
 Col1 Col2 Col3
Row1 13 15 17
Row2 14 16 18

Variables can store discrete or continuous values. Discrete values can be nominal, or
categorical, where they represent labels only, or ordinal, where there is an intrinsic order in
the values. In R, factors represent nominal and ordinal variables. Levels of a factor
represent distinct values. You create factors from vectors with the factor() function. It is
important to properly determine the factors because advanced data mining and machine
learning algorithms treat discrete and continuous variables differently. Here are some
examples of factors:

x = c("good", "moderate", "good", "bad", "bad", "good");
y = factor(x); y;
z = factor(x, order=TRUE); z;
w = factor(x, order=TRUE,
 levels=c("bad", "moderate","good")); w;

The first line defines a vector of six values denoting whether the observed person was in a
good, moderate or bad mood. The second line generates a factor from the vector and shows
it. The third line generates an ordinal variable. Note the results—the order is defined
alphabetically. The last commands in the last two lines generate another ordinal variable
from the same vector, just this time specifying the order explicitly. Here are the results:

[1] good moderate good bad bad good
Levels: bad good moderate
[1] good moderate good bad bad good
Levels: bad < good < moderate
[1] good moderate good bad bad good
Levels: bad < moderate < good

Supporting R in SQL Server

[505]

Lists are the most complex data structures in R. Lists are ordered collections of different
data structures. You typically do not work with them a lot. You need to know them because
some functions return multiple results, or complex results, packed in a list, and you need to
extract specific parts. You create lists with the list() function. You refer to objects of a list
by position, using the index number enclosed in double parentheses. If an element is a
vector or a matrix, you can additionally use the position of a value in a vector enclosed in
single parentheses. Here is an example:

L = list(name1="ABC", name2="DEF",
 no.children=2, children.ages=c(3,6));
L;
L[[1]];
L[[4]];
L[[4]][2];

The example produces the following result:

$name1
[1] "ABC"
$name2
[1] "DEF"
$no.children
[1] 2
$children.ages
[1] 3 6
[1] "ABC"
[1] 3 6
[1] 6

Finally, the most important data structure is a data frame. Most of the time, you analyze
data stored in a data frame. Data frames are matrices where each variable can be of a
different type. Remember, a variable is stored in a column, and all values of a single
variable must be of the same type. Data frames are very similar to SQL Server tables.
However, they are still matrices, meaning that you can refer to the elements by position,
and that they are ordered. You create a data frame with the data.frame() function from
multiple vectors of the same length. Here is an example of generating a data frame:

CategoryId = c(1,2,3,4);
CategoryName = c("Bikes", "Components", "Clothing", "Accessories");
ProductCategories = data.frame(CategoryId, CategoryName);
ProductCategories;

Supporting R in SQL Server

[506]

The result is:

 CategoryId CategoryName
1 1 Bikes
2 2 Components
3 3 Clothing
4 4 Accessories

Most of the time, you get a data frame from your data source, for example from a SQL
Server database. The results of the earlier example that was reading from SQL Server can be
actually stored in a data frame. You can also enter the data manually, or read it from many
other sources, including text files, Excel, and many more. The following code retrieves the
data from a comma-separated values (CSV) file in a data frame, and then displays the first
four columns for the first five rows of the data frame. The CSV file is provided in the
download for the accompanying code for this book, as described in the preface of the book:

TM = read.table("C:\\SQL2016DevGuide\\Chapter13_TM.csv",
 sep=",", header=TRUE, row.names = "CustomerKey",
 stringsAsFactors = TRUE);
TM[1:5,1:4];

The code specifies that the first row of the file holds column names (header), and that the
CustomerKey column represents the row names (or row identifications). If you are
interested, the data comes from the dbo.vTargetMail view from the
AdventureWorksDW2014 demo SQL Server database you can download from Microsoft
CodePlex at https://msftdbprodsamples.codeplex.com/. The first five rows are presented
here:

 MaritalStatus Gender TotalChildren NumberChildrenAtHome
11000 M M 2 0
11001 S M 3 3
11002 M M 3 3
11003 S F 0 0
11004 S F 5 5

Supporting R in SQL Server

[507]

Getting sorted with data management
After you've imported the data to analyze in a data frame, you need to prepare it for further
analysis. There are quite a few possibilities of how to retrieve values from a data frame. You
can refer to the data by position, or by using the subscript notation. However, if you use a
single subscript only, then you retrieve columns defined by the subscript and all rows. The
same is true if you use a vector of column names only, without specifying the rows. If you
specify two indexes or index ranges, then the first one is used for rows and the second one
for columns. The following code shows these options:

TM[1:2]; # Two columns
TM[c("MaritalStatus", "Gender")]; # Two columns
TM[1:3,1:2]; # Three rows, two columns
TM[1:3,c("MaritalStatus", "Gender")];

The first command returns all rows and two columns only. The second command produces
the same result. The third command returns three rows, again for the MaritalStatus and
Gender columns only. The fourth row produces the same result as the third one.

The most common notation is using the data frame name and column name, separated by
the dollar ($) sign, like TM$Gender. You can also avoid excessive writing of the data frame
name by using the attach() or with() functions. With the attach() function, you add
the data frame to the search path that R uses to find the objects. You can refer to a variable
name directly without the data frame name if the variable name is unique in the search
path. The detach() function removes the data frame from the search path, to avoid
possible ambiguity with duplicate variable names later. The with() function allows you to
name the data frame only once, and then use the variables in a set of statements enclosed in
{} brackets inside the body of the function. The following code shows these approaches:

table(TM$MaritalStatus, TM$Gender);
attach(TM);
table(MaritalStatus, Gender);
detach(TM);
with(TM,
 {table(MaritalStatus, Gender)});

Supporting R in SQL Server

[508]

The first line produces a cross-tabulation of the MaritalStatus and Gender. Please note
the dataframe$variable notation. The second line adds the data frame to the search path.
The third command produces the same cross-tabulation as the first one, however, this time
referring to variable names only. The fourth command removes the data frame from the
search path. The last command uses the with() function to allow you to define the data
frame name only once and then use only variable names in the commands inside the
function. Note that, because there is only one command in the function, the brackets {} can
be omitted. All three cross-tabulations return the same result:

 Gender
MaritalStatus F M
 M 4745 5266
 S 4388 4085

Sometimes, you get numeric categorical variable values and you want to use character
labels. The factor() function can help you here. For example, in the TM data frame, there is
the BikeBuyer variable. For this variable, 0 means the person never purchased a bike and 1
means this person is a bike buyer. The following code shows you how to add labels to the
numerical values:

table(TM$BikeBuyer, TM$Gender);
TM$BikeBuyer <- factor(TM$BikeBuyer,
 levels = c(0,1),
 labels = c("No","Yes"));
table(TM$BikeBuyer, TM$Gender);

The results are shown here. Note that, the second time, the labels for the values of the
BikeBuyer variable are used:

 F M
0 4536 4816
1 4597 4535
 F M
No 4536 4816
Yes 4597 4535

You can easily get the metadata about your objects. Some useful functions that give you
information about your objects include the following:

class(): This function returns the type of object
names(): This function returns the names of the components, such as variable
names in a data frame
length(): This function returns the number of elements, for example, the
number of variables in a data frame

Supporting R in SQL Server

[509]

dim(): This function returns the dimensionality of an object, for example, the
number of rows and columns in a data frame
str(): This function gives details about the structure of an object

Here are examples of using these metadata functions:

class(TM);
names(TM);
length(TM);
dim(TM);
str(TM);

The results are as follows:

 [1] "data.frame"
 [1] "MaritalStatus" "Gender" "TotalChildren"
 [4] "NumberChildrenAtHome" "Education" "Occupation"
 [7] "HouseOwnerFlag" "NumberCarsOwned" "CommuteDistance"
[10] "Region" "BikeBuyer" "YearlyIncome"
[13] "Age"
 [1] 13
 [1] 18484 13
'data.frame': 18484 obs. of 13 variables:
$ MaritalStatus : Factor w/ 2 levels "M","S": 1 2 1 2 2 2 2 1 2 2 ...
$ Gender : Factor w/ 2 levels "F","M": 2 2 2 1 1 2 1 2 1 2 ...
$ TotalChildren : int 2 3 3 0 5 0 0 3 4 0 ...

Note that the CustomerKey column is not listed among the thirteen columns of the data
frame, because when the data was imported, this column was set to row names. In addition,
only string variables were converted to factors. In the abbreviated result of the last
command, you can see that the TotalChildren is an integer and not a factor, although it
can occupy only values from zero to five.

Many times, calculated variables are much more meaningful for an analysis than just the
base ones you read from your data source. For example, in medicine, the body mass index
(BMI), defined as weight divided by the square of the height, is much more meaningful
than the base variables of height and weight it is derived from. You can add new variables
to a data frame, recode continuous values to a list of discrete values, change the data type of
variable values, and more. The following example uses the within() function, which is
similar to the with() function. It's just that it allows updates of a data frame, to add a new
variable MartitalStatusInt, derived from the MaritalStatus as an integer. This
variable tells us the number of additional people in the household of the case observed:

TM <- within(TM, {
 MaritalStatusInt <- NA

Supporting R in SQL Server

[510]

 MaritalStatusInt[MaritalStatus == "S"] <- 0
 MaritalStatusInt[MaritalStatus == "M"] <- 1
});
str(TM);

In the body of the function, firstly the new variable is defined as missing. Then, the
MaritalStatus values are used to define the number of additional persons in the
household; if the person in the case observed is married, then the value is 1, if the person is
single, then 0. The last line of the code shows the new structure of the data frame. The
abbreviated structure is:

'data.frame': 18484 obs. of 14 variables:
$ MaritalStatus : Factor w/ 2 levels "M","S": 1 2 1 2 2 2 2 1 2 2 ...
...
$ MaritalStatusInt : num 1 0 1 0 0 0 0 1 0 0 ...

You can see that the new variable values are correct; however, the mode is defined as
numeric. You can change the data type with one of the as.targettype() functions, where
targettype() is a placeholder for the actual target type function, as the following example
shows:

TM$MaritalStatusInt <- as.integer(TM$MaritalStatusInt);
str(TM);

Now, the abbreviated structure of the TM data frame shows that the mode of the new
column is integer.

In the next example, a new variable is added to the data frame, just as a simple calculation.
The new variable, HouseholdNumber, is used to define the total number of people in the
household of the person in the case observed. The calculation summarizes the number of
children at home plus one if the person is married plus one for the person herself/himself.
Finally, the mode is changed to an integer:

TM$HouseholdNumber = as.integer(
 1 + TM$MaritalStatusInt + TM$NumberChildrenAtHome);
str(TM);

The structure of the data frame shows that the calculation is correct:

'data.frame': 18484 obs. of 15 variables:
$ MaritalStatus : Factor w/ 2 levels "M","S": 1 2 1 2 2 2 2 1 2 2 ...
...
$ MaritalStatusInt : int 1 0 1 0 0 0 0 1 0 0 ...
$ HouseholdNumber : int 2 4 5 1 6 1 1 5 5 1 ...

Supporting R in SQL Server

[511]

On many occasions, you have to deal with missing values, denoted with a literal NA. R
treats missing values as completely unknown. This influences the results of the calculations.
For example, adding a missing value to a known integer produces a missing value. You
have to decide how to deal with missing data. You can exclude the rows with missing data
completely, you can recode the missing values to a predefined value, or you can exclude the
missing values from a single calculation. The following code defines a vector of six values;
however, the last value is missing. You can use the is.na() function to check for each
value, whether it is missing or not. Then, the code tries to calculate the mean value for all
values of the vector. The last line of code tries to calculate the mean again, just this time by
disregarding the missing value by using the na.rm = TRUE option. This option is available
in most numeric functions and simply removes the missing values from the calculation:

x <- c(1,2,3,4,5,NA);
is.na(x);
mean(x);
mean(x, na.rm = TRUE);

The results of the previous code are here:

[1] FALSE FALSE FALSE FALSE FALSE TRUE
[1] NA
[1] 3

You can see that the is.na() function evaluated each element separately, and returned a
vector of the same dimensionality as the vector checked for the missing values. The mean()
function returned a missing value when in the calculation a missing value was present, and
the result you might have expected when the missing values were removed.

Frequently, you need to merge two datasets, or to define a new dataset as a projection of an
existing one. Merging is similar to joining two tables in SQL Server, and a projection means
selecting a subset of variables only. The merge() function joins two data frames based on a
common identification of each case. Of course, the identification must be unique. The
following code shows how to do the projection:

TM = read.table("C:\\SQL2016DevGuide\\Chapter13_TM.csv",
 sep=",", header=TRUE,
 stringsAsFactors = TRUE);
TM[1:3,1:3];
cols1 <- c("CustomerKey", "MaritalStatus");
TM1 <- TM[cols1];
cols2 <- c("CustomerKey", "Gender");
TM2 <- TM[cols2];
TM1[1:3, 1:2];
TM2[1:3, 1:2];

Supporting R in SQL Server

[512]

The code first re-reads the TM data frame, just this time without using the CustomerKey
column for the row names. This column must be available in the data frame, because this is
the unique identification of each case. Then the code defines the columns for the two
projection data frames and shows the first three rows of each new data frame, as you can
see in the results of the last two commands:

 CustomerKey MaritalStatus
1 11000 M
2 11001 S
3 11002 M
 CustomerKey Gender
1 11000 M
2 11001 M
3 11002 M

Now, let's join the two new datasets.

TM3 <- merge(TM1, TM2, by = "CustomerKey");
TM3[1:3, 1:3];

The results show that the join was done correctly:

 CustomerKey MaritalStatus Gender
1 11000 M M
2 11001 S M
3 11002 M M

A data frame is a matrix. Sort order is important. Instead of merging two data frames by
columns, you can bind them by columns. However, you need to be sure that both data
frames are sorted in the same way; otherwise you might bind variables from one case with
variables from another case. The following code binds two data frames by columns:

TM4 <- cbind(TM1, TM2);
TM4[1:3, 1:4];

The results show that, unlike the merge() function, the cbind() function did not use the
CustomerKey for a common identification. It has blindly bound columns case by case, and
preserved all variables from both source data frames. That's why the CustomerKey column
appears twice in the result:

 CustomerKey MaritalStatus CustomerKey.1 Gender
1 11000 M 11000 M
2 11001 S 11001 M
3 11002 M 11002 M

Supporting R in SQL Server

[513]

You can also use the rbind() function to bind two data frames by rows. This is equal to the
union of two rowsets in SQL Server. The following code shows how to filter a dataset by
creating two new datasets, each one with two rows and two columns only. Then the code
uses the rbind() function to union both data frames:

TM1 <- TM[TM$CustomerKey < 11002, cols1];
TM2 <- TM[TM$CustomerKey > 29481, cols1];
TM5 <- rbind(TM1, TM2);
TM5;

The results are here:

 CustomerKey MaritalStatus
1 11000 M
2 11001 S
18483 29482 M
18484 29483 M

Finally, what happens if you want to bind two data frames by columns but you are not sure
about the ordering? Of course, you can sort the data. The following code shows how to
create a new data frame from the TM data frame, this time sorted by the Age column
descending. Note the usage of the minus (-) sign in the order() function to achieve the
descending sort:

TMSortedByAge <- TM[order(-TM$Age),c("CustomerKey", "Age")];
TMSortedByAge[1:5,1:2];

The result is shown here:

 CustomerKey Age
1726 12725 99
5456 16455 98
3842 14841 97
3993 14992 97
7035 18034 97

Understanding the data
As already mentioned, understanding data is interleaved with data preparation. In order to
know what to do, which variables need recoding, which variables have missing values, and
how to combine variables into a new one, you need to deeply understand the data you are
dealing with. You can get this understanding with a simple overview of the data, which
might be a method good enough for small datasets, or a method for checking just a small
subset of a large dataset.

Supporting R in SQL Server

[514]

You can get more information about the distribution of the variables by showing the
distributions graphically. Basic statistical methods are also useful for data overview. Finally,
sometimes these basic statistical results and graphs are already exactly what you need for a
report.

