

MySQL 8 Administrator's Guide

Chintan Mehta
Ankit Bhavsar
Hetal Oza
Subhash Shah

BIRMINGHAM - MUMBAI

MySQL 8 Administrator's Guide
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Aman Singh
Content Development Editor: Aaryaman singh
Technical Editor: Dharmendra Yadav
Copy Editors: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tania Dutta
Production Coordinator: Aparna Bhagat

First published: February 2018

Production reference: 1140218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-519-9

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the authors
Chintan Mehta is a cofounder of KNOWARTH Technologies (www.knowarth.com) and
heads cloud/RIMS/DevOps. He has rich, progressive experience in server administration of
Linux, AWS cloud, DevOps, RIMS, and open source technologies. He is an AWS Certified
Solutions Architect.

He has authored MySQL 8 for Big Data and Hadoop Backup and Recovery Solutions, and has
reviewed Liferay Portal Performance Best Practices and Building Serverless Web Applications.

I would like to thank my coauthors. I would especially like to thank my wonderful wife,
Mittal, and my sweet son, Devam, for putting up with the long days, nights, and weekends
when I was camping in front of my laptop. Last but not least, I want to thank my mom,
dad, friends, family, and colleagues for supporting me throughout.

Ankit Bhavsar is a senior consultant leading a team working on ERP solutions at
KNOWARTH Technologies. He received an MCA from North Gujarat university. He has
had dynamic roles in the development and maintenance of ERP solutions and astrology
portals Content Management that including OOP, technical architecture analysis, design,
development as well as database design, development and enhancement process, data and
object modeling, in order to provide technical and business solutions to clients.

First, I would like to thank the coauthors, reviewers, the wonderful team at PacktPub, and
Aaryaman for this effort. I would especially like to thank my wonderful wife, Avani, for
putting up with the long days, nights, and weekends. Last, but not least, I want to thank
my mom, dad, friends, family, and colleagues for supporting me throughout the writing of
this book.

Hetal Oza an MCA from a reputable institute of India, is working as a lead consultant at
KNOWARTH Technologies. She has rich experience in Java-based systems with various
databases. Her 10 years of experience covers all stages of software development. She has
worked on development of web-based software solutions on various platforms. She has
good exposure to integration projects with web-service-based and thread-based
architecture. Her knowledge is not bound to any single field because she has worked on
wide range of technologies and tools.

It gave me immense pleasure to be an author of this book. First, I would like to thank my
husband, Suhag, and my sweet son, Om, for putting up with me during the long days,
nights, and weekends when I was camping in front of my laptop. Second, I would like to
thank Chintan Mehta, who showed trust in me and provided this opportunity, and Krupal
Khatri for his support. I would also like to thank the team at PacktPub for their great help.

Subhash Shah works as a principal consultant at KNOWARTH Technologies. He holds a
degree in information technology from a HNGU. He is experienced in developing web-
based solutions using various software platforms. He is a strong advocate of open source
software development and its use by businesses to reduce risks and costs. His interests
include designing sustainable software solutions. His technical skills include requirement
analysis, architecture design, project delivery, application setup, and execution processes.
He is an admirer of quality code and test-driven development.

I would like to thank my family for supporting me throughout the course of this book. It
would have been difficult without them being a source of inspiration. Thanks to Packt
Publishing, especially Aaryaman, for their smooth coordination and support. Thanks to
fellow authors for being around all the time, for their dedication and commitment. Last but
not least, thanks to my colleagues for all the support they have provided.

About the reviewers
Sahaj Pathak has been involved with backend technologies such as Java, Spring, Hibernate,
and databases (MySQL, PostgreSQL, Oracle, and others). His experience also spans
frontend technologies (HTML4/5, jQuery, AngularJS, Node.Js, JavaScript, and CSS2/3). He
has speedy versatility with any technology and a sharp desire for consistent change.

He works at KNOWARTH Technologies as a software consultant where he deals with big
enterprise-product-based projects.

Ravi Shah is a highly versatile IT professional with more than 5 years of experience of
handling high-end IT projects, with competencies in conceptualizing and supporting critical
IT frameworks and applications. He is a team player, a software engineer with a can-do
attitude, and possesses phenomenal time management skills, and strong user focus. He has
developed several web applications and mainly specializes in healthcare and insurance.