R is an extremely powerful language and environment for both visualizations and statistics.
You will learn how to:

Create simple graphs
Show plots and histograms
Calculate frequencies distribution
Use descriptive statistics methods

Basic visualizations
In R, you build a graph step-by-step. You start with a simple graph, and then add features
to it with additional commands. You can even combine multiple plots and other graphs into
a single graph. Besides viewing the graph interactively, you can save it to a file. There are
many functions for drawing graphs. Let's start with the most basic one, the plot()
function. Note that, if you removed the TM dataset from memory or didn't save the
workspace when you exited the last session, you need to re-read the dataset. Here is the
code that uses it to draw a graph for the Education variable of the TM dataset, which is also
added to the search path to simplify further addressing to the variables:

TM = read.table("C:\\SQL2016DevGuide\\Chapter13_TM.csv",
 sep=",", header=TRUE,
 stringsAsFactors = TRUE);
attach(TM);

A simple distribution
plot(Education);

Supporting R in SQL Server

[515]

The following screenshot shows the graph:

Figure 13 3 Basic plot for Education

The plot does not look too good. The Education variable is correctly identified as a factor;
however, the variable is ordinal, so the levels should be defined. You can see the problem in
the graph in the previous figure, where the values are sorted alphabetically. In addition, the
graph and axes could also have titles, and a different color might look better. The plot()
function accepts many parameters. In the following code, the parameters main for the main
title, xlab for the x axis label, ylab for the y axis label, and col for the fill color are
introduced:

Education = factor(Education, order=TRUE,
 levels=c("Partial High School",
 "High School","Partial College",
 "Bachelors", "Graduate Degree"));
plot(Education, main = 'Education',
 xlab='Education', ylab ='Number of Cases',
 col="purple");

Supporting R in SQL Server

[516]

This code produces a nicer graph, as you can see in the following screenshot:

Figure 13 4 Enhanced plot for Education

Now, let's make some more complex visualizations with multiple lines of code! For a start,
the following code generates a new data frame TM1 as a subset of the TM data frame,
selecting only ten rows and three columns. This data frame will be used for line plots,
where each case is plotted. The code also renames the variables to get unique names and
adds the data frame to the search path:

cols1 <- c("CustomerKey", "NumberCarsOwned", "TotalChildren");
TM1 <- TM[TM$CustomerKey < 11010, cols1];
names(TM1) <- c("CustomerKey1", "NumberCarsOwned1", "TotalChildren1");
attach(TM1);

The next code cross-tabulates the NumberCarsOwned and the BikeBuyer variables and
stores the result in an object. This cross-tabulation is used later for a bar plot:

nofcases <- table(NumberCarsOwned, BikeBuyer);
nofcases;

Supporting R in SQL Server

[517]

The cross-tabulation result is shown here:

 BikeBuyer
NumberCarsOwned 0 1
 0 1551 2687
 1 2187 2696
 2 3868 2589
 3 951 694
 4 795 466

You can specify graphical parameters directly or through the par() function. When you set
parameters with this function, these parameters are valid for all subsequent graphs until
you reset them. You can get a list of parameters by simply calling the function without any
arguments. The following line of code saves all modifiable parameters to an object by using
the no.readonly = TRUE argument when calling the par() function. This way, it is
possible to restore the default parameters later, without exiting the session:

oldpar <- par(no.readonly = TRUE);

The next line defines that the next four graphs will be combined in a single graph in a 2 x 2
invisible grid, filled by rows:

par(mfrow=c(2,2));

Now let's start filling the grid with smaller graphs. The next command creates a stacked bar
showing marital status distribution in different education levels. It also adds a title and x
and y axes labels. It changes the default colors used for different marital statuses to blue and
yellow. This graph appears in the top-left corner of the invisible grid:

plot(Education, MaritalStatus,
 main='Education and marital status',
 xlab='Education', ylab ='Marital Status',
 col=c("blue", "yellow"));

The hist() function produces a histogram for numeric variables. Histograms are
especially useful if they don't have too many bars. You can define breakpoints for
continuous variables with many distinct values. However, the NumberCarsOwned variable
has only five distinct values, and therefore defining breakpoints is not necessary. This graph
fills the top-right cell of the grid:

hist(NumberCarsOwned, main = 'Number of cars owned',
 xlab='Number of Cars Owned', ylab ='Number of Cases',
 col="blue");

Supporting R in SQL Server

[518]

The next part of the code is slightly longer. It produces a line chart with two lines: one for
the TotalChildren1 and one for the NumberCarsOwned1 variable. Note that the limited
dataset is used, in order to get just a small number of plotting points. Firstly, a vector of
colors is defined. This vector is used to define the colors for the legend. Then, the plot()
function generates a line chart for the TotalChildren1 variable. Here, two new
parameters are introduced: the type="o" parameter defines the over-plotted points and
lines, and the lwd=2 parameter defines the line width. Then, the lines() function is used
to add a line for the NumberCarsOwned1 variable to the current graph, to the current cell of
the grid. Then, a legend is added with the legend() function to the same graph. The
cex=1.4 parameter defines the character expansion factor relative to the current character
size in the graph. The bty="n" parameter defines that there is no box drawn around the
legend. The lty and lwd parameters define the line type and the line width for the legend.
Finally, a title is added. This graph is positioned in the bottom-left cell of the grid:

plot_colors=c("blue", "red");
plot(TotalChildren1,
 type="o",col='blue', lwd=2,
 xlab="Key",ylab="Number");
lines(NumberCarsOwned1,
 type="o",col='red', lwd=2);
legend("topleft",
 c("TotalChildren", "NumberCarsOwned"),
 cex=1.4,col=plot_colors,lty=1:2,lwd=1, bty="n");
title(main="Total children and number of cars owned line chart",
 col.main="DarkGreen", font.main=4);

There is one more cell in the grid to fill. The barplot() function generates the histogram of
the NumberCarsOwned variable in groups of the BikeBuyer variable and shows the
histograms side by side. Note that the input for this function is the cross-tabulation object
generated with the table() function. The legend() function adds a legend in the top-
right corner of the chart. This chart fills the bottom-right cell of the grid:

barplot(nofcases,
 main='Number of cars owned and bike buyer gruped',
 xlab='BikeBuyer', ylab ='NumberCarsOwned',
 col=c("black", "blue", "red", "orange", "yellow"),
 beside=TRUE);
legend("topright",legend=rownames(nofcases),
 fill = c("black", "blue", "red", "orange", "yellow"),
 ncol = 1, cex = 0.75);

Supporting R in SQL Server

[519]

The following figure shows the big results, all four graphs combined into one:

Figure 13 5 Four graphs in an invisible grid

The last part of the code is the cleanup part. It restores the old graphics parameters and
removes both data frames from the search path:

par(oldpar);
detach(TM);
detach(TM1);

Introductory statistics
Sometimes, numbers tell us more than pictures. After all, the name “descriptive statistics”
tells you it is about describing something. Descriptive statistics describes a distribution of a
variable. Inferential statistics tells you about the associations between variables. There are a
plethora of possibilities for introductory statistics in R. However, before calculating the
statistical values, let's quickly define some of the most popular measures of descriptive
statistics.

Supporting R in SQL Server

[520]

The mean is the most common measure for determining the center of a distribution. It is
also probably the most abused statistical measure. The mean does not mean anything
without the standard deviation or some other measure, and it should never be used alone.
Let me give you an example. Imagine there are two pairs of people. In the first pair, both
people earn the same—let's say, $80,000 per year. In the second pair, one person earns
$30,000 per year, while the other earns $270,000 per year. The mean salary for the first pair
is $80,000, while the mean for the second pair is $150,000 per year. By just listing the mean,
you could conclude that each person from the second pair earns more than either of the
people in the first pair. However, you can clearly see that this would be a seriously incorrect
conclusion.

The definition of the mean is simple; it is the sum of all values of a continuous variable
divided by the number of cases, as shown in the following formula:

The median is the value that splits the distribution into two halves. The number of rows
with a value lower than the median must be equal to the number of rows with a value
greater than the median for a selected variable. If there are an odd number of rows, the
median is the middle row. If the number of rows is even, the median can be defined as the
average value of the two middle rows (the financial median), the smaller of them (the lower
statistical median), or the larger of them (the upper statistical median).

The range is the simplest measure of the spread; it is the plain distance between the
maximum value and the minimum value that the variable takes.

A quick review: a variable is an attribute of an observation represented as a column in a
table.

The first formula for the range is:

The median is the value that splits the distribution into two halves. You can split the
distribution more—for example, you can split each half into two halves. This way, you get
quartiles as three values that split the distribution into quarters. Let's generalize this
splitting process. You start with sorting rows (cases, observations) on selected columns
(attributes, variables). You define the rank as the absolute position of a row in your
sequence of sorted rows. The percentile rank of a value is a relative measure that tells you
how many percent of all (n) observations have a lower value than the selected value.

Supporting R in SQL Server

[521]

By splitting the observations into quarters, you get three percentiles (at 25%, 50%, and 75%
of all rows), and you can read the values at those positions that are important enough to
have their own names: the quartiles. The second quartile is, of course, the median. The first
one is called the lower quartile and the third one is known as the upper quartile. If you
subtract the lower quartile (the first one) from the upper quartile (the third one), you get the
formula for the inter-quartile range (IQR):

Let's suppose for a moment you have only one observation (n=1). This observation is also
your sample mean, but there is no spread at all. You can calculate the spread only if n
exceeds 1. Only the (n-1) pieces of information help you calculate the spread, considering
that the first observation is your mean. These pieces of information are called degrees of
freedom. You can also think of degrees of freedom as the number of pieces of information
that can vary. For example, imagine a variable that can take five different discrete states.
You need to calculate the frequencies of four states only to know the distribution of the
variable; the frequency of the last state is determined by the frequencies of the first four
states you calculated, and they cannot vary because the cumulative percentage of all states
must equal 100.

You can measure the distance between each value and the mean value and call it the
deviation. The sum of all distances gives you a measure of how spread out your population
is. But you must consider that some of the distances are positive, while others are negative;
actually, they mutually cancel themselves out, so the total gives you exactly zero. So there
are only (n–1) deviations free; the last one is strictly determined by the requirement just
stated. In order to avoid negative deviation, you can square them. So, here is the formula for
variance:

This is the formula for the variance of a sample, used as an estimator for the variance of the
population. Now, imagine that your data represents the complete population, and the mean
value is unknown. Then, all the observations contribute to the variance calculation equally,
and the degrees of freedom make no sense. The variance for a population is defined in a
similar way as the variance for a sample. You just use all n cases instead of n-1 degrees of
freedom.

Supporting R in SQL Server

[522]

Of course, with large samples, both formulas return practically the same number. To
compensate for having the deviations squared, you can take the square root of the variance.
This is the definition of standard deviation (σ):

Of course, you can use the same formula to calculate the standard deviation for the
population, and the standard deviation of a sample as an estimator of the standard
deviation for the population; just use the appropriate variance in the formula.

You probably remember skewness and kurtosis from Chapter 2, Review of SQL Server
Features for Developers. These two measures measure the skew and the peakedness of a
distribution. The formulas for skewness and kurtosis are:

These are the descriptive statistics measures for continuous variables. Note that some
statisticians calculate kurtosis without the last subtraction, which is approximating 3 for
large samples; therefore, a kurtosis around 3 means a normal distribution, neither
significantly peaked nor flattened.

For a quick overview of discrete variables, you use frequency tables. In a frequency table,
you can show values, the absolute frequency of those values, absolute percentage,
cumulative percentage, and a histogram of the absolute percentage.

Supporting R in SQL Server

[523]

One very simple way to calculate most of the measures introduced so far is by using the
summary() function. You can feed it with a single variable or with a whole data frame. For
a start, the following code re-reads the CSV file in a data frame and correctly orders the
values of the Education variable. In addition, the code attaches the data frame to the search
path:

TM = read.table("C:\\SQL2016DevGuide\\Chapter13_TM.csv",
 sep=",", header=TRUE,
 stringsAsFactors = TRUE);
attach(TM);
Education = factor(Education, order=TRUE,
 levels=c("Partial High School",
 "High School","Partial College",
 "Bachelors", "Graduate Degree"));

Note that you might get a warning, "The following object is masked _by_
.GlobalEnv: Education". You get this warning if you didn't start a new session with this
section. Remember, the Education variable was already ordered earlier in the code, and is
already part of the global search path, and therefore hides or masks the newly read column
Education. You can safely disregard this message and continue with defining the order of
the Education values again.

The following code shows the simplest way to get a quick overview of descriptive statistics
for the whole data frame:

summary(TM);

The partial results are here:

 CustomerKey MaritalStatus Gender TotalChildren NumberChildrenAtHome
Min. :11000 M:10011 F:9133 Min. :0.000 Min. :0.000
1st Qu.:15621 S: 8473 M:9351 1st Qu.:0.000 1st Qu.:0.000
Median :20242 Median :2.000 Median :0.000
Mean :20242 Mean :1.844 Mean :1.004
3rd Qu.:24862 3rd Qu.:3.000 3rd Qu.:2.000
Max. :29483 Max. :5.000 Max. :5.000

As mentioned, you can get a quick summary for a single variable as well. In addition, there
are many functions that calculate a single statistic, for example, sd() to calculate the
standard deviation. The following code calculates the summary for the Age variable, and
then calls different functions to get the details. Note that the dataset was added to the
search path. You should be able to recognize which statistic is calculated by which function
from the function names and the results:

summary(Age);
mean(Age);

Supporting R in SQL Server

[524]

median(Age);
min(Age);
max(Age);
range(Age);
quantile(Age, 1/4);
quantile(Age, 3/4);
IQR(Age);
var(Age);
sd(Age);

Here are the results, with added labels for better readability:

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 28.00 36.00 43.00 45.41 53.00 99.00
Mean 45.40981
Median 43
Min 28
Max 99
Range 28 99
25% 36
75% 53
IQR 17
Var 132.9251
StDev 11.52931

To calculate the skewness and kurtosis, you need to install an additional package. One
possibility is the moments package. The following code installs the package, loads it in
memory, and then calls the skewness() and kurtosis() functions from the package:

install.packages("moments");
library(moments);
skewness(Age);
kurtosis(Age);

The kurtosis() function from this package does not perform the last subtraction in the
formula and therefore kurtosis of 3 means no peakedness. Here are the results:

0.7072522
2.973118

Supporting R in SQL Server

[525]

Another possibility to calculate the skewness and the kurtosis is to create a custom function.
Creating your own function is really simple in R. Here is an example, together with a call:

skewkurt <- function(p){
 avg <- mean(p)
 cnt <- length(p)
 stdev <- sd(p)
 skew <- sum((p-avg)^3/stdev^3)/cnt
 kurt <- sum((p-avg)^4/stdev^4)/cnt-3
 return(c(skewness=skew, kurtosis=kurt))
};
skewkurt(Age);

Note that this is a simple example, not taking into account all the details of the formulas,
and not checking for missing values. Nevertheless, here is the result. Note that, in this
function, the kurtosis was calculated with the last subtraction in the formula and is
therefore different from the kurtosis from the package moments for approximately 3:

 skewness kurtosis
0.70719483 -0.02720354

Before finishing with these introductory statistics, let's calculate some additional details for
the discrete variables. The summary() function returns absolute frequencies only. The
table() function can be used for the same task. However, it is more powerful, as it can
also do cross-tabulation of two variables. You can also store the results in an object and pass
this object to the prop.table() function, which calculates the proportions. The following
code shows how to call the last two functions:

edt <- table(Education);
edt;
prop.table(edt);

Here are the results:

Partial High School High School Partial College Bachelors
 1581 3294 5064 5356
 Graduate Degree
 3189
Partial High School High School Partial College Bachelors
 0.08553343 0.17820818 0.27396667 0.28976412
 Graduate Degree
 0.17252759

Supporting R in SQL Server

[526]

Of course, there is a package that includes a function that gives you a more condensed
analysis of a discrete variable. The following code installs the descr package, loads it to
memory, and calls the freq() function:

install.packages("descr");
library(descr);
freq(Education);

Here are the results.

 Frequency Percent Cum Percent
Partial High School 1581 8.553 8.553
High School 3294 17.821 26.374
Partial College 5064 27.397 53.771
Bachelors 5356 28.976 82.747
Graduate Degree 3189 17.253 100.000
Total 18484 100.000

SQL Server R services
In SQL Server suite, SQL Server Analysis Services (SSAS) supports data mining from
version 2000. SSAS has included some of the most popular algorithms with very
explanatory visualizations. SSAS data mining is very simple to use. However, the number
of algorithms is limited, and the whole statistical analysis is missing in the SQL Server suite.
By introducing R in SQL Server, Microsoft made a quantum leap forward in statistics, data
mining and machine learning.

Of course, the R language and engine have their own issues. For example, installing
packages directly from code might not be in accordance with the security policies of an
enterprise. In addition, most of the calculations are not scalable. Scalability might not be an
issue for statistical and data mining analyses, because you typically work with samples.
However, machine learning algorithms can consume huge amounts of data.

With SQL Server 2016, you get a highly scalable R engine. Not every function and algorithm
is rewritten as a scalable one. Nevertheless, you will probably find the one you need for
your analysis of a big dataset. You can store an R data mining or machine learning model in
a SQL Server table and use it for predictions on new data. You can even store graphs in a
binary column and use it in SQL Server Reporting Services (SSRS) reports. Finally, R
support is not limited to SQL Server only. You can use R code also in Power BI Desktop and
Power BI Service, and in Azure Machine Learning (Azure ML) experiments.

Supporting R in SQL Server

[527]

Installing packages is not that simple, and must be done by a DBA. In SQL Server, you call
R code through a stored procedure. This way, a DBA can apply all SQL Server security to R
code as well. In addition, you need a SQL Server, a Windows login, or Windows to run the
code that uses SQL Server R Services. This login must also have enough permissions on
SQL Server objects. It needs to access the database where you run the R code, permissions
to read SQL Server data, and potentially, if you need to store the results in a SQL Server
table, permissions to write data.