He is skilled in all phases of software development, an expert in translating business
requirements into technical solutions, and devoted to quality, usability, security and
scalability. His expertise mainly includes Liferay, Java, Spring, Struts, Hibernate, MySQL,
Lucene, Angular, and Agile.

He is a good trainer delivering training on J2EE and the Liferay portal in his organization.

I would like to take this opportunity to express heartfelt thanks to KNOWARTH
Technologies and Packt Publishing for giving me this opportunity. Also, I am very
thankful to my parents for always supporting me in all possible ways.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents
Preface 1

Chapter 1: An Introduction to MYSQL 8 6

Overview of MySQL 7
MySQL as a relational database management system 7
License requirements of MySQL8 8
Reliability and scalability 8
Platform compatibility 8
Releases 8

Core features in MySQL 9
Structured database 9
Database storage engines and types 10

Overview of InnoDB 12
Overview of MyISAM 13
Overview of memory 13
Overview of archive 13
Overview of BLACKHOLE as a storage engine 14
Overview of CSV 14
Overview of merge 14
Overview of federated 15
Overview of the NDB cluster 15

Improved features in MySQL 8 16
Transactional data dictionary 18
Roles 18
InnoDB auto increment 19
Invisible indexes 19
Improving descending indexes 20
The SET PERSIST variant 20
Expanded GIS support 20
Default character set 20
Extended bit-wise operations 21
InnoDB Memcached 21
NOWAIT and SKIP LOCKED 21
JSON 22
Cloud 22
Resource management 22

Table of Contents

[ii]

Benefits of using MySQL 8 23
Security 23
Scalability 23
An open source relational database management system 24
High performance 24
High availability 24
Cross-platform capabilities 24

Limitations of MySQL 8 25
Number of tables or databases 25
Table size 25
Joins 26
Windows platform 26
Table column count 26
Row size 26
InnoDB storage engine 27

Limitations of InnoDB storage engine 27
Restrictions 27

Data dictionary 28
Limitations of group replication in MySQL8 29
Limitations of partitioning 29

Constructs prohibition 29
Operators 30
Tables 30

Use cases of MySQL 30
Social media 32
Government 32
Media and entertainment 32
Fraud detection 33
Business mapping 33
E-commerce 33

Summary 34

Chapter 2: Installing and Upgrading MySQL 8 35

The MySQL 8 installation process 35
General installation guide 36

Downloading MySQL 8 37
Verifying the package integrity 37

Using MD5 checksums 37
Using cryptographic signatures 38

Installing MySQL 8 on Microsoft Windows 39
Windows-specific considerations 40

Table of Contents

[iii]

MySQL 8 installation layout 40
Choosing the right installation package 41
The MySQL 8 installer 42

Initial setup information 43
Installation workflow 45
InnoDB cluster sandbox test setup 45
Server configuration 46
MySQL installer product catalog and dashboard 48
MySQL installer console 49

MySQL 8 installation using a ZIP file 49
Installing MySQL 8 on Linux 53

Installation using the Yum repository 53
Installation using the RPM package 55
Installation using the Debian package 56

Post-installation setup for MySQL 8 57
Data directory initialization 57
Securing the initial MySQL account 58
Starting and troubleshooting MySQL 8 services 59

Executing commands to test the server 61
Upgrading MySQL 8 61

Upgrading methods 61
In-place upgrade of MySQL 61
Logical upgrade for MySQL 8 63

Upgrading prerequisites for MySQL 5.7 63
MySQL 8 downgrading 64

Downgrading methods 65
Logical downgrade 65

Manual changes required before downgrading 66
Summary 68

Chapter 3: MySQL 8 – Using Programs and Utilities 69

Overview of MySQL 8 programs 70
MySQL programs in brief 71

Startup programs 71
Installation/upgradation programs 71
Client programs 72
Administrative and utilities programs 73
Environment variables 73
MySQL GUI tool 74

MySQL 8 command-line programs 74
Executing programs from the command line 74

Executing MySQL programs 74
Connecting to the MySQL server 75
Specifying options for programs 76

Table of Contents

[iv]

Options on the command line 77
Modifying program options 78
Modifying options with files 78

group 79
opt_name 80
opt_name=value 80
Include directives 80

Command-line options affecting option file handling 80
Setting program variables with options 80
Setting environment variables 81