This section introduces R support in SQL Server, including:

Architecture
Using R code in T-SQL
Scalable solutions
Security
Deploying R models in SQL Server

Discovering SQL Server R services
Microsoft provides the highly scalable R engine in two flavors:

R Services (In-Database): This is the installation that integrates R into SQL
Server. It includes a database service that runs outside the SQL Server Database
Engine and provides a communication channel between the Database Engine and
R runtime. You install it with SQL Server setup. The R engine includes the open
source R components and in addition a set of scalable R packages.
Microsoft R Server: This is a standalone R server with the same open and
scalable packages that runs on multiple platforms.

For development, you prepare a client installation. You can download Microsoft R Client
from http://aka.ms/rclient/download. This installation includes the open R engine and
the scalable packages as well. In addition to the engine, you probably want to also install a
development IDE, either RStudio or R Tools for Visual Studio. Of course, you can also
download and install the Developer Edition of SQL Server 2016 instead. This way, you get
both the R runtime with the scalable packages and the database engine.

Some of the scalable packages shipped with SQL Server R Services are:

RevoScaleR: This is a set of parallelized scalable R functions for processing data,
data overview and preliminary analysis, and machine learning models. The
procedures in this package can work with chunks of data at a time, so they don't
need to load all of the data in memory immediately.

Supporting R in SQL Server

[528]

RevoPemaR: This package allows you to write custom parallel external
algorithms.
MicrosoftML: This is a new package from December 2016, with many additional
scalable machine learning algorithms implemented.

The following figure shows how the communication process between SQL Server and R
engine works:

Figure 13 6 The communication between SQL Server and R runtime

The components involved and their communications are as follows:

In SQL Server Database Engine, you run R script with the
sys.sp_execute_external_script system stored procedure. SQL Server
sends the request to the Launchpad service, a new service that supports the
execution of external scripts.
The Launchpad service starts the launcher appropriate for the language of your
script. Currently, the only launcher available is the RLauncher, and therefore you
can launch an external script from SQL Server using the R language only.
However, you can see that the infrastructure is prepared to enable the execution
of scripts in additional programming languages.
The RLauncher starts RTerm, the R terminal application for executing R scripts.
The RTerm sends the script to BxlServer. This is a new executable used for
communication between SQL Server and the R engine. The scalable R functions
are implemented in this executable as well.
The BxlServer uses SQL Satellite, a new extensibility API that provides a fast
data transfer between SQL Server and external runtime. Again, currently only R
runtime is supported.

Supporting R in SQL Server

[529]

Time to test the execution of R script in SQL Server! First, you need to use the
sys.sp_configure system stored procedure to enable external scripts. You can do this
with the following code:

USE master;
EXEC sys.sp_configure 'show advanced options', 1;
RECONFIGURE
EXEC sys.sp_configure 'external scripts enabled', 1;
RECONFIGURE;

After that, you can call the sys.sp_execute_external_script system stored procedure.
The most important parameters of this procedure include:

@language: Currently limited to value R
@script: The actual script in the external language
@input_data_1_name: The name of the data frame, as seen in the R code in the
@script parameter for the first input dataset; the default name is InputDataSet
@input_data_1: The T-SQL query that specifies the first input dataset
@output_data_1_name: The name of the R object, most probably a data frame,
with the output dataset; the default name is OutputDataSet
WITH RESULT SETS: The option where you specify the column names and data
types of the output of the R script, as seen in SQL Server

In the following example, the R script called from SQL Server retrieves the list of installed
packages:

EXECUTE sys.sp_execute_external_script
 @language=N'R',
 @script =
 N'str(OutputDataSet);
 packagematrix <- installed.packages();
 NameOnly <- packagematrix[,1];
 OutputDataSet <- as.data.frame(NameOnly);'
WITH RESULT SETS ((PackageName nvarchar(20)));

The shortened results are:

PackageName

base
boot
class
...
RevoIOQ
revoIpe

Supporting R in SQL Server

[530]

RevoMods
RevoPemaR
RevoRpeConnector
RevoRsrConnector
RevoScaleR
RevoTreeView
RevoUtils
RevoUtilsMath
...
spatial
splines
stats
...

You can see that besides some base packages, there is a set of packages where the name
starts with the string Revo, including the RevoScaleR and RevoPemaR packages. These are
two packages with scalable functions and their associated packages.

Creating scalable solutions
You can use the scalable server resources from the client. You start development in RStudio
or R Tools for Visual Studio by setting the execution context to the server. Of course, you
must do it with a function from the RevoScaleR package, which is loaded in memory at the
beginning of the following R code. The code defines the execution context on SQL Server, in
the context of the AdventureWorksDW2014 database. Remember, the dbo.vTargetMail
view comes from this database. Also note that the RUser used to connect to SQL Server
needs permission to use the sys.sp_execute_external_script procedure. For the sake
of simplicity, I just added the RUser database user in the AdventureWorksDW2014
database on my local SQL Server instance to the db_owner database role. The following
code changes the execution context to SQL Server:

library(RevoScaleR);
sqlConnStr <- "Driver=SQL Server;Server=SQL2016EIM;
 Database=AdventureWorksDW2014;Uid=RUser;Pwd=Pa$$w0rd";
sqlShare <- "C:\\SQL2016DevGuide";
chunkSize = 1000;
srvEx <- RxInSqlServer(connectionString = sqlConnStr, shareDir = sqlShare,
 wait = TRUE, consoleOutput = FALSE);
rxSetComputeContext(srvEx);

Supporting R in SQL Server

[531]

The parameters define the connection string to my SQL Server instance, the shared folder
used to exchange the data between SQL Server and R engine, and the chunk size, which is
actually used later when reading the data. Please note that you need to change the name of
the SQL Server to your SQL Server instance. The RxInSqlServer() object creates the
compute context in SQL Server. The wait parameter defines whether the execution in SQL
Server is blocking and the control does not return to the client until the execution is finished
or the execution is not blocking. The consoleOutput parameter defines whether the output
of the R code started by SQL Server should be returned to the user console. The
rxSetComputeContext() function actually sets the execution context to SQL Server.

After the execution context has been set to SQL Server, you can try to use other scalable
functions. For example, rxImport() can be used to import comma-separated value file
data to a data frame. The rowsPerRead parameter reads in batches, using the chunk size
defined earlier in the code. The batch size of 1,000 rows is quite small, just to show how this
import in chunks works. For larger datasets, you should use much larger batches. You
should test what the best size is for your datasets and the processing power you have:

TMCSV = rxImport(inData = "C:\\SQL2016DevGuide\\Chapter13_TM.csv",
 stringsAsFactors = TRUE, type = "auto",
 rowsPerRead = chunkSize, reportProgress = 3);

The reportProgress parameter defines a detailed output. The abbreviated result of the
previous code is here:

ReadNum=1, StartRowNum=1, CurrentNumRows=1000, TotalRowsProcessed=1000,
ReadTime=0.01, ProcessDataTime = 0, LoopTime = 0.01
ReadNum=2, StartRowNum=1001, CurrentNumRows=1000, TotalRowsProcessed=2000,
ReadTime=0.007, ProcessDataTime = 0.002, LoopTime = 0.007
...
Overall compute summaries time: 0.133 secs.
Total loop time: 0.132
Total read time for 19 reads: 0.115
Total process data time: 0.041
Average read time per read: 0.00605263
Average process data time per read: 0.00215789
Number of threads used: 2

You can see that the chunk size was really 1,000 rows, how much time was needed for each
chunk, the total time, the number of threads used, and more. This confirms that
RevoScaleR functions use parallelism.

Supporting R in SQL Server

[532]

The next code reads the same data again, this time from SQL Server. Note that an ODBC
connection is not needed; the code is already executed on the server side in the context of
the AdventureWorksDW2014 database. The RxSqlServerData() function generates a SQL
Server data source object. You can think of it as a proxy object to the SQL Server rowset,
which is the result of the query:

TMquery <-
"SELECT CustomerKey, MaritalStatus, Gender,
 TotalChildren, NumberChildrenAtHome,
 EnglishEducation AS Education,
 EnglishOccupation AS Occupation,
 HouseOwnerFlag, NumberCarsOwned, CommuteDistance,
 Region, BikeBuyer,
 YearlyIncome, Age
 FROM dbo.vTargetMail";
sqlTM <- RxSqlServerData(sqlQuery = TMquery,
 connectionString = sqlConnStr,
 stringsAsFactors = TRUE,
 rowsPerRead = chunkSize);
TMSQL <- rxImport(inData = sqlTM, reportProgress = 3);

The sqlTM object is the pointer to the SQL Server data, and exposes the metadata of the
result set of the query to the client R code. Note that the last line creates a new data frame
and physically transfers data to the client. Therefore, if you executed the code in this section
step-by-step, you should have two data frames—TMCSV and TMSQL—with data in local
client memory, and the sqlTM data source connection, which you can use as a data frame.
You can see the difference if you try to get the info about all three objects with the
rxGetInfo() function:

rxGetInfo(TMCSV);
rxGetInfo(sqlTM);

The previous code returns the following result:

Data frame: TMCSV
Number of observations: 18484
Number of variables: 14
Connection string: Driver=SQL Server;Server=localhost;
 Database=AdventureWorksDW2014;Uid=RUser;Pwd=Pa$$w0rd
Data Source: SQLSERVER

Supporting R in SQL Server

[533]

You get the details about the metadata of the SQL data source connection object with the
rxGetVarInfo() function. You can get summary statistics and different cross-tabulations
of the SQL Server data with the rxSummary(), rxCrossTabs(), and rxCube() functions.
You can create histograms with the rxHistogram() function. All these functions use the
SQL Server execution context. The following code shows how to use the functions
mentioned:

sumOut <- rxSummary(
 formula = ~ NumberCarsOwned + Occupation + F(BikeBuyer),
 data = sqlTM);
sumOut;
cTabs <- rxCrossTabs(formula = BikeBuyer ~
 Occupation : F(HouseOwnerFlag),
 data = sqlTM);
print(cTabs, output = "counts");
print(cTabs, output = "sums");
print(cTabs, output = "means");
summary(cTabs, output = "sums");
summary(cTabs, output = "counts");
summary(cTabs, output = "means");
cCube <- rxCube(formula = BikeBuyer ~
 Occupation : F(HouseOwnerFlag),
 data = sqlTM);
cCube;
rxHistogram(formula = ~ BikeBuyer | MaritalStatus,
 data = sqlTM);

Note that all of these scalable functions accept data from the SQL Server data source
connection object. Because they execute on SQL Server, you cannot use the local data frames
to feed them. If you would use a local data frame, you would get an error. If you want to
use the scalable functions with the local datasets, you need to switch the execution context
back to local.

The following code shows how to set the execution context back to the client machine:

rxSetComputeContext("local");

The RevoScaleR package includes a function to calculate clusters of similar cases based on
the values of the input variables. It uses the K-means clustering algorithm. The
rxKmeans() function in the following code uses a local data frame. It defines two clusters
and then assigns each case to one of the clusters. The summary() function gives you the
details of the clustering model:

TwoClust <- rxKmeans(formula = ~ BikeBuyer + TotalChildren +
NumberCarsOwned,
 data = TMSQL,

Supporting R in SQL Server

[534]

 numClusters = 2);
summary(TwoClust);

You can add the cluster membership to the original data frame and rename the variable to a
friendlier name:

TMClust <- cbind(TMSQL, TwoClust$cluster);
names(TMClust)[15] <- "ClusterID";

In order to understand the meaning of the clusters, you need to analyze them. The
following code creates a nice graph that consists of three individual small graphs showing
the distribution of each input variable in each cluster:

attach(TMClust);
oldpar <- par(no.readonly = TRUE);
par(mfrow=c(1,3));

NumberCarsOwned and clusters
nofcases <- table(NumberCarsOwned, ClusterID);
nofcases;
barplot(nofcases,
 main='Number of cars owned and cluster ID',
 xlab='Cluster Id', ylab ='Number of Cars',
 legend=rownames(nofcases),
 col=c("black", "blue", "red", "orange", "yellow"),
 beside=TRUE);
BikeBuyer and clusters
nofcases <- table(BikeBuyer, ClusterID);
nofcases;
barplot(nofcases,
 main='Bike buyer and cluster ID',
 xlab='Cluster Id', ylab ='BikeBuyer',
 legend=rownames(nofcases),
 col=c("blue", "yellow"),
 beside=TRUE);
TotalChildren and clusters
nofcases <- table(TotalChildren, ClusterID);
nofcases;
barplot(nofcases,
 main='Total children and cluster ID',
 xlab='Cluster Id', ylab ='Total Children',
 legend=rownames(nofcases),
 col=c("black", "blue", "green", "red", "orange", "yellow"),
 beside=TRUE);

Clean up
par(oldpar);
detach(TMClust);

Supporting R in SQL Server

[535]

You should already be familiar with this code from the examples earlier in this chapter. The
next screenshot shows the results:

Figure 13 7 The analysis of the clusters

Deploying R models
Once you have created a model, you can deploy it to a SQL Server table and use it later for
predictions. You can also do the predictions in R and store just the results in a SQL Server
table.

Let's start by creating another model in R. This time, the model uses the Logistic
Regression algorithm. The model uses the SQL Server data and the dbo.vTargetMail
view to learn how the values of the NumberCarsOwned, TotalChildren, Age, and
YearlyIncome input variables influence the value of the BikeBuyer target variable. The
following code sets the execution context back to SQL Server, creates the model with the
RevoScale RrxLogit() function, and shows the summary of the model:

rxSetComputeContext(srvEx);
bbLogR <- rxLogit(BikeBuyer ~
 NumberCarsOwned + TotalChildren + Age + YearlyIncome,
 data = sqlTM);
summary(bbLogR);

Supporting R in SQL Server

[536]

You can use the model to perform predictions. In the following example, the model is used
to make predictions on the same dataset that was used for training the model. In a real-life
situation, you would perform predictions on a new dataset. The code stores the predictions,
together with the input values used, in a SQL Server table. The RxSqlServerData()
function prepares the connection to the SQL Server database and the target table name. The
rxPredict() function performs the predictions and physically creates the SQL Server table
and inserts the data. Of course, the database user used to connect to SQL Server must have
appropriate permissions to create a table:

bbLogRPredict <- RxSqlServerData(connectionString = sqlConnStr,
 table = "dbo.TargetMailLogR");
rxPredict(modelObject = bbLogR,
 data = sqlTM, outData = bbLogRPredict,
 predVarNames = "BikeBuyerPredict",
 type = "response", writeModelVars = TRUE);

You can use a T-SQL query to check the results, as shown here:

USE AdventureWorksDW2014;
SELECT *
FROM dbo.TargetMailLogR;

The partial results are shown here. Values above 0.5 mean positive predictions:

BikeBuyerPredict BikeBuyer NumberCarsOwned TotalChildren Age YearlyIncome
---------------- --------- --------------- ------------- ---- ------------
0.733910292274223 1 0 2 44 90000
0.540550204813772 1 1 3 40 60000
0.529196837245225 1 1 3 45 60000

As mentioned, you can store a model in a SQL Server table. The following T-SQL code
creates a table where the models are going to be stored and a stored procedure that actually
inserts a model:

CREATE TABLE dbo.RModels
(Id INT NOT NULL IDENTITY(1,1) PRIMARY KEY,
 ModelName NVARCHAR(50) NOT NULL,
 Model VARBINARY(MAX) NOT NULL);
GO
CREATE PROCEDURE dbo.InsertModel
(@modelname NVARCHAR(50),
 @model NVARCHAR(MAX))
AS
BEGIN
 SET NOCOUNT ON;
 INSERT INTO dbo.RModels (ModelName, Model)
 VALUES (@modelname, CONVERT(VARBINARY(MAX), @model, 2));

Supporting R in SQL Server

[537]

END;

The infrastructure is created. Now you can store the model in a SQL Server table from R.
However, in order to call a stored procedure, you need to use an ODBC connection.
Therefore, the following code first loads the RODBC library to memory, and creates a
connection to the SQL Server database. Then it serializes the model to a binary variable, and
creates a string from the binary variable using the paste() function. The same function is
used to prepare a string with the T-SQL code to insert the model in the table. Finally, the
sqlQuery() function sends the T-SQL command to SQL Server. Again, the R user used to
execute this code must have permission to execute the stored procedure:

library(RODBC);
conn <- odbcDriverConnect(sqlConnStr);
modelbin <- serialize(bbLogR, NULL);
modelbinstr=paste(modelbin, collapse="");
sqlQ <- paste("EXEC dbo.InsertModel @modelname='bbLogR', @model='",
 modelbinstr,"'", sep="");
sqlQuery(conn, sqlQ);
close(conn);

The final step is to use the model from T-SQL. The following code uses the
sys.sp_execute_external_script system procedure to use the model and perform a
prediction on a single case. First, it creates an input dataset that consists of a single row with
four input variables. Then, it retrieves the stored model. Then the R code is executed, which
un-serializes the model and uses the rxPredict() function again to generate the output
dataset, which includes the input variables and the prediction:

DECLARE @input AS NVARCHAR(MAX)
SET @input = N'
 SELECT *
 FROM (VALUES
 (0, 2, 44, 90000)) AS
 inpQ(NumberCarsOwned, TotalChildren, Age, YearlyIncome);'
DECLARE @mod VARBINARY(max) =
 (SELECT Model
 FROM DBO.RModels
 WHERE ModelName = N'bbLogR');
EXEC sys.sp_execute_external_script
 @language = N'R',
 @script = N'
 mod <- unserialize(as.raw(model));
 OutputDataSet<-rxPredict(modelObject = mod, data = InputDataSet,
 outData = NULL,
 predVarNames = "BikeBuyerPredict", type = "response",
 checkFactorLevels=FALSE,
 writeModelVars = TRUE, overwrite = TRUE);

Supporting R in SQL Server

[538]

 ',
 @input_data_1 = @input,
 @params = N'@model VARBINARY(MAX)',
 @model = @mod
WITH RESULT SETS ((
 BikeBuyerPredict FLOAT,
 NumberCarsOwned INT,
 TotalChildren INT,
 Age INT,
 YearlyIncome FLOAT));

The results are:

BikeBuyerPredict NumberCarsOwned TotalChildren Age YearlyIncome
---------------------- --------------- ------------- ---- -------------
0.733910292274223 0 2 44 90000

The input values used were the same as the values in the first row of the batch predictions
from the dbo.vTargetMail view used in the previous prediction example. You can see
that the predicted value is also the same.