Server and server-startup programs 82
mysqld - the MySQL server program 82

Options 82
mysqld_safe - MySQL server startup script 83
mysql.server - MySQL Server startup script 85
mysqld_multi - managing multiple MySQL servers 86

Installation programs 86
comp_err - compiling the MySQL error msg file 86
mysql_secure_installation - improving MySQL installation security 87
mysql_ssl_rsa_setup - creating SSL/RSA files 87
mysql_tzinfo_to_sql - loading the timezone tables 88
mysql_upgrade - checking and upgrading MySQL tables 89

MySQL 8 client programs 89
mysql - the command-line tool 90

mysql options 90
mysql commands 94

help [arg], \h [arg],\? [arg], ? [arg] 94
charset charset_name, \C charset_name 94
clear, \c 94
connect [db_name host_name], \r [db_name host_name] 95
edit, \e 95
exit, \q 95
prompt [str], \R [str] 95
quit, \q 95
status, \s 95
use db_name, \u db_name 95

mysql logging 95
mysql server-side help 96
Executing sql from text files 96
mysqladmin - client for administering a MySQL server 97
mysqlcheck - a table maintenance program 97
mysqldump - a database backup program 98

Performance and scalability 98
mysqlimport - a data import program 99
mysqlpump - a database backup program 99
mysqlsh - the MySQL Shell 100
mysqlshow - showing database, table, and column information 101

Table of Contents

[v]

mysqlslap - load emulation client 103
MySQL 8 administrative programs 104

ibdsdi - InnoDB tablespace SDI extraction utility 104
innochecksum - offline InnoDB file checksum utility 105
myisam_ftdump - displaying full-text index utility 105
myisamchk - MyISAM table-maintenance utility 106
myisamlog - displaying MyISAM log file content 106
myisampack - generating compressed, read-only MyISAM tables 107
mysql_config_editor - MySQL configuration utility 108
mysqlbinlog - utility for processing binary log files 108
mysqldumpslow - summarizing slow query log files. 109

MySQL 8 environment variables 109
MySQL GUI tools 111

MySQL Workbench 111
MySQL Notifier 112

MySQL Notifier usage 112
Summary 112

Chapter 4: MySQL 8 Data Types 113

Overview of MySQL 8 data types 114
Numeric data types 114

Integer types 115
Fixed point types 116
Floating point types 117

Problems with floating point values 120
Bit value type 121

Bit value literals 122
Practical uses of BIT 123

Type attributes 124
Overflow handling 125

Date and time data types 125
DATE, DATETIME, and TIMESTAMP types 127

MySQL DATETIME functions 130
TIME type 131

Time functions 133
YEAR type 133
Migrating YEAR(2) to YEAR(4) 134

String data types 135
CHAR and VARCHAR data types 136
BINARY and VARBINARY data types 138
BLOB and TEXT data types 139

Table of Contents

[vi]

ENUM data type 140
SET data type 142

JSON data type 143
Partial updates of JSON values 145

Storage requirements for data types 145
Choosing the right data type for column 147
Summary 148

Chapter 5: MySQL 8 Database Management 149

MySQL 8 server administration 150
Server options and different types of variables 150
Server SQL modes 151

Setting the SQL mode 151
The available SQL modes 151
Combination SQL modes 154
Strict SQL mode 155
The IGNORE keyword 156

IPv6 support 157
Server side help 157
The server shutdown process 158

Data directory 159
The system database 159

Data dictionary tables 159
Grant system tables 160
Object information system tables 160
Log system tables 160
The server-side help system tables 160
Time zone system tables 161
Replication system tables 161
Optimizer system tables 161
Other miscellaneous system tables 162

Running multiple instances on a single machine 162
Setting up multiple data directories 163
Running multiple MySQL instances on Windows 163

Components and plugin management 165
MySQL 8 server plugins 165

Installing the plugins 166
Activate plugin 166
Uninstall plugin 167
Getting information about the installed plugins 167

Roles and permissions 167

Table of Contents

[vii]

Caching techniques 168
Globalization 168

Character sets 169
Character set support 169
Adding the character set 171
Configuring the character sets 173