Summary
In this chapter, you learned the basics of the R language. You learned data structures in R
(especially the most important one, the data frame) and how to do simple data
manipulation. Then you saw some of the capabilities of R by creating graphical
visualizations and calculating descriptive statistics in order to get a deeper understanding
of your data. Finally, you got a comprehensive view of R integration in SQL Server. The
next chapter, Chapter 14, Data Exploration and Predictive Modeling with R in SQL Server,
continues the story and gives you more in-depth knowledge about some of the most
important data mining and machine learning algorithms and tasks.

14
Data Exploration and Predictive
Modeling with R in SQL Server

Using the R language inside SQL Server gives us the opportunity to get knowledge out of
data. We introduced R and R support in SQL Server in the previous chapter, and this
chapter demonstrates how you can use R for advanced data exploration and for statistical
analysis and predictive modeling, way beyond the possibilities offered by using T-SQL
language only.

You will start with intermediate statistics: exploring associations between two discrete, two
continuous, and one discrete and one continuous variable. You will also learn about linear
regression, where you explain the values of the dependent continuous variable with a linear
regression formula using one or more continuous input variables.

The second section of this chapter starts with introducing advanced multivariate data
mining and machine learning methods. You will learn about methods that do not use a
target variable, or so-called undirected methods.

In the third part, you will learn about the most popular directed methods.

Finally, to finish the chapter and the book in a slightly lighter way, you will play with
graphs again. The last section introduces ggplot2, the most popular package for
visualizing data in R.

The target audience of this book is database developers and solution
architects who plan to use new SQL Server 2016 features or simply want to
know what is now available and which limitations from previous versions
have been removed.

Data Exploration and Predictive Modeling with R in SQL Server

[540]

Most of the readers deal daily with simple statistics only, and less often with data mining
and machine learning. Because of that, this chapter does not only show how to write the
code for advanced analysis in R, it also gives you an introduction to the mathematics
behind the code, and explains when you want to use which method.

This chapter will cover the following points:

Associations between two or more variables
Undirected data mining and machine learning methods
Directed data mining and machine learning methods
Advanced graphing in R
Mathematics behind the advanced methods explained
A mapping between problems and algorithms to use

Intermediate statistics – associations
In the previous chapter, you learned about the discrete statistics methods for getting the
information about the distribution of discrete and continuous variables. In a data science
project, the next typical step is to check for the associations between pairs of variables.

When checking for the associations between pairs of variables, you have three possibilities:

Both variables are discrete
Both variables are continuous
One discrete and one continuous variable

Besides dealing with two variables only, this section also introduces linear regression, one
of the most important statistical methods, where you model a single response (or
dependent) variable with a regression formula that includes one or more predictor (or
independent) variables.

Altogether, you will learn about the following in this section:

Chi-squared test of independence of two discrete variables
Phi coefficient, contingency coefficient, and Cramer's V coefficient that measures
the association of two discrete variables
Covariance and correlations between two continuous variables
T-Test and one-way ANOVA that measure associations between one continuous
and one discrete variable
Simple and polynomial linear regression

Data Exploration and Predictive Modeling with R in SQL Server

[541]

Exploring discrete variables
Contingency tables are used to examine the relationship between subject's scores on two
qualitative or categorical variables. They show the actual and expected distribution of cases
in a cross-tabulated (pivoted) format for the two variables. The following table is an
example of the actual (or observed) and expected distribution of cases over the
Occupation column (on rows) and the MaritalStatus column (on columns).

Occupation \ MaritalStatus Married Single Total

Clerical Actual
Expected

4,745
4,946

4,388
4,187

9,133
9,133

Professional Actual
Expected

5,266
5,065

4,085
4,286

9,351
9,351

Total Actual
Expected

10,011
10,111

8,473
8,473

18,484
18,484

If the two variables are independent, then the actual distribution in every single cell should
be approximately equal to the expected distribution in that cell. Expected distribution is
used by calculating the marginal probability. For example, the marginal probability for
value “Married” is 10,111 / 18,484 = 0.5416: There are more than 54% of married people in
the sample. If the two variables are independent, then you would expect to have
approximately 54% of married people among clericals and 54% among professionals. You
might notice dependency between two discrete variables by just viewing the contingency
table for the two. However, a solid numerical measure is preferred.

If the columns are not contingent on the rows, then the rows and column frequencies are
independent. The test of whether the columns are contingent on the rows is called the chi-
squared test of independence. The null hypothesis is that there is no relationship between
row and column frequencies. Therefore, there should be no difference between the observed
(O) and expected (E) frequencies.

Chi-squared is simply a sum of normalized squared frequency's deviations (that is, the sum
of squares of differences between observed and expected frequencies divided by expected
frequencies). This formula is also called the Pearson chi-squared formula.

Data Exploration and Predictive Modeling with R in SQL Server

[542]

There are already prepared tables with critical points for the chi-squared distribution. If the
calculated chi-squared value is greater than a critical value in the table for the defined
degrees of freedom and for a specific confidence level, you can reject the null hypothesis
with that confidence (which means the variables are interdependent). The degrees of
freedom, explained for a single variable in the previous chapter, is the product of the
degrees of freedom for columns (C) and rows (R), as the following formula shows.

The following table is the chi-squared critical points table for the first ten degrees of
freedom. Greater differences between expected and actual data produce a larger chi-
squared value. The larger the chi-squared value, the greater the probability that there really
is a significant difference. The Probability row in the table shows you what is the maximal
probability that the null hypothesis holds when the chi-squared value is greater than or
equal to the value in the table for the specific degrees of freedom.

For example, you have calculated chi-squared for two discrete variables. The value is 16,
and the degrees of freedom are 7. Search for the first smaller and first bigger value for the
chi-squared in the row for degrees of freedom 7 in the Table 8.6. The values are 14.07 and
18.48. Check the appropriate probability for these two values, which are 0.05 and 0.01. This
means that there is less than 5% probability that the two variables are independent from
each other, and more than 1% that they are independent. This is a significant percentage,
meaning that you can say the variables are dependent with more than 95% probability.

The following core re-reads the target mail data from a CSV file, adds the new data frame to
the search path, and defines the levels for the Education factor variable.

Data Exploration and Predictive Modeling with R in SQL Server

[543]

TM = read.table("C:\\SQL2016DevGuide\\Chapter14_TM.csv",
 sep=",", header=TRUE,
 stringsAsFactors = TRUE);
 attach(TM);
Education = factor(Education, order=TRUE,
 levels=c("Partial High School",
 "High School","Partial College",
 "Bachelors", "Graduate Degree"));

You can create pivot tables with the table() or the xtabs() R functions, as the following
code shows:

table(Education, Gender, BikeBuyer);
table(NumberCarsOwned, BikeBuyer);
xtabs(~Education + Gender + BikeBuyer);
xtabs(~NumberCarsOwned + BikeBuyer);

You can check the results yourself. Nevertheless, in order to test for independence, you
need to store the pivot table in a variable. The following code checks for independence
between two pairs of variables—Education and Gender and NumberCarsOwned and
BikeBuyer:

tEduGen <- xtabs(~ Education + Gender);
tNcaBik <- xtabs(~ NumberCarsOwned + BikeBuyer);
chisq.test(tEduGen);
chisq.test(tNcaBik);

Here are the results.

data: tEduGen
X-squared = 5.8402, df = 4, p-value = 0.2114
data: tNcaBik
X-squared = 734.38, df = 4, p-value < 2.2e-16

From the chi-squared critical points table, you can see that you can confirm the null
hypothesis for the first pair of variables, while you need to reject it for the second pair. The
p-value tells you the probability that the null hypothesis is correct. Therefore, you can
conclude that the variables NumberCarsOwned and BikeBuyer are associated.

Data Exploration and Predictive Modeling with R in SQL Server

[544]

You can measure the association by calculating one of the following coefficients: phi
coefficient, contingency coefficient, or Cramer's V coefficient. You can use the phi
coefficient for two binary variables only. The formulas for the three coefficients are:

Contingency coefficient is not scaled between 0 and 1; for example, the highest possible
value for a 2×2 table is 0.707. Anyway, the function assocstats() from the vcd package
calculates all three of them; since the phi coefficient can be calculated for two binary
variables only, it is not useful here. The following code installs the package and calls the
function:

install.packages("vcd");
library(vcd);
assocstats(tEduGen);
assocstats(tNcaBik);

In addition, the vcd package includes the strucplot() function, which visualizes the
contingency tables very nicely. The following code calls this function to visualize expected
and observed frequencies for the two associated variables:

strucplot(tNcaBik, shade = TRUE, type = "expected", main = "Expected");
strucplot(tNcaBik, shade = TRUE, type = "observed", main = "Observed");

Data Exploration and Predictive Modeling with R in SQL Server

[545]

You can see the graphical representation of the observed frequencies in the following figure.

Figure 14-1 Contingency tables visualization

Finding associations between continuous
variables
The first measure for the association of two continuous variables is the covariance. Here is
the formula.

Data Exploration and Predictive Modeling with R in SQL Server

[546]

Covariance indicates how two variables, X and Y, are related to each other. When large
values of both variables occur together, the deviations are both positive (because Xi–
Mean(X) > 0 and Yi– Mean(Y) > 0), and their product is therefore positive. Similarly, when
small values occur together, the product is positive as well. When one deviation is negative
and one is positive, the product is negative. This can happen when a small value of X occurs
with a large value of Y and the other way around. If positive products are absolutely larger
than negative products, the covariance is positive; otherwise, it is negative. If negative and
positive products cancel each other out, the covariance is zero. And when do they cancel
each other out? Well, you can imagine such a situation quickly—when two variables are
really independent. So the covariance evidently summarizes the relation between variables:

If the covariance is positive, when the values of one variable are large, the values
of the other one tend to be large as well
When negative, the values of one variable are large when the values of the other
one tend to be small
If the covariance is zero, the variables are independent

In order to compare the strength of association between two different pairs of variables, a
relative measure is better than an absolute one. This is the Pearson's correlation coefficient,
which divides the covariance with the product of the standard deviations of both variables:

The reason that the correlation coefficient is a useful measure of the relation between two
variables is that it is always bounded: -1 <= correlation coefficient <= 1. Of course, if the
variables are independent, the correlation is zero, because the covariance is zero. The
correlation can take the value 1 if the variables have a perfect positive linear relation (if you
correlate a variable with itself, for example). Similarly, the correlation would be -1 for the
perfect negative linear relation. The larger the absolute value of the coefficient is, the more
the variables are related. But the significance depends on the size of the sample. The
following code creates a data frame that is a subset of the TM data frame used so far. The
new data frame includes only continuous variables. Then the code calculates the covariance
and the correlation coefficient between all possible pairs of variables.

x <- TM[,c("YearlyIncome", "Age", "NumberCarsOwned")];
cov(x);
cor(x);

Data Exploration and Predictive Modeling with R in SQL Server

[547]

Here are the correlation coefficients shown in a correlation matrix.

 YearlyIncome Age NumberCarsOwned
 YearlyIncome 1.0000000 0.1446627 0.4666472
 Age 0.1446627 1.0000000 0.1836616
 NumberCarsOwned 0.4666472 0.1836616 1.0000000

You can see that the income and number of cars owned are correlated better than other
pairs of variables.

Pearson's coefficient is not so suitable for ordinal variables so you can calculate the
Spearman's coefficient instead. The following code shows you how to calculate the
Spearman's coefficient on ordinal variables:

y <- TM[,c("TotalChildren", "NumberChildrenAtHome", "HouseOwnerFlag",
"BikeBuyer")];
cor(y);
cor(y, method = "spearman");

Finally, you can also visualize the correlation matrix. A nice visualization is provided by the
corrgram() function in the corrgram package, as the following code shows:

install.packages("corrgram");
library(corrgram);
corrgram(y, order = TRUE, lower.panel = panel.shade,
 upper.panel = panel.shade, text.panel = panel.txt,
 cor.method = "spearman", main = "Corrgram");

In the following figure, you can see the Spearman's correlation coefficient between pairs of
four ordered variables graphically.

Data Exploration and Predictive Modeling with R in SQL Server

[548]

Figure 14-2 Correlation matrix visualization

The darker the shading in the preceding figure, the stronger the association; right-oriented
texture means a positive association, and left-oriented texture means a negative association.

Continuous and discrete variables
Finally, it is time to check for linear dependencies between a continuous and a discrete
variable. You can do this by measuring the variance between means of the continuous
variable in different groups of the discrete variable, for example measuring the difference in
salary (continuous variable) between different genders (discrete variable). The null
hypothesis here is that all variance between means is a result of the variance within each
group, for example there is one woman with a very large salary, which raises the mean
salary in the female group and makes a difference to the male group. If you reject it, this
means that there is some significant variance of the means between groups. This is also
known as the residual, or unexplained, variance. You are analyzing the variance of the
means, so this analysis is called the analysis of variance, or ANOVA. A simpler test is
Student's t-test, which you can use to test for the differences between means in two groups
only.

Data Exploration and Predictive Modeling with R in SQL Server

[549]

For a simple one-way ANOVA, testing means (averages) of a continuous variable for one
independent discrete variable, you calculate the variance between groups MSA as the sum
of squares of deviations of the group mean from the total mean multiplied by the number of
cases in each group, with the degrees of freedom equal to the number of groups minus one.
The formula is:

The discrete variable has discrete states, µ is the overall mean of the continuous variable,
and µi is the mean in the continuous variable in the ith group of the discrete variable.

You calculate the variance within groups MSE as the sum over groups of the sum of squares
of deviations of individual values from the group mean, with the degrees of freedom equal
to the sum of the number of rows in each group minus one:

The individual value of the continuous variable is denoted as vij, µi is the mean in the
continuous variable in the ith group of the discrete variable, and ni is the number of cases in
the ith group of the discrete variable.

Once you have both variances, you calculate the so-called F ratio as the ratio between the
variance between groups and the variance within groups:

A large F value means you can reject the null hypothesis. Tables for the cumulative
distribution under the tails of F distributions for different degrees of freedom are already
calculated. For a specific F value with degrees of freedom between groups and degrees of
freedom within groups, you can get critical points where there is, for example, less than a
5% of distribution under the F distribution curve up to the F point. This means that there is
less than a 5% probability that the null hypothesis is correct (that is, there is an association
between the means and the groups).

Data Exploration and Predictive Modeling with R in SQL Server

[550]

The following code checks for the differences in mean between two groups: checks the
YearlyIncome mean in the groups of Gender and HouseOwnerFlag variables. Note that
the last line, after the comment, produces an error, because you can't use t-test for more
than two groups.

t.test(YearlyIncome ~ Gender);
t.test(YearlyIncome ~ HouseOwnerFlag);
Error - t-test supports only two groups
t.test(YearlyIncome ~ Education);

Instead of using the t.test() function, you can use the aov() function to check for the
variance of the YearlyIncome means in the five groups of Education, as the following
code shows. Note that the code first correctly orders the Education variable:

Education = factor(Education, order=TRUE,
levels=c("Partial High School",
"High School","Partial College",
"Bachelors", "Graduate Degree"));
AssocTest <- aov(YearlyIncome ~ Education);
summary(AssocTest);

If you execute the code above and check the results, you can conclude that yearly income is
associated with the level of the education. You can see that the F value (324.7) is quite high
and the probability for such high F value to be accidental is very low (<2e-16). You can also
visualize the differences of the distribution of a continuous variable in groups of a discrete
variable with the boxplot() function.

boxplot(YearlyIncome ~ Education,
 main = "Yearly Income in Groups",
 notch = TRUE,
 varwidth = TRUE,
 col = "orange",
 ylab = "Yearly Income",
 xlab = "Education");

Data Exploration and Predictive Modeling with R in SQL Server

[551]

The results of the box plot are shown in the following screenshot:

Figure 14-3 Variability of means in groups

Getting deeper into linear regression
When you get a high correlation between two continuous variables, you might want to
express the relation between them in a functional way; that is, one variable as a function of
the other one. The linear function between two variables is a line determined by its slope
and its intercept. Here is the formula for the linear function.

You can imagine that the two variables you are analyzing form a two-dimensional plane.

Data Exploration and Predictive Modeling with R in SQL Server

[552]

Their values define coordinates of the points in the plane. You are searching for a line that
fits all the points best. Actually, it means that you want the points to fall as close to the line
as possible. You need the deviations from the line—that is, the difference between actual
value for the Yi and the line value Y'. If you use simple deviations, some are going to be
positive and others negative, so the sum of all deviations is going to be zero for the best-fit
line. A simple sum of deviations, therefore, is not a good measure. You can square the
deviations, like they are squared to calculate the mean squared deviation. To find the best-
fit line, you have to find the minimal possible sum of squared deviations. Here are the
formulas for the slope and the intercept.

Linear regression can be more complex. In a multiple linear regression, you use multiple
independent variables in a formula. You can also try to express the association with a
polynomial regression model, where the independent variable is introduced in the
equation as an nth order polynomial.

The following code creates another data frame as a subset of the original data frame, this
time keeping only the first one hundred rows. The sole purpose of this action is the
visualization at the end of this section, where you will see every single point in the graph.
The code also removes the TM data frame from the search path and adds the new TMLM
data frame to it:

TMLM <- TM[1:100, c("YearlyIncome", "Age")];
detach(TM);
attach(TMLM);

The following code uses the lm() function to create a simple linear regression model, where
YearlyIncome is modelled as a linear function of Age:

LinReg1 <- lm(YearlyIncome ~ Age);
summary(LinReg1);

If you check the summary results for the model, you can see that there is some association
between the two variables; however, the association is not that strong. You can try to
express the association with polynomial regression, including squared Age in the formula:

LinReg2 <- lm(YearlyIncome ~ Age + I(Age ^ 2));
summary(LinReg2);

Data Exploration and Predictive Modeling with R in SQL Server

[553]

If you plot the values for the two variables in a graph, you can see that there is a non-linear
dependency between them. The following code plots the cases as points in the plane, and
then adds a linear and a lowess line to the graph. A lowess line calculation is more complex;
it is used here to represent the polynomial relationship between two variables:

plot(Age, YearlyIncome,
 cex = 2, col = "orange", lwd = 2);
abline(LinReg1,
 col = "red", lwd = 2);
lines(lowess(Age, YearlyIncome),
 col = "blue", lwd = 2);

The following screenshot shows the results:

Figure 14-4 Linear and polynomial regression

Data Exploration and Predictive Modeling with R in SQL Server

[554]

You can see that the polynomial line (the curve) fits the data slightly better. The polynomial
model is also more logical: you earn less when you are young, then you earn more and
more, until at some age your income goes down again, probably after you retire. Finally,
you can remove the TMLM data frame from the search path:

detach(TMLM);

Advanced analysis – undirected methods
Data mining and machine learning techniques are divided into two main classes:

The directed, or supervised approach: You use known examples and apply
information to unknown examples to predict selected target variable(s)
The undirected, or unsupervised approach: You discover new patterns inside the
dataset as a whole

The most common undirected techniques are clustering, dimensionality reduction, and
affinity grouping, also known as basket analysis or association rules. An example of
clustering is looking through a large number of initially undifferentiated customers and
trying to see if they fall into natural groupings based on similarities or dissimilarities of
their features. This is a pure example of “undirected data mining” where the user has no
preordained agenda and hopes that the data mining tool will reveal some meaningful
structure. Affinity grouping is a special kind of clustering that identifies events or
transactions that occur simultaneously. A well-known example of affinity grouping is
market basket analysis, which attempts to understand what items are sold together at the
same time.

In this section, you will learn about four very popular undirected methods:

Principal components analysis (PCA)
Exploratory factor analysis (EFA)
Hierarchical clustering
K-mean clustering

Data Exploration and Predictive Modeling with R in SQL Server

[555]

Principal components and exploratory factor
analysis
The Principal Component Analysis (PCA) is a data-reduction technique. You use it as an
intermediate step in a more complex analytical session. Imagine that you need to use
hundreds of input variables, which can be correlated. With PCA, you convert a collection of
possibly correlated variables into a new collection of linearly uncorrelated variables called
principal components. The transformation is defined in such a way that the first principal
component has the largest possible dataset overall variance, and each succeeding
component in turn has the highest variance possible under the constraint that it is
orthogonal to (uncorrelated with) the preceding components. The principal components are
orthogonal because they are the eigenvectors of the covariance matrix, which is symmetric.
The first principal component is the eigenvector with the highest eigenvalue, the second
with the second highest, and so on. In short, an eigenvector is a direction of an eigenvalue
with explained variance for this point, for this direction. In further analysis, you keep only
few principal components instead of the plethora of original variables. Of course, you lose
some variability; nevertheless, the first few principal components should retain the majority
of overall dataset variability.

The following figure explains the process of defining the principal components graphically.
Initially, variables used in the analysis form a multidimensional space, or matrix, of
dimensionality m, if you use m variables. The following picture shows a two-dimensional
space. Values of the variables v1 and v2 define cases in this 2-D space. Variability of the
cases is spread across both source variables approximately equally. Finding principal
components means finding new m axes, where m is exactly equal to the number of the
source variables. However, these new axes are selected in such a way that most of the
variability of the cases is spread over a single new variable, or over a principal component,
like shown in the figure.

Data Exploration and Predictive Modeling with R in SQL Server

[556]

Figure 14-5 Principal components analysis

You use the PCA analysis, as mentioned, to reduce the number of variables in further
analysis. In addition, you can use PCA for anomaly detection, for finding cases that are
somehow different from the majority of cases. You use the residual variability not explained
by the couple of first principal components for this task.

Similar to PCA is the Exploratory Factor Analysis (EFA), which is used to uncover the
latent structure in the input variables collection. A smaller set of calculated variables called
factors is used to explain the relations between the input variables.

For a start, the following code creates a subset of the TM data frame by extracting the
numerical variables only:

TMPCAEFA <- TM[, c("TotalChildren", "NumberChildrenAtHome",
 "HouseOwnerFlag", "NumberCarsOwned",
 "BikeBuyer", "YearlyIncome", "Age")];

Data Exploration and Predictive Modeling with R in SQL Server

[557]

You can use the princomp() function from the base R installation to calculate the principal
components. However, the following code uses the principal() function from the psych
package, which returns results that are easier to understand. The following code installs the
package, loads it in memory, and calculates two principal components from the seven input
variables. Note the comment—the components are not rotated. You will learn about the
rotation very soon.

install.packages("psych");
library(psych);
PCA not rotated
pcaTM_unrotated <- principal(TMPCAEFA, nfactors = 2, rotate = "none");
pcaTM_unrotated;

Here are some partial results:

Standardized loadings (pattern matrix) based upon correlation matrix
 PC1 PC2 h2 u2 com
 TotalChildren 0.73 0.43 0.712 0.29 1.6
 NumberChildrenAtHome 0.74 -0.30 0.636 0.36 1.3
 HouseOwnerFlag 0.20 0.44 0.234 0.77 1.4
 NumberCarsOwned 0.70 -0.34 0.615 0.39 1.5
 BikeBuyer -0.23 -0.21 0.097 0.90 2.0
 YearlyIncome 0.67 -0.43 0.628 0.37 1.7
 Age 0.46 0.65 0.635 0.36 1.8
 PC1 PC2
 SS loadings 2.32 1.23
 Proportion Var 0.33 0.18
 Cumulative Var 0.33 0.51

In the pattern matrix part, you can see the two Principal Components (PC) loadings, in the
PC1 and PC2 columns. These loadings are correlations of the observed variables with the
two PCs. You can use the component loading to interpret the meaning of the PCs. The h2
column tells you the amount of the variance explained by the two components. In the SS
loadings row, you can see the eigenvalues of the first two PCs, and how much variability is
explained by each of them and cumulatively by both of them.

From the pattern matrix, you can see that all of the input variables highly correlate with
PC1. For most of them, the correlation is higher than with PC2. This is logical, because this is
how the components were calculated. However, it is hard to interpret the meaning of the
two components. Note that for pure machine learning you might not even be interested in
the interpretation; you might just continue with further analysis using the two principal
components only instead of the original variables.

Data Exploration and Predictive Modeling with R in SQL Server

[558]

You can improve the understanding of the PCs by rotating them. This means you are
rotating the axes of the multidimensional hyperspace. The rotation is done in such a way
that it maximizes associations of PCs with different subsets of input variables each. The
rotation can be orthogonal, where the rotated components are still uncorrelated, or oblique,
where correlation between PCs is allowed. In principal component analysis, you typically
use orthogonal rotation, because you probably want to use uncorrelated components in
further analysis. The following code recalculates the two PCAs using the varimax, the most
popular orthogonal rotation:

pcaTM_varimax <- principal(TMPCAEFA, nfactors = 2, rotate = "varimax");
pcaTM_varimax;

The abbreviated results are now slightly different, and definitely more interpretable:

Standardized loadings (pattern matrix) based upon correlation matrix
 PC1 PC2 h2 u2 com
 TotalChildren 0.38 0.76 0.712 0.29 1.5
 NumberChildrenAtHome 0.78 0.15 0.636 0.36 1.1
 HouseOwnerFlag -0.07 0.48 0.234 0.77 1.0
 NumberCarsOwned 0.78 0.09 0.615 0.39 1.0
 BikeBuyer -0.08 -0.30 0.097 0.90 1.1
 YearlyIncome 0.79 0.01 0.628 0.37 1.0
 Age 0.04 0.80 0.635 0.36 1.0
 PC1 PC2
 SS loadings 2.00 1.56
 Proportion Var 0.29 0.22
 Cumulative Var 0.29 0.51

Now you can easily see that the PC1 has high loadings, or highly correlates
with the number of children at home, the number of cars owned, yearly
income, and also with the total number of children. The second one
correlates more with total children and age, quite well with house
ownership flag as well, and negatively with the bike buyer flag.

Data Exploration and Predictive Modeling with R in SQL Server

[559]

When you do the EFA, you definitely want to understand the results. The factors are the
underlying combined variables that help you understand your data. This is similar to
adding computed variables, just in a more complex way, with many input variables. For
example, the obesity index could be interpreted as a very simple factor that includes height
and weight, and gives you much more information about a person's health than the base
two variables do. Therefore, you typically rotate the factors, and also allow correlations
between them. The following code extracts two factors from the same dataset as used for
the PCA, this time with the promax rotation, which is an oblique rotation:

efaTM_promax <- fa(TMPCAEFA, nfactors = 2, rotate = "promax");
efaTM_promax;

Here are the abbreviated results:

Standardized loadings (pattern matrix) based upon correlation matrix
 MR1 MR2 h2 u2 com
 TotalChildren 0.23 0.72 0.684 0.32 1.2
 NumberChildrenAtHome 0.77 0.04 0.618 0.38 1.0
 HouseOwnerFlag 0.03 0.19 0.040 0.96 1.1
 NumberCarsOwned 0.55 0.07 0.332 0.67 1.0
 BikeBuyer -0.05 -0.14 0.027 0.97 1.2
 YearlyIncome 0.60 -0.02 0.354 0.65 1.0
 Age -0.18 0.72 0.459 0.54 1.1
 MR1 MR2
 SS loadings 1.38 1.13
 Proportion Var 0.20 0.16
 Cumulative Var 0.20 0.36
 With factor correlations of
 MR1 MR2
 MR1 1.00 0.36
 MR2 0.36 1.00

Note that this time the results include the correlation between the two factors. In order to
interpret the results even more easily, you can use the fa.diagram() function, as the
following code shows:

fa.diagram(efaTM_promax, simple = FALSE,
 main = "EFA Promax");

Data Exploration and Predictive Modeling with R in SQL Server

[560]

The code produces the following diagram:

Figure 14-6 Exploratory factor analysis

You can now easily see which variables correlate with which of the two factors, and also the
correlation between the two factors.

Finding groups with clustering
Clustering is the process of grouping the data into classes or clusters so that objects within a
cluster have high similarity in comparison to one another, but are very dissimilar to objects
in other clusters. Dissimilarities are assessed based on the attribute values describing the
objects.

Data Exploration and Predictive Modeling with R in SQL Server

[561]

There are a large number of clustering algorithms. The major methods can be classified into
the following categories.

Partitioning methods: A partitioning method constructs K partitions of the data,
which satisfy the following requirements: (1) each group must contain at least
one object, and (2) each object must belong to exactly one group. Given the initial
K number of partitions to construct, the method creates initial partitions. It then
uses an iterative relocation technique that attempts to improve the partitioning by
moving objects from one group to another. There are various kinds of criteria for
judging the quality of the partitions. Some of the most popular include the k-
means algorithm, where each cluster is represented by the mean value of the
objects in the cluster, and the k-medoids algorithm, where each cluster is
represented by one of the objects located near the center of the cluster. You can
see an example of the k-means clustering in the previous chapter. The example
used the scalable rxKmeans() function from the RevoScaleR package. You can
use this function on very large datasets as well.
Hierarchical methods: A hierarchical method creates a hierarchical
decomposition of the given set of data objects. These methods are agglomerative
or divisive. The agglomerative (bottom-up) approach starts with each object
forming a separate group. It successively merges the objects or groups close to
one another, until all groups are merged into one. The divisive (top-down)
approach starts with all the objects in the same cluster. In each successive
iteration, a cluster is split up into smaller clusters, until eventually each object is
in one cluster or until a termination condition holds.
Density-based methods: Methods based on the distance between objects can find
only spherical-shaped clusters and encounter difficulty in discovering clusters of
arbitrary shapes. So other methods have been developed based on the notion of
density. The general idea is to continue growing the given cluster as long as the
density (number of objects or data points) in the “neighborhood” exceeds some
threshold; that is, for each data point within a given cluster, the neighborhood of
a given radius has to contain at least a minimum number of points.
Model-based methods: Model-based methods hypothesize a model for each of
the clusters and find the best fit of the data to the given model. A model-based
technique might locate clusters by constructing a density function that reflects the
spatial distribution of the data points. Unlike conventional clustering, which
primarily identifies groups of like objects, this conceptual clustering goes one
step further by also finding characteristic descriptions for each group, where each
group represents a concept or a class.

Data Exploration and Predictive Modeling with R in SQL Server

[562]

A hierarchical clustering model training typically starts by calculating a distance matrix–a
matrix with distances between data points in a multidimensional hyperspace, where each
input variable defines one dimension of that hyperspace. Distance measure can be a
geometrical distance or some other, more complex measure. A dendrogram is
a tree diagram frequently used to illustrate the arrangement of the clusters produced by
hierarchical clustering. Dendrograms are also often used in computational biology to
illustrate the clustering of genes or samples. The following figure shows the process of
building an agglomerative hierarchical clustering dendrogram from six cases in a two-
dimensional space (two input variables) in six steps:

Figure 14-7 Hierarchical clustering process

The following code creates a subset of the data with 50 randomly selected rows and
numerical columns only. You cannot show a dendrogram with thousands of cases.
Hierarchical clustering is suitable for small datasets only:

TM50 <- TM[sample(1:nrow(TM), 50, replace=FALSE),
 c("TotalChildren", "NumberChildrenAtHome",
 "HouseOwnerFlag", "NumberCarsOwned",
 "BikeBuyer", "YearlyIncome", "Age")];

Then you can calculate the distance matrix with the dist() function and create a
hierarchical clustering model with the hclust() function:

ds <- dist(TM50, method = "euclidean") ;
TMCL <- hclust(ds, method="ward.D2");

Data Exploration and Predictive Modeling with R in SQL Server

[563]

In a dendrogram, you can easily see how many clusters you should use. You make a cut
where the difference in the distance is the highest. You can plot the model to see the
dendrogram. The following code plots the model, and then uses the cutree() function to
define two clusters, and the rect.hclust() function to draw two rectangles around the
two clusters:

plot(TMCL, xlab = NULL, ylab = NULL);
groups <- cutree(TMCL, k = 2);
rect.hclust(TMCL, k = 2, border = "red");

You can see the final result in the following screenshot:

Figure 14-8 A dendrogram with two clusters

Data Exploration and Predictive Modeling with R in SQL Server

[564]

The dendrogram shows the growth of the clusters, and how the cases were associated
together. Please note that the decision to cut the population into two clusters is arbitrary: a
cut into three or five clusters would work as well. You would decide how many clusters to
use based on your business perspective, because the clusters must be meaningful for you.