Language selection 173
Time zone settings for MySQL8 174
Locale support 175

MySQL 8 server logs 176
The error log 177

Component configuration 178
Default error log destination configuration 179

Default error log destination on Windows 179
Default error log destination on Unix and Unix-Like systems 180

The general query log 180
The binary log 181
The slow query log 183
The DDL log 184
Server log maintenance 184

Summary 185

Chapter 6: MySQL 8 Storage Engines 186

Overview of storage engines 186
MySQL storage engine architecture 187
Several types of storage engine 188
Overview of the InnoDB storage engine 188
Custom storage engine 188

Several types of storage engines 189
Pluggable storage engine architecture 190
The common database server layer 191
Setting the storage engine 192
The MyISAM storage engine 192
The MEMORY storage engine 194
The CSV storage engine 196
The ARCHIVE storage engine 197
The BLACKHOLE storage engine 198
The MERGE storage engine 199
The FEDERATED storage engine 199
The EXAMPLE storage engine 200

The InnoDB storage engine 201

Table of Contents

[viii]

ACID model 202
Multiversioning 202
Architecture 203
Locking and transaction model 204
Configuration 205
Tablespaces 206
Tables and indexes 206
INFORMATION_SCHEMA tables 207
Memcached plugin 208

Creating a custom storage engine 209
Creating storage engine source files 210
Adding engine-specific variables and parameters 210
Creating the handlerton 211
Handling handler installation 212
Defining filename extensions 213
Creating tables 213
Opening a table 215
Implementing basic table scanning 215
Closing a table 216
Reference for advanced custom storage engine 217

Summary 217

Chapter 7: Indexing in MySQL 8 218

An overview on indexing 219
Uses of indexes in MySQL 8 220
SQL commands related to indexes 221

Creating an INDEX command 221
Spatial index characteristics 222
Non-spatial index characteristics 222

Drop index command 225
SPATIAL index creation and optimization 226
InnoDB and MyISAM index statistics collection 227

Column-level indexing 228
Column indexes 228

Index prefixes 228
FULLTEXT indexes 229
Spatial Indexes 229
Indexes in the MEMORY storage engine 230

Multiple-column indexes 230
B-Tree index 231
Hash index 233

Table of Contents

[ix]

Index extension 234
Using an optimizer for indexes 236
Invisible and descending indexes 237

Invisible index 238
Descending index 240

Summary 242

Chapter 8: Replication in MySQL 8 243

Overview of replication 244
What is MySQL replication? 244
Advantages of MySQL replication 246

Configuring replication 248
Binary log file based replication 248

Replication master configuration 249
REPLICATION SLAVE configuration 252
Adding slaves to replication 253

Global transaction identifiers based replication 254
MySQL multi-source replication 258
Replication administration tasks 259

Implementing replication 262
Replication formats 262

Statement-based versus row-based replication 263
Replication implementation details 264
Replication channels 266
Replication relay and status logs 268
Evaluating replication filtering rules 269

Group replication 270
Primary-secondary replication versus group replication 271
Group replication configuration 272
Group replication use cases 275

Replication solutions 276
Summary 277

Chapter 9: Partitioning in MySQL 8 278

Overview of partitioning 279
Types of partitioning 280
Partitioning management 281
Partition selection and pruning 281
Restrictions and limitations in partitioning 281

Types of partitioning 282
RANGE partitioning 283

Table of Contents

[x]

LIST partitioning 285
COLUMNS partitioning 288

RANGE COLUMN partitioning 288
LIST COLUMN partitioning 290

HASH partitioning 291
LINEAR HASH partitioning 291

KEY partitioning 292
Subpartitioning 293
Handling NULL in partitioning 293

Partition management 294
RANGE and LIST partition management 294
HASH and KEY partition management 296
Partition maintenance 296
Obtain partition information 298

Partition selection and pruning 298
Partition pruning 299
Partition selection 302

Restrictions and limitations in partitioning 304
Partitioning keys, primary keys, and unique keys 305
Partitioning limitations relating to storage engines 307
Partitioning limitations relating to functions 308

Summary 309

Chapter 10: MySQL 8 – Scalability and High Availability 310

Overview of scalability and high availability in MySQL 8 310
MySQL replication 311
MySQL cluster 312
Oracle MySQL cloud service 312
MySQL with the Solaris cluster 312