Advanced analysis – directed methods
Some of the most important directed techniques include classification, estimation, and
forecasting. Classification means to examine a new case and assign it to a predefined
discrete class. For example, assigning keywords to articles and assigning customers to
known segments. Next is estimation, where you are trying to estimate the value of a
continuous variable of a new case. You can, for example, estimate the number of children or
the family income. Forecasting is somewhat similar to classification and estimation. The
main difference is that you can't check the forecasted value at the time of the forecast. Of
course, you can evaluate it if you just wait long enough. Examples include forecasting
which customers will leave in the future, which customers will order additional services,
and the sales amount in a specific region at a specific time in the future.

After you train the models, you use them to perform predictions. In most of the
classification and other directed approach projects, you build multiple models, using
different algorithms, different parameters of the algorithms, different independent
variables, additional calculated independent variables, and more. The question arises which
model is the best. You need to test the accuracy of the predictions of different models. To do
so, you simply split the original dataset into training and test sets. You use the training set
to train the model. A common practice is to use 70 percent of the data for the training set.
The remaining 30 percent of the data goes into the test set, which is used for predictions.
When you know the value of the predicted variable, you can measure the quality of the
predictions.

In R, there is a plethora of directed algorithms. This section is limited to three only: The
logistic regression from the base installation, decision trees from the base installation, and
conditional inference trees from the party package .

In this section, you will learn how to:

Prepare the training and the test dataset
Use the logistic regression algorithm
Create decision trees models
Evaluate predictive models

Data Exploration and Predictive Modeling with R in SQL Server

[565]

Predicting with logistic regression
A logistic regression model consists of input units and an output unit, which is the
predicted value. Input units are combined into a single transformed output value. This
calculation uses the unit's activation function. An activation function has two parts: The
first part is the combination function that merges all of the inputs into a single value
(weighted sum, for example); the second part is the transfer function, which transfers the
value of the combination function to the output value of the unit. The transfer function is
called sigmoid or logistic function and is S-shaped. Training a logistic regression model is
the process of setting the best weights on the inputs of each of the units to maximize the
quality of the predicted output. The formula for the logistic function is:

The following figure shows the logistic regression algorithm graphically.

Figure 14-9 The logistic regression algorithm

In the previous module, you have already seen the rxLogit() function from the
RevoScaleR package in action. Now you are going to learn how to use the glm() function
from the base installation. In addition, you will see how you can improve the quality of the
predictions by improving the data and selecting different algorithms.

Data Exploration and Predictive Modeling with R in SQL Server

[566]

Let's start the advanced analytics session with re-reading the target mail data. In addition,
the following code defines the ordered levels of the Education factor variables and
changes the BikeBuyer variable to a labeled factor.

TM = read.table("C:\\SQL2016DevGuide\\Chapter14_TM.csv",
 sep=",", header=TRUE,
 stringsAsFactors = TRUE);
TM$Education = factor(TM$Education, order=TRUE,
 levels=c("Partial High School",
 "High School","Partial College",
 "Bachelors", "Graduate Degree"));
TM$BikeBuyer <- factor(TM$BikeBuyer,
 levels = c(0,1),
 labels = c("No","Yes"));

Next, you need to prepare the training and the test sets. The split must be random.
However, by defining the seed, you can reproduce the same split later, meaning you can get
the same cases in the test and in the training set again.

set.seed(1234);
train <- sample(nrow(TM), 0.7 * nrow(TM));
TM.train <- TM[train,];
TM.test <- TM[-train,];

Now it's time to create the first logistic regression model. For the sake of simplicity, the first
model uses three input variables only.

TMLogR <- glm(BikeBuyer ~
 YearlyIncome + Age + NumberCarsOwned,
 data=TM.train, family=binomial());

You test the model by performing predictions on the test dataset. Logistic regression returns
the output as a continuous value between zero and 1. The following code recodes the
output value to a factor where a value greater than 0.5 is transformed to “Yes”, meaning this
is a predicted bike buyer, and otherwise to “No”, meaning this is not a predicted bike buyer.
The results are shown in a pivot table together with the actual values:

probLR <- predict(TMLogR, TM.test, type = "response");
predLR <- factor(probLR > 0.5,
 levels = c(FALSE, TRUE),
 labels = c("No","Yes"));
perfLR <- table(TM.test$BikeBuyer, predLR,
 dnn = c("Actual", "Predicted"));
perfLR;

Data Exploration and Predictive Modeling with R in SQL Server

[567]

The pivot table created is called the classification (or confusion) matrix. Here is the result:

 Predicted
 Actual No Yes
 No 1753 1084
 Yes 1105 1604

You can compare the predicted and the actual numbers to find the following results to
check true positives (the values that were predicted correctly as Yes), true negatives (the
values that were predicted correctly as No), false positives (the values that were predicted
incorrectly as Yes), and false negatives (the values that were predicted incorrectly as No).
The result is not over-exciting. So let's continue the session by creating and testing a new
logistic regression model, this time with all possible input variables, to see whether we can
get a better result:

TMLogR <- glm(BikeBuyer ~
 MaritalStatus + Gender +
 TotalChildren + NumberChildrenAtHome +
 Education + Occupation +
 HouseOwnerFlag + NumberCarsOwned +
 CommuteDistance + Region +
 YearlyIncome + Age,
 data=TM.train, family=binomial());
probLR <- predict(TMLogR, TM.test, type = "response");
predLR <- factor(probLR > 0.5,
 levels = c(FALSE, TRUE),
 labels = c("No","Yes"));
perfLR <- table(TM.test$BikeBuyer, predLR,
 dnn = c("Actual", "Predicted"));
perfLR;

This time, the results are slightly better, as you can see from the following classification
matrix. Still, the results are not very exciting:

 Predicted
 Actual No Yes
 No 1798 1039
 Yes 928 1781

In the target mail dataset, there are many variables that are integers, although they actually
are factors (nominal or ordinal variables). Let's try to help the algorithm by explicitly
defining them as factors. All of them are also ordered. Of course, after changing the original
data set, you need to recreate the training and test sets. The following code does all the
aforementioned tasks:

TM$TotalChildren = factor(TM$TotalChildren, order=TRUE);
TM$NumberChildrenAtHome = factor(TM$NumberChildrenAtHome, order=TRUE);

Data Exploration and Predictive Modeling with R in SQL Server

[568]

TM$NumberCarsOwned = factor(TM$NumberCarsOwned, order=TRUE);
TM$HouseOwnerFlag = factor(TM$HouseOwnerFlag, order=TRUE);
set.seed(1234);
train <- sample(nrow(TM), 0.7 * nrow(TM));
TM.train <- TM[train,];
TM.test <- TM[-train,];

Now let's rebuild and test the model with all possible independent variables:

TMLogR <- glm(BikeBuyer ~
 MaritalStatus + Gender +
 TotalChildren + NumberChildrenAtHome +
 Education + Occupation +
 HouseOwnerFlag + NumberCarsOwned +
 CommuteDistance + Region +
 YearlyIncome + Age,
 data=TM.train, family=binomial());
probLR <- predict(TMLogR, TM.test, type = "response");
predLR <- factor(probLR > 0.5,
 levels = c(FALSE, TRUE),
 labels = c("No","Yes"));
perfLR <- table(TM.test$BikeBuyer, predLR,
 dnn = c("Actual", "Predicted"));
perfLR;

The results have improved again:

 Predicted
 Actual No Yes
 No 1850 987
 Yes 841 1868

Still, there is room for improving the predictions. However, this time we are going to use a
different algorithm.

Classifying and predicting with decision trees
Decision trees are one of the most frequently used data mining algorithms. The algorithm
is not very complex, yet it gives very good results in many cases. In addition, you can easily
understand the result. You use decision trees for classification and prediction. Typical usage
scenarios include:

Predicting which customers will leave
Targeting the audience for mailings and promotional campaigns
Explaining reasons for a decision

Data Exploration and Predictive Modeling with R in SQL Server

[569]

Decision trees is a directed technique. Your target variable is the one that holds information
about a particular decision, divided into a few discrete and broad categories (yes / no; liked
/ partially liked / disliked, and so on). You are trying to explain this decision using other
gleaned information saved in other variables (demographic data, purchasing habits, and so
on). With limited statistical significance, you are going to predict the target variable for a
new case using its known values of the input variables based on the results of your trained
model.

You use recursive partitioning to build the tree. The data is split into partitions using a
certain value of one of the explaining variables. The partitions are then split again and
again. Initially the data is in one big box. The algorithm tries all possible breaks of both
input (explaining) variables for the initial split. The goal is to get purer partitions
considering the classes of the target variable. The tree continues to grow using the two new
partitions as separate starting points and splitting them more. You have to stop the process
somewhere. Otherwise, you could get a completely fitted tree that has only one case in each
class. The class would be, of course, absolutely pure and this would not make any sense;
you could not use the results for any meaningful prediction, because the prediction would
be 100% accurate, but for this case only. This phenomenon is called overfitting.

The following code uses the rpart() function from the base installation to build a decision
tree using all possible independent variables, with factors properly defined, as used in the
last logistic regression model:

TMDTree <- rpart(BikeBuyer ~ MaritalStatus + Gender +
 TotalChildren + NumberChildrenAtHome +
 Education + Occupation +
 HouseOwnerFlag + NumberCarsOwned +
 CommuteDistance + Region +
 YearlyIncome + Age,
 method="class", data=TM.train);

You can plot the tree to understand how the splits were made. The following code uses the
prp() function from the rpart.plot package to plot the tree:

install.packages("rpart.plot");
library(rpart.plot);
prp(TMDTree, type = 2, extra = 104, fallen.leaves = FALSE);

Data Exploration and Predictive Modeling with R in SQL Server

[570]

You can see the plot of the decision tree in the following figure. You can easily read the
rules from the tree, for example if the number of cars owned is two, three, or four, and
yearly income is not lower than 65,000, then you have approximately 67% of non-buyers (in
the following figure, just follow the path to the leftmost node):

Figure 14-10 Decision tree plot

So how does this model perform? The following code creates the classification matrix for
this model:

predDT <- predict(TMDTree, TM.test, type = "class");
perfDT <- table(TM.test$BikeBuyer, predDT,
 dnn = c("Actual", "Predicted"));
perfDT;

Data Exploration and Predictive Modeling with R in SQL Server

[571]

Here are the results:

 Predicted
 Actual No Yes
 No 2119 718
 Yes 1232 1477

The predictions are better in some cells and worse in other cells, comparing to the last
logistic regression model. The number of false negatives (predicted “No”, actual “Yes”) is
especially disappointing. So let's try it with another model. This time, the following code
uses the ctree() function from the party package:

install.packages("party", dependencies = TRUE);
library("party");
TMDT <- ctree(BikeBuyer ~ MaritalStatus + Gender +
 TotalChildren + NumberChildrenAtHome +
 Education + Occupation +
 HouseOwnerFlag + NumberCarsOwned +
 CommuteDistance + Region +
 YearlyIncome + Age,
 data=TM.train);
predDT <- predict(TMDT, TM.test, type = "response");
perfDT <- table(TM.test$BikeBuyer, predDT,
 dnn = c("Actual", "Predicted"));
perfDT;

The results are:

 Predicted
 Actual No Yes
 No 2190 647
 Yes 685 2024

Now you can finally see some big improvements. The version of the decision trees
algorithm used by the ctree() function is called the conditional inference trees. This
version uses a different method for deciding how to make the splits. The function accepts
many parameters. For example, the following code creates a new model, this time lowering
the condition for a split, thus forcing more splits:

TMDT <- ctree(BikeBuyer ~ MaritalStatus + Gender +
 TotalChildren + NumberChildrenAtHome +
 Education + Occupation +
 HouseOwnerFlag + NumberCarsOwned +
 CommuteDistance + Region +
 YearlyIncome + Age,
 data=TM.train,
 controls = ctree_control(mincriterion = 0.70));

Data Exploration and Predictive Modeling with R in SQL Server

[572]

predDT <- predict(TMDT, TM.test, type = "response");
perfDT <- table(TM.test$BikeBuyer, predDT,
 dnn = c("Actual", "Predicted"));
perfDT;

The classification matrix for this model is shown below:

 Predicted
 Actual No Yes
 No 2200 637
 Yes 603 2106

The predictions have slightly improved again. You could continue with the process until
you reach the desired quality of the predictions.

Advanced graphing
Now is the time when we head towards the final section of this chapter. This section is a bit
lighter. We will finish the chapter and the book with additional visualizations of the data.
This section discusses advanced graphing with the help of the ggplot2 package.

This section introduces the following:

Basic ggplot() function
Advanced plot types
Trellis charts

Introducing ggplot2
The ggplot2 package is a frequently used graphical package among the R community. The
package provides comprehensive and coherent grammar for graphical functions. The
grammar is also consistent, and you can create nice graphs with this package. The ggplot2
package enhances the built-in graphical capabilities and gives a layer-oriented approach to
plotting graphs.

The following command installs the package and loads it to memory:

install.packages("ggplot2");
library("ggplot2");

Data Exploration and Predictive Modeling with R in SQL Server

[573]

Here is the code for the first graph that uses the ggplot() function. The data used is the
TM data frame, as created and modified in the previous section, with all of the factors
properly defined:

ggplot (TM, aes(Region, fill=Education)) +
 geom_bar(position="stack");

The ggplot() function defines the dataset used (TM in this case) and initializes the plot.
Inside this function, the aes() (short for aesthetics) function defines the roles of the
variables for the graph. In this case, the graph shows the frequencies of the Region variable,
where the Region bars are filled with the Education variable, to show the number of cases
with each level of education in each region. The geom_bar() function defines the plot type,
in this case a bar plot. There are many other geom_xxx() functions for other plot types. The
following screenshot shows the results:

Figure 14-11 Education in regions

Data Exploration and Predictive Modeling with R in SQL Server

[574]

You should also try to create graphs with different a position parameter—you can use
position = "fill" to create stacked bars, where you can easily see the relative
distribution of education inside each region, and position = "dodge" to show the
distribution of education for each region side by side.

Remember the graph from the Linear Regression section, the fourth graph in this chapter, the
graph that shows the data points for the first 100 cases for the YearlyIncome and Age
variables, together with the linear regression and the lowess line? The following code
creates the same graph, this time with the ggplot() function, with multiple geom_xxx()
functions:

TMLM <- TM[1:100, c("YearlyIncome", "Age")];
ggplot(data = TMLM, aes(x=Age, y=YearlyIncome)) +
 geom_point() +
 geom_smooth(method = "lm", color = "red") +
 geom_smooth(color = "blue");

The result is shown in the following screenshot:

Figure 14 12 Linear and polynomial regression with ggplot

Data Exploration and Predictive Modeling with R in SQL Server

[575]

Advanced graphs with ggplot2
The third figure in this chapter is a box plot showing the YearlyIncome variable
distribution in classes of the Education variable. Again, it is possible to make this graph
even prettier with ggplot. Besides box plots, ggplot can add violin plots as well. A violin
plot shows the kernel density for a continuous variable. This is an effective way to see the
distribution of a continuous variable in classes of a discrete variable. The following code
produces a combination of a violin and a box plot in order to show the distribution of yearly
income in classes of education:

ggplot(TM, aes (x = Education, y = YearlyIncome)) +
 geom_violin(fill = "lightgreen") +
 geom_boxplot(fill = "orange",
 width = 0.2);

The graph produced is not just nice, it is really informative, as you can see in the following
screenshot:

Figure 14-13 A combination of a violin and a box plot

Data Exploration and Predictive Modeling with R in SQL Server

[576]

For the last graph in this book, I selected a trellis chart. A trellis chart is a multi-panel chart
of small, similar charts, which use the same axes and same scale. This way you can easily
compare them. Trellis graphs are called faceted graphs in the ggplot semantics. The
facet_grid() function defines the discrete variables to be used for splitting the chart in
small multiples over rows and columns. The following code creates an example of a trellis
chart:

ggplot(TM, aes(x = NumberCarsOwned, fill = Region)) +
 geom_bar(stat = "bin") +
 facet_grid(MaritalStatus ~ BikeBuyer) +
 theme(text = element_text(size=30));

You can see the results in the next figure. The values of the MaritalStatus variable are
used to split the chart in two rows, while the values of the BikeBuyer column are used to
split the chart in two columns. The chart has four small multiples, one for each combination
of MaritalStatus and BikeBuyer. Inside each of the four small charts you can see the
distribution of the NumberCarsOwned variable, and inside each bar you can see the
distribution of the Region variable for that specific number of cars. The theme() function is
used to increase the font size of all of the text in the chart:

Figure 14-14 A trellis chart

Data Exploration and Predictive Modeling with R in SQL Server

[577]

This is not the end of capabilities of the ggplot2 package. There are many more additional
graphs and visualizations in the package, and the visualization does not stop here. With
additional packages, you can plot maps, Google maps, heat maps, areas, circulars, word
clouds, networks, tree maps, funnels, and more.

Summary
For an SQL Server developer, this must have been quite an exhaustive chapter. Of course,
the whole chapter is not about the T-SQL language, it is about the R language, and about
statistics and advanced analytics. Of course, developers can also profit from the capabilities
that the new language has to offer. You learned how to measure the associations between
discrete, continuous, and the combination of discrete and continuous variables. You learned
about directed and undirected data mining and machine learning methods. Finally, you
saw how to produce quite advanced graphs in R.

Please be aware that if you want to become a real data scientist, you need to learn more
about statistics, data mining and machine learning algorithms, and practice programming
in R. Data science is a long learning process, just like programming and development.
Therefore, when you start using R, you should have your code double-checked by a senior
data scientist for all the tricks and tips that I haven't covered in this chapter. Nevertheless,
this and the previous chapter should give you enough knowledge to start your data science
learning journey, and even kick off a real-life data science project.

Index

A
ACID theory
 properties 424
activation function 565
advanced graphing 572
advanced graphs
 with ggplot2 575
advanced SELECT techniques 30, 32, 33, 34, 36
affinity grouping 554
aligned index 376
Allen's Boolean operators 236
Allen's interval algebra 236
Allen's operators 235
Always Encrypted (AE) feature
 about 11, 304, 306, 308, 310
 limitations 312
analysis of variance (ANOVA) 548
Analysis Services models 82
analytical queries 366
analytical queries, in SQL Server 367
anomaly detection 556
application time 234
application-time period tables 244
arguments, AT TIME ZONE expression
 inputdate 109
 timezone 109
arguments, DATEDIFF_BIG function
 datepart 107
 enddate 107
 startdate 107
arguments, HASHBYTES function
 algorithm 111
 input 111
arguments, JSON_MODIFY function
 expression 176
 new_value 176

 path 176
arguments, JSON_QUERY function
 expression 174
 path 174
arguments, JSON_VALUE function
 expression 171
 path 171
arguments, STRING_ESCAPE function
 text 98
 type 99
arguments, STRING_SPLIT function
 separator 96
 string 95
association rules 554
associations
 about 540
 finding, between continuous variables 545
asymmetric key encryption 293
AT TIME ZONE expression
 about 109
 arguments 109
atomicity 424
authentication 280
authorization 280
Autosave Open Tabs 74
Azure Machine Learning (Azure ML) 526
Azure Pricing calculator
 reference 222

B
backup encryption 296
balanced tree (B-tree) 373
basket analysis 554
batch mode operators, SQL Server 2012 393
batch mode operators, SQL Server 2014 394
batch mode processing
 about 393

[579]

 features 394
 limitations 394
batch processing 386
binary large object (BLOB) 182
bit array 371
bitemporal tables 235, 244
bitmap filtered hash join 369
bitmap filtering 369
bitmap filters 372
block predicates 319
body mass index (BMI) 509
bookmark 391
buckets 370
Business intelligence 19

C
Cardinality Estimator (CE) 133
certificate 293
checkpoint file pairs (CFPs) 447
chi-squared critical points table 542
classification 564
CLR integration 56
CLR objects
 creating 56, 58
clustered columnstore index (CCI)
 archive compression, using 410
 B-Tree indexes, adding 412
 compression 408
 constraints, adding 412
 query performance 408
 rows, deleting from 421, 423
 testing 409
 updating 417, 419, 420
clustered columnstore indexes (CCI) 366, 391
clustered index (CI) 391
clustered indexes
 benefits 373
clustering algorithms, methods
 density-based methods 561
 hierarchical methods 561
 model-based methods 561
 partitioning methods 561
clustering
 about 554, 560
 groups, finding with 561

cold data 406
column encryption key (CEK) 304
column master key (CMK) 304
column-level encryption 298
column
 altering, in SQL Server table 118, 119, 120
columnar storage
 about 366, 385
 and compression 386
 creating, process 389
 developing, in SQL Server 391
 features 394
 limitations 394
 rows, recreating from 388
columnstore indexes 15, 368
combination function 565
comma-separated values (CSV) 506
Common tables expressions (CTEs) 23, 36
Community Technology Preview (CTP) 20
Comprehensive R Archive Network (CRAN) 492
COMPRESS function 101, 102, 103
compression implementations, SQL Server
 page compression 380
 row compression 380
 Unicode compression 380
concurrency 444
conditional DROP statement 115, 116
conditional inference trees 564
configurable Query Store parameters
 Max Size (MB) 337
 MAX_PLANS_PER_QUERY 338
 Operation Mode 337
 Query Store Capture Mode 338
 Size Based Cleanup Mode 338
 State Query Threshold (Days) 338
 Statistics Collection Interval 337
 Statistics Collection Interval (Minutes) 337
consistency 424
Consumer Electronics (CE) 138
contained database user model 283
contingency coefficient 544
contingency tables 541
continuous integration/deployment (CI/CD) 85
continuous variables 548
correlated subquery 30

[580]

covariance 545
Cramer's V coefficient 544
CREATE OR ALTER statement 117
cross join 30
cross-tabulated format 541
Cumulative Updates (CU) 72
CURRENT_TRANSACTION_ID function 105

D
data abstraction 42
data compression 380
Data Control Language (DCL) 290
Data Definition Language (DDL) 37, 115, 282,

289

data definition language (DDL) statements 39
Data Definition Language (DDL) statements 38
data durability
 concerns 447
data encryption
 about 292
 trade-offs, for designing solution 294
data frame 505
data integrity 37
Data Manipulation Language (DML) 115
data manipulation
 in temporal tables 259, 261, 263
Data Migration Assistant v3.0
 download link 190
Data Migration Assistant
 about 190
 using 190, 191, 192, 194, 195
data mining 491
Data Modification Language (DML) 289
data modification language (DML) statements 40
Data Modification Language (DML) statements 39
Data Protection Application Programming Interface

(DPAPI) 295
data retention
 reference 268
data source name (DSN) 499
data structures, R
 data frame 505
 factors 504
 lists 505
 matrix 502

 variables 504
Data Warehouse (DW) 367
data warehouse concepts MSDN blog
 reference 367
data warehouse surrogate keys 374
data-reduction technique 555
data
 about 513
 local data 189
 manipulating 501
 remote data 189
 staging (eligible data) 189
database administrator (DBA) 41
database encryption key (DEK) 300
database level
 Stretch Database (Stretch DB), enabling at 200
Database Master Key (DMK) 295
Database Scoped Configuration 14
Database Stretch Unit (DSU) 221
database time 234
database
 Stretch Database (Stretch DB), disabling for 229
dataset 501
DATEDIFF_BIG function
 about 107, 109
 arguments 107
decision trees
 about 564, 568
 classifying with 569
 predicting with 569
declarative row-level security 313
DECOMPRESS function 103
degrees of freedom 521
delimited identifiers 24
dendrogram 562
density-based methods 561
derived table 30
descriptive statistics 56, 519
deterministic encryption 306
deviation 521
dictionary compression 380, 381, 383
dictionary encoding 390
dimensionality reduction 554
dimensions 276, 367
directed approach 554

[581]

directed methods 564
discrete variables
 about 548
 exploring 541, 542, 543
distance matrix 562
DROP IF EXIST
 about 115
 reference 116
durability 424
DW reports 377
Dynamic Data Masking (DDM)
 about 10
 exploring 324
 limitations 326
Dynamic Management Objects (DMOs)
 about 446, 450
 reference 450
Dynamic Management Views (DMVs) 467

E
Ecma International 138
ECMA-404 standard
 reference 138
efficient queries
 writing 384
eigenvalue 555
eigenvectors 555
encryptor 296
enforcement of rules 280
engine features, SQL Server
 columnstore indexes 15
 Database Scoped Configuration 14
 Live Query Statistics 13
 Query Store 12
 Stretch Database 13, 14
 temporal tables 15
enhanced scroll bar, T-SQL 76
enhancements, SQL Server Management Studio

(SSMS)
 Autosave Open Tabs 74
 enhanced scroll bar 76
 execution plan comparison 77
 Live Query Statistics (LQS) 79, 81
 Searchable options 75
equijoin 369

error handling
 about 46, 47
 need for 47, 48
estimation 564
Euclidean (flat) coordinate system 52
Exploratory Factor Analysis (EFA) 556
Extended Events 451
Extensible Key Management (EKM) 294
Extract Transform Load (ETL) 398

F
fact table 276, 367
factors 504, 556
false negatives 567
false positives 372, 567
file
 JSON data, importing from 165
filter predicates 318
FOR JSON AUTO 144
FOR JSON clause
 additional options 149
 data types, converting 153
 escaping characters 154
 JSON output, formatting as single object 151
 null values, including in JSON output 150
 root node, adding to JSON output 149
FOR JSON PATH 147
forecasting 564
foreign key 39
full temporal data 232
full-text indexes 185
functions, SQL Server
 AT TIME ZONE 109, 111
 COMPRESS 101, 102, 103
 CURRENT_TRANSACTION_ID 105
 DATEDIFF_BIG 107, 109
 DECOMPRESS 103
 HASHBYTES 111, 112, 113
 JSON functions 114
 SESSION_CONTEXT 106, 107
 STRING_ESCAPE 98, 99, 100, 101
 STRING_SPLIT 94, 98

[582]

G
Garbage Collector (GC) 429, 446
GetNums function
 reference 119
ggplot2 package 572
Global Positioning System (GPS) 52
GROUP BY clause 23
groups
 finding, with clustering 561

H
hardware security module (HSM) 304
hash algorithm 293
hash function 370
hash indexes 430
hash joins 369, 370
hash table 370
HASHBYTES function
 about 111
 arguments 111
 examples 112, 113
HAVING clause 23
heap 373
hierarchical methods 561
hot data 406
human time 234

I
IDM DB2 10 245
in-memory objects
 managing 450
In-Memory OLTP architecture
 about 425
 database recovery 449
 database startup 449
 index storage 426
 index structure 428
 natively compiled stored procedures 441
 performance comparisons 437
 row header 427
 row payload 428
 row storage 426
 row structure 426
In-Memory OLTP Engine

 improvements 466
In-Memory OLTP
 about 17
 assistance, in migrating to 452
index structure, In-Memory OLTP architecture
 hash indexes 430
 non-clustered index 428, 429
indexed views
 using 378, 379
indexes
 about 369
 on computed columns 183
inferential statistics 519
Information and Communication Technology (ICT)

138

inline table-valued function 45
inner join 25
input units 565
Integrated Development Environment (IDE) 85
Integration Services packages 83
inter-quartile range (IQR) 521
intercept 551
intermediate statistics 540
Internet Protocol Security (IPSec) 294
interval algebra 236
ISJSON function 114
isolation 424
iterators 369

J
JavaScript Object Notation (JSON)
 about 138
 need for 137
joins 369
JSON array 141
JSON data
 converting, in tabular format 154
 importing, from file 165
 modifying 176
 validating 168
JSON format
 SQL Server data, retrieving in 144
JSON formatter
 reference 146
JSON functions, SQL Server

[583]

 ISJSON 114
 JSON_MODIFY 114
 JSON_QUERY 114
 JSON_VALUE 114
 OPENJSON 114
JSON in SQL Server, prior to SQL Server 2016
 about 143
 JSON.SQL 143
 JSON4SQL 143
 Transact-SQL-based solution 143
JSON object 140
JSON property
 adding 176
 multiple changes 181
 removing 180
 value, updating for 178
JSON storage
 in SQL Server 2016 167
JSON text
 values, extracting from 170
JSON value
 complex 139
 primitive 139
JSON.SQL
 about 143
 reference 143
JSON4SQL
 about 143
 reference 143
JSON
 about 17
 versus XML 139
JSON_MODIFY function
 about 114
 arguments 176
JSON_QUERY function
 about 114, 174
 arguments 174
JSON_VALUE function 171
 about 114
 arguments 171

K
k-means algorithm 561
k-means clustering 533

k-medoids algorithm 561

L
large binary objects (BLOBs) 182
large data objects (LOBs) 456
large object (LOB) 460
limitations, Stretch Database (Stretch DB)
 column limitations 197
 table limitations 196
limitations, STRING_SPLIT function
 arguments 95
 single character separator 98
 single output column 98
 string data type 98
linear function 551
linear regression 540, 551
lists 505
Live Query Statistics (LQS) 13, 79, 80
local data 189
locations
 defining, with spatial data 52
logistic function 565
Logistic Regression algorithm 535
logistic regression
 predicting with 565
lower quartile 521
lowess line 553
LZ77 compression 383

M
machine learning 491
masked columns
 defining 324
masking functions
 Default function 324
 Email function 324
 Partial function 324
 Random function 324
matrix 502
MAX_GRANT_PERCENT hint 130, 131, 132,

133, 134
maximum key size
 for nonclustered indexes 123
mean 520
median 520

[584]

memory-optimized objects
 creating 432
memory-optimized tables
 creating 433
 data, manipulating 435
 querying 435
merge joins 369
message digest 293
Microsoft R Application Network (MRAN)
 reference 492
Microsoft R Client
 download link 527
MicrosoftML 528
MIN_GRANT_PERCENT hint 135
mode 497
model-based methods 561
MSDN Partitioned Tables and Indexes article
 reference 376
multi-statement table-valued functions 45
multi-version concurrency control (MVCC) 444
multiple linear regression 552

N
nested loops joins 369
NO_PERFORMANCE_SPOOL hint 126
non-equijoin 369
non-temporal tables
 converting, to temporal tables 252
nonclustered columnstore indexes (NCCI)
 about 366, 391, 398
 compression 398
 query performance 399
 testing 400, 402, 403
nonclustered index (NCI)
 about 407
 in analytical scenarios 377
 maximum key size 123
null hypothesis 541

O
object permissions 290
one-way ANOVA 549
OPENJSON function 114
 about 155
 data, processing from comma-separated list of

values 160
 difference, returning between two table rows 161
 with explicit schema 162
operational analytics 398, 406
Oracle 245
ORDER BY clause 23
orthogonal 555
outer join 26
output unit 565
overall resource consumption report 360
overfitting 569

P
page compression 380
partial scans 374
partition elimination 376
partition function 376
partition scheme 376
partition switching 376
partitioning columns 376
partitioning methods 561
Pearson's correlation coefficient 546
Pearson-chi squared formula 541
perfmon counters 451
performance and storage considerations, temporal

tables
 history data retention 268
 history table overhead 269
 history table physical implementation 269
period 244
period columns, as hidden attributes
 about 252
 existing temporal solution, migrating to system-

versioned tables 253, 255
 non-temporal tables, converting to temporal

tables 252
phi coefficient 544
polynomial regression model 552
PostgreSQL 245
Power BI Desktop 526
Power BI Service 526
predicate 25
predicate based row-level security 318
prefix compression 380
primary key 38

[585]

primitives JSON data types
 null 141
 number 141
 string 141
 true/false 141
Principal Component Analysis (PCA) 555, 556,

559

principals
 defining 281
private key 293
programmable objects
 used, for maintaining security 313, 316, 318
programming feature, SQL Server
 about 16
 In-Memory OLTP 17
 JSON 17
 Transact SQL enhancements 16
project templates, SQL Server projects
 Analysis Services models 82
 relational databases 82
 Reporting Services reports 82
properties, ACID theory
 atomicity 424
 consistency 424
 durability 424
 isolation 424

Q
Query and PlanStore 334
query hints
 about 125
 MAX_GRANT_PERCENT 130, 131, 132, 133,

134

 MIN_GRANT_PERCENT 135
 NO_PERFORMANCE_SPOOL 126
Query Interop 435
query store catalog views
 reference 335
Query Store reports, in SQL Server management

studio
 about 355
 overall resource consumption 360
 regressed queries 356, 358
 top resource consuming queries tab 359
query store stored procedure

 reference link 335
Query Store
 about 12, 333
 and migration 346
 architecture 333, 334
 cleaning 340
 configuring 335, 337
 default configuration 338
 disabling 340
 enabling 335
 enabling, with SQL Server Management Studio

(SSMS) 336
 enabling, with Transact-SQL 337
 need for 330, 331
 plan info, capturing 343
 query info, capturing 342
 recommended configuration 339
 regressed queries, fixing 350, 352, 353, 355
 regressed queries, identifying 348, 349
 runtime statistics, collecting 345
 stores 334
 use cases 361
 working 340, 341

R
R Console 86
R models
 deploying 535, 536
R Tools for Visual Studio (RTVS)
 about 85, 90
 reference 90
R, in SQL Server 19
R
 about 491, 493, 494
 basic visualizations 514, 515, 517, 518
 basics 495, 496, 497, 499, 500
 data management 507, 508, 511, 512
 data structures 502
 download link 492
randomized encryption 306
range 520
ranking functions 32
recursive partitioning 569
regressed queries 356, 358
relational database management system (RDBMS)

[586]