Scaling MySQL 8 313
Scaling using cluster 314

Client node 315
Application node 315
Management node 315
Data node 316

Data storage and management of disk-based and in-memory data 316
Automatic and user-defined partitioning of tables or sharding of tables 316
Synchronous data replication between data nodes 316
Data retrieval and transactions 317
Automatic fail over 317
Automatic re-synchronization for self-healing after failure 317

Scaling using memcached in MySQL 8 317

Table of Contents

[xi]

NoSQL APIs 319
Scaling using replication 319

Single server dependancy 320
Performance 320
Backup and recovery 321
Load distribution 321
Asynchronous data replication 321
Geographical data distribution 321
GTID replication 321
ZFS replication 323

Challenges in scaling MySQL 8 323
Business type and flexibility 323
Understand server workload 324
Read-write operation limit 324
Maintenance 325
Master server failure 326
Synchronization 326
Database security 326
Cross node transaction 326
Growing team for development 327
Manage change request 327
Scale-up and scale-out 327

Achieving high availability 328
Purpose of high availability 328

Data availability 329
Security of data 329
Synchronization of data 329
Backup of the data 330
Competitive market 330
Performance 330
Updates in the system 330
Choosing the solution 330

Advantages of high availability 331
Summary 332

Chapter 11: MySQL 8 – Security 333

Overview of security for MySQL 8 333
Common security issues 334

General guidelines 334
 Guidelines for a secure password 335

Guidelines for end users 335
Guidelines for administrators 336
Password and logging 337

Table of Contents

[xii]

Secure MYSQL 8 against attackers 337
Security options and variables provided by MySQL 8 338
Security guidelines for client programming 338

Access control in MySQL 8 339
Privileges provided by MySQL 8 340
Grant tables 341
Verification of access control stages 342

Stage 1 - Connection verification 342
Stage 2 - Request verification 342

Account management in MySQL 8 343
Add and remove user accounts 343
Security using roles 344

SET ROLE 345
CREATE ROLE 345
DROP ROLE 345
GRANT 346
REVOKE 346
SET DEFAULT ROLE 347
SHOW GRANTS 347

Password management 348
Encryption in MySQL 8 349

Configuring MySQL 8 to use encrypted connections 349
Server-side configuration for encrypted connections 349
Client-side configuration for encrypted connections 350
Command options for encrypted connections 351

Connect with MySQL 8 remotely from Windows with SSH 351
Security plugins 352

Authentication plugins 352
SHA-2 pluggable authentication 353
Client-side cleartext pluggable authentication 353
No-login pluggable authentication 353
Socket peer-credential pluggable authentication 354
Test pluggable authentication 355

The connection-control plugins 355
CONNECTION_CONTROL 355
Plugin installation 355
Variables related to CONNECTION-CONTROL 356

The password validation plugin 356
Install password validation plugin 357
Variables and options related to the password validation plugin 357

MySQL 8 keyring 359
Install keyring plugin 359
System variables related to keyring plugin 359

Table of Contents

[xiii]

Summary 360

Chapter 12: Optimizing MySQL 8 361

Overview of MySQL 8 optimization 362
Optimizing the database 362
Optimizing the hardware 364

Optimizing MySQL 8 servers and clients 364
Optimizing disk I/O 365

Using NFS with MySQL 366
Optimizing the use of memory 366
Optimizing use of the network 370
Optimizing locking operations 372
Performance benchmarking 375
Examining thread information 375

Optimizing database structure 379
Optimizing data size 379

Table columns 380
Row format 380
Indexes 381
Joins 381
Normalization 382

Optimizing MySQL data types 382
Optimizing for many tables 383
Use of an internal temporary table in MySQL 385

Optimizing queries 386
Optimizing SQL statements 386
Optimizing indexes 388
Query execution plan 389

Optimizing tables 391
Optimization for InnoDB tables 391
Optimization for MyISAM tables 392
Optimization for MEMORY tables 392

Leveraging buffering and caching 393
InnoDB buffer pool optimization 393
MyISAM key cache 394

Summary 395

Chapter 13: Extending MySQL 8 396

An overview of extending MySQL 8 397
MySQL 8 internals 397
MySQL 8 plugin API 398

Table of Contents

[xiv]