385

relational databases 82
relational model 51
release cycles 20
remote data 189
Reporting Services reports 82
retention period 274
RevoPemaR 528
RevoScaleR 527
RLS security predicates
 block predicates 319
 filter predicates 318
rotation 558
round-earth coordinate system 52
row compression 380
row header, In-Memory OLTP architecture
 Begin Ts 427
 End Ts 427
 IdxLinkCount 427
 StmtId 427
Row Level Security (RLS) 10, 313
row reconstruction table 387
row-rearranging algorithm 387
rows
 recreating, from columnar storage 387
RStudio IDE 85, 86
RStudio
 about 87
 reference 87
run-length encoding (RLE) compression 387
Runtime Statistics Store 334

S
samples 491
scalable packages, shipped with SQL Server R

Services
 MicrosoftML 528
 RevoPemaR 528
 RevoScaleR 527
scalable R engine
 Microsoft R Server 527
 R Services (In-Database) 527
scalable solutions
 creating 530, 531, 532, 533
scalar functions 45

scalars 501
schemas
 managing 285, 287, 289
Searchable options 75
secret key encryption 293
securables
 defining 281
Secure Sockets Layer / Transport Layer Security

(SSL/TLS) 294
security features, SQL Server
 Always Encrypted 11
 Dynamic Data Masking (DDM) 10
 Row Level Security (RLS) 9, 10
security
 maintaining, programmable objects used 313,

316, 318
segment 389
SELECT clause 22
SELECT statement
 about 22
 elements 23, 24, 25, 26, 27
self-contained subquery 30
semi temporal data 232
sequences 495
Service Master Key (SMK) 295
Service Packs (SP) 72
SESSION_CONTEXT function 106, 107
shapes
 defining, with spatial data 52
shredding XML 64
sigmoid 565
slope 551
slowly changing dimensions (SCD) 276
spatial data
 locations, defining with 52
 shapes, defining with 52
spatial reference identifier (SRID) 52
split strings
 reference 95
SQL Server 2012
 batch mode operators 393
SQL Server 2014
 batch mode operators 394
 batch mode processing, improvements 394
SQL Server 2016

[587]

 JSON storage 167
 limitations 274
 system-versioned tables 245
SQL Server Analysis Services (SSAS) 526
SQL Server data encryption options
 leveraging 296, 297, 299, 300, 301, 303
SQL Server Data Tools (SSDT)
 about 18, 68, 81, 90
 advantages 85
 reference, for blog 85
 working with 84
SQL Server data
 retrieving, in JSON format 144
SQL Server features, for implementing data

retention for history tables
 custom cleanup 268
 partitioning 268
 stretch databases 268
SQL Server Management Studio (SSMS)
 about 18, 67, 146, 201, 335, 483
 enhancements 74
 Query Store, enabling with 336
 used, for disabling Stretch Database (Stretch DB)

for tables 228
SQL Server R services
 discovering 527, 529
SQL Server security basics
 about 280
 object permissions 289
 principals, defining 281, 283, 284
 schemas, managing 285, 287, 289
 securables, defining 281, 283, 284
 statement permission 289, 290
SQL Server Stretch Database pricing
 about 221
 reference 221
SQL Server table
 column, altering in 118, 119, 120
SQL Server tools
 about 18
 installing 68, 70, 72, 73
 updating 68, 70, 72, 73
SQL Server
 about 8
 analytical queries 367

 compressing algorithms 390
 compression implementations 380
 development of columnar storage 391
 engine features 12
 enhanced functions and expressions 94
 programming feature 16
 security features 9
 XML support 62
staging (eligible data) 189
standard deviation 522
star schemas 275
statement permissions 290
statistics 491, 519
stored procedures
 benefits 42
 testing 44, 45
stores, Query Store
 Query and PlanStore 334
 Runtime Statistics Store 334
Stretch Database 13, 14
Stretch Database (Stretch DB) architecture 188
Stretch Database (Stretch DB) for table
 disabling, SSMS used 228
 disabling, Transact-SQL used 229
 enabling, Transact-SQL used 213, 214, 215
 enabling, wizard used 211
 filter predicate, with sliding window 216
Stretch Database (Stretch DB)
 about 188
 data migration, pausing 227
 data migration, resuming 227
 disabling 228
 disabling, for database 229
 enabling 200
 enabling, at database level 200
 enabling, for table 210
 enabling, Transact-SQL used 208
 enabling, wizard used 201, 203, 205, 207, 213
 limitations 196
 managing 223
 monitoring 224, 225, 226
 querying 216, 218
 remote data, querying 219
 remote data, updating 219
 troubleshooting 223

[588]

 use cases 199
Stretch Database Advisor 189
Stretch-enabled databases
 backing up 230
 restoring 230, 231
Stretch-enabled tables
 limitations 198
STRING_ESCAPE function
 about 98
 arguments 98, 99
 examples 100, 101
STRING_SPLIT function
 about 94, 98
 limitations 98
Student's t-test 548
supervised approach 554
symmetric key encryption 293
system time 234
system-versioned tables
 about 244
 in SQL Server 2016 245

T
T-SQL language 16
table partitioning
 leveraging 375, 376
Table-Valued Parameters (TVP) 94
table
 Stretch Database (Stretch DB), enabling for 210
tabular format
 JSON data, converting in 154
Tarin Transform Method 388
temporal constraints 238
temporal data
 about 232
 all temporal data, retrieving 267
 in SQL Server before 2016 238
 querying, in SQL Server 2016 263
 retrieving, at specific point of time 263, 265
 retrieving, from specific period 265, 267
temporal features
 in SQL 2011 244
temporal queries
 optimizing 240, 243
temporal tables

 about 15
 altering 256, 258
 creating 246, 248, 250
 data, manipulating in 259, 261, 263
 dropping 259
 in SQL Server 2016 245
 non-temporal tables, converting to 252
 performance and storage considerations 268
 reference 246
 types 234
 with memory-optimized tables 270, 271, 274
temporal
 issues 234
Teradata 245
test set 564
timestamped predicate 232
tools, for developing R code
 R Tools for Visual Studio (RTVS) 90
 RStudio IDE 86, 88, 90
top resource consuming queries tab 359
traditional login and user model 283
training set 564
Transact SQL enhancements 16
Transact-SQL
 Query Store, enabling with 337
 used, for disabling Stretch Database (Stretch DB)

for tables 229
 used, for enabling Stretch Database (Stretch DB)

208

 used, for enabling Stretch Database for table
213, 214, 215

transaction time 234
transactions
 using 50
transfer function 565
Transparent Data Encryption (TDE) 300
trellis chart 576
triggers
 using 41
true positives 567
TRUNCATE TABLE statement 122
tuple-mover process 392
type 497

U
undirected approach 554
Unicode compression 380
uniquifier 373
unsupervised approach 554
upper quartile 521
use cases, Query Store
 ad-hoc queries, identifying 363
 application and service releases 362
 cumulative updates 362
 failovers 362
 patching 362
 SQL Server version upgrades 361
 unfinished queries, identifying 363
use cases, Stretch Database (Stretch DB)
 archiving of historical data 199
 archiving of logging tables 199
 Azure SQL database, testing 199
user-defined aggregate (UDA) 59
user-defined data types (UDT) 153
user-defined functions (UDF) 95

V
validity time 234
value encoding 390

values
 extracting, from JSON text 170
 updating, for JSON property 178
variables 504
variance 521
vcd package 544
vector 497, 501

W
warm data 406
WHERE clause 22
window functions 31
wizard
 used, for enabling Stretch Database (Stretch DB)

201, 203, 205, 207
 used, for enabling Stretch Database (Stretch DB)

for table 211, 213
workspace 495

X
XML support
 in SQL Server 62
XML
 versus JSON 139
XQuery 64
XTP (eXtreme Transaction Processing) 450

	Cover
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to SQL Server 2016
	Security
	Row Level Security
	Dynamic Data Masking
	Always Encrypted

	Engine features
	Query Store
	Live Query Statistics
	Stretch Database
	Database scoped configuration
	Temporal Tables
	Columnstore indexes

	Programming
	Transact SQL enhancements
	JSON
	In-Memory OLTP
	SQL Server tools

	Business intelligence
	R in SQL Server

	Release cycles
	Summary

	Chapter 2: Review of SQL Server Features for Developers
	The mighty Transact-SQL SELECT
	Core Transact-SQL SELECT statement elements
	Advanced SELECT techniques

	DDL, DML, and programmable objects
	Data definition language statements
	Data modification language statements
	Using triggers
	Data abstraction - views, functions, and stored procedures

	Transactions and error handling
	Error handling
	Using transactions

	Beyond relational
	Defining locations and shapes with Spatial Data
	CLR integration
	XML support in SQL Server

	Summary

	Chapter 3: SQL Server Tools
	Installing and updating SQL Server tools
	New SSMS features and enhancements
	Autosave open tabs
	Searchable options
	Enhanced scroll bar
	Execution plan comparison
	Live Query Statistics

	SQL Server Data Tools
	Tools for developing R code
	RStudio IDE
	R Tools for Visual Studio

	Summary

	Chapter 4: Transact-SQL Enhancements
	New and enhanced functions and expressions
	STRING_SPLIT
	STRING_ESCAPE
	COMPRESS
	DECOMPRESS
	CURRENT_TRANSACTION_ID
	SESSION_CONTEXT
	DATEDIFF_BIG
	AT TIME ZONE
	HASHBYTES
	JSON functions

	Enhanced DML and DDL statements
	The conditional DROP statement (DROP IF EXISTS)
	CREATE OR ALTER
	Online Alter Column
	TRUNCATE TABLE
	Maximum key size for nonclustered indexes

	New query hints
	NO_PERFORMANCE_SPOOL
	MAX_GRANT_PERCENT
	MIN_GRANT_PERCENT

	Summary

	Chapter 5: JSON Support in SQL Server
	Why JSON?
	What is JSON?
	Why is it popular?
	JSON versus XML
	JSON objects
	JSON object
	JSON array
	Primitive JSON data types

	JSON in SQL Server prior to SQL Server 2016
	JSON4SQL
	JSON.SQL
	Transact-SQL-based solution

	Retrieving SQL Server data in the JSON format
	FOR JSON AUTO
	FOR JSON PATH
	FOR JSON additional options
	Adding a root node to the JSON output
	Including null values in the JSON output
	Formatting a JSON output as a single object

	Converting data types
	Escaping characters

	Converting JSON data in a tabular format
	OPENJSON with the default schema
	Processing data from a comma-separated list of values
	Returning the difference between two table rows

	OPENJSON with an explicit schema
	Import the JSON data from a file

	JSON storage in SQL Server 2016
	Validating JSON data
	Extracting values from a JSON text
	JSON_VALUE
	JSON_QUERY

	Modifying JSON data
	Adding a new JSON property
	Updating the value for a JSON property
	Removing a JSON property
	Multiple changes

	Performance considerations
	Indexes on computed columns
	Full-text indexes

	Summary

	Chapter 6: Stretch Database
	Stretch Database architecture
	Is this for you?
	Using Data Migration Assistant

	Limitations of using Stretch Database
	Limitations that prevent you from enabling the Stretch DB feature for a table
	Table limitations
	Column limitations

	Limitations for Stretch-enabled tables

	Use cases for Stretch Database
	Archiving of historical data
	Archiving of logging tables
	Testing Azure SQL database

	Enabling Stretch Database
	Enabling Stretch Database at the database level
	Enabling Stretch Database by using wizard
	Enabling Stretch Database by using Transact-SQL

	Enabling Stretch Database for a table
	Enabling Stretch DB for a table by using wizard
	Enabling Stretch Database for a table by using Transact-SQL
	Filter predicate with sliding window

	Querying Stretch Databases
	[Querying and updating remote data]
	Querying and updating remote data

	SQL Server Stretch Database pricing
	Stretch DB management and troubleshooting
	Monitoring Stretch Database
	Pause and resume data migration
	Disable Stretch Database
	Disable Stretch Database for tables by using SSMS
	Disable Stretch Database for tables using Transact-SQL
	Disable Stretch Database for a database

	Backup and restore Stretch-enabled databases

	Summary

	Chapter 7: Temporal Tables
	What is temporal data?
	Types of temporal table
	Allen's interval algebra
	Temporal constraints
	Temporal data in SQL Server before 2016
	Optimizing temporal queries
	Temporal features in SQL:2011

	System-versioned tables in SQL Server 2016
	How temporal tables work in SQL Server 2016
	Creating temporal tables
	Period columns as hidden attributes
	Converting non-temporal to temporal tables
	Migration existing temporal solution to system-versioned tables

	Altering temporal tables
	Dropping temporal tables
	Data manipulation in temporal tables
	Querying temporal data in SQL Server 2016
	Retrieving temporal data at a specific point in time
	Retrieving temporal data from a specific period
	Retrieving all temporal data

	Performance and storage considerations with temporal tables
	History data retention

	History table physical implementation
	History table overhead
	Temporal tables with memory-optimized tables

	What is missing in SQL Server 2016?
	SQL Server 2016 temporal tables and data warehouses

	Summary

	Chapter 8: Tightening the Security
	SQL Server security basics
	Defining principals and securables
	Managing schemas
	Object and statement permissions

	Encrypting the data
	Leveraging SQL Server data encryption options
	Always Encrypted

	Row-Level security
	Using programmable objects to maintain security
	Predicate-based Row-Level Security

	Exploring dynamic data masking
	Defining masked columns
	Dynamic data masking limitations

	Summary

	Chapter 9: Query Store
	Why Query Store?
	What is Query Store?
	Query Store architecture
	Enabling and configuring Query Store
	Enabling Query Store with SSMS
	Enabling Query Store with Transact-SQL
	Configuring Query Store
	Query Store default configuration
	Query Store Recommended Configuration

	Disabling and cleaning Query Store
	Query Store in action
	Capturing Query info
	Capturing plan info
	Collecting runtime statistics
	Query Store and migration
	Query Store – identifying regressed queries
	Query Store – fixing regressed queries

	Query Store reports in SQL Server management studio
	Regressed queries
	Top resource consuming queries tab
	Overall resource consumption

	Query Store use cases
	SQL Server version upgrades and patching
	Application and service releases, patching, failovers, and cumulative updates
	Identifying ad hoc queries
	Identifying unfinished queries

	Summary

	Chapter 10: Columnstore Indexes
	Analytical queries in SQL Server
	Joins and indexes
	Benefits of clustered indexes
	Leveraging table partitioning
	Nonclustered indexes in analytical scenarios
	Using indexed views

	Data compression and query techniques
	Writing efficient queries

	Columnar storage and batch processing
	Columnar storage and compression
	Recreating rows from columnar storage
	Columnar storage creation process
	Development of columnar storage in SQL Server

	Batch processing

	Nonclustered columnstore indexes
	Compression and query performance
	Testing the nonclustered columnstore Index

	Operational analytics

	Clustered columnstore indexes
	Compression and query performance
	Testing the clustered columnstore Index
	Using archive compression

	Adding B-Tree indexes and constraints
	Updating a clustered columnstore index
	Deleting from a clustered columnstore index

	Summary

	Chapter 11: Introducing SQL Server In-Memory OLTP
	In-Memory OLTP architecture
	Row and index storage
	Row structure
	Row header

	Row payload
	Index structure
	Non-clustered Index
	Hash indexes

	Creating memory-optimized tables and indexes
	Laying the foundation
	Creating a table

	Querying and data manipulation
	Performance comparisons
	Natively compiled stored procedures
	Looking behind the curtain of concurrency

	Data durability concerns
	Database startup and recovery
	Management of in-memory objects
	Dynamic management objects

	Extended Events
	Perfmon counters
	Assistance in migrating to In-memory OLTP

	Summary

	Chapter 12: In-Memory OLTP Improvements in SQL Server 2016
	Ch-Ch-Changes
	Feature improvements
	Collations
	Data types and types of data
	What's new with indexes?
	Unconstrained integrity
	Not all operators are created equal
	Size is everything!
	Improvements in the In-Memory OLTP Engine
	Down the index rabbit-hole
	Large object support
	Storage differences of on-row and off-row data

	Cross-feature support
	Security
	Programmability
	High availability
	Tools and wizards

	Summary

	Chapter 13: Supporting R in SQL Server
	Introducing R
	Starting with R
	R language Basics

	Manipulating data
	Introducing data structures in R
	Getting sorted with data management

	Understanding the data
	Basic visualizations
	Introductory statistics

	SQL Server R services
	Discovering SQL Server R services
	Creating scalable solutions
	Deploying R models

	Summary

	Chapter 14: Data Exploration and Predictive Modeling with R in SQL Server
	Intermediate statistics – associations
	Exploring discrete variables
	Finding associations between continuous variables
	Continuous and discrete variables
	Getting deeper into linear regression

	Advanced analysis – undirected methods
	Principal components and exploratory factor analysis
	Finding groups with clustering

	Advanced analysis – directed methods
	Predicting with logistic regression
	Classifying and predicting with decision trees

	Advanced graphing
	Introducing ggplot2
	Advanced graphs with ggplot2

	Summary

	Index