MySQL 8 services for components and plugins 398
Adding new functions to MySQL 8 399
Debugging and porting MySQL 8 399

Extending plugins and using services to call them 399
Writing plugins 400
Component and plugin services 401
The locking service 402
The keyring service 403

Adding new functions 405
Features of a user-defined function interface 405
Adding a new user-defined function 406
Adding a new native function 407

Debugging and porting 409
Debugging MySQL server 410
Debugging MySQL client 411
The DBUG package 412

Summary 413

Chapter 14: MySQL 8 Best Practices and Benchmarking 414

MySQL benchmarking and tools 415
Resource utilization 416
Stretching your benchmarking timelines 416
Replicating production settings 416
Consistency of throughput and latency 416
Sysbench can do more 417
Virtualization world 417
Concurrency 417
Hidden workloads 417
Nerves of your query 417
Benchmarks 418

Best practices for memcached 421
Resource allocation 421
Operating system architecture 421
Default configurations 422
Max object size 422
Backlog queue limit 422
Large pages support 422
Sensitive data 423
Restricting exposure 423

Table of Contents

[xv]

Failover 423
Namespaces 423
Caching mechanism 424
Memcached general statistics 424

Best practices for replication 427
Throughput in group replication 427
Infrastructure sizing 427
Constant throughput 427
Contradictory workloads 428
Write scalability 428

Best practices for data partitioning 430
Horizontal partitioning 431
Vertical partitioning 432
Pruning partitions in MySQL 432

Best practices for queries and indexing 433
Data types 433
Not null 433
Indexing 433
Search fields index 434
Data types and joins 434
Compound index 434
Shortening up primary keys 434
Indexing everything 435
Fetching all data 435
Letting the application do the job 435
Existence of data 435
Limiting yourself 435
Analyzing slow queries 436
Query cost 436

Summary 436

Chapter 15: Troubleshooting MySQL 8 438

MySQL 8 common problems 439
Most common MySQL errors 440

Access denied 441
Can't connect to [local] MySQL server 441
Lost connection to MySQL server 443
Password fails when entered incorrectly 443
Host host_name is blocked 444
Too many connections 444
Out of memory 445

Table of Contents

[xvi]

Packet too large 445
The table is full 446
Can't create/write to file 446
Commands out of sync 446
Ignoring user 447
Table tbl_name doesn't exist 447

MySQL 8 server errors 447
Issues with file permissions 447
Resetting the root password 448
MySQL crashes prevention 450
Handling MySQL full disk 452
MySQL temporary files storage 452
MySQL Unix socket file 454
Time zone problems 455

MySQL 8 client errors 456
Case sensitivity in string searches 456
Problems with DATE columns 457
Problems with NULL values 458

MySQL 8 troubleshooting approach 458
Analyzing queries 459

Real-world scenario 460
Summary 462

Other Books You May Enjoy 463

Index 466

Preface
For any system, it is must to manage data in an organized manner. In a large-scale system, it
is necessary to handle various configurations for security purposes. MySQL is one of the
popular solutions used to handle enterprise-level applications. In this book, we will explain
how to configure users, their roles, multiple instances, and much more.

Many organizations use MySQL for their websites or commercial products, and it's very
challenging for them to manage data storage and analyze data in accordance with the
business requirements. This book will show you how to implement indexing and query
optimization for better performance. Along with this, we'll cover how scalability and high
availability of the MySQL server can help to manage failure scenarios. In addition to that,
replication and partitioning concepts are explained in detail with examples.

The book describes various features of MySQL 8 by targeting different levels of users, from
beginners to database administrators. This book starts from the installation with a basic
understanding of MySQL 8's concepts. The we proceed to administrative-level features with
configuration. At the end of the book, you will have learned about very interesting
functionalities, such as optimization, extension, and troubleshooting.

Who this book is for
This book is intended for MySQL administrators who are looking for a handy guide
covering all the MySQL administration-related tasks. If you are a DBA looking to get
started with MySQL administration, this book will also help you. Knowledge of basic
database concepts is required to get started with this book.

What this book covers
, An Introduction to MySQL 8, serves as an introductory guide to MySQL 8. It

briefly defines the core features available in MySQL and newly introduced or
enhanced features of MySQL 8. In the later part of the chapter, we highlight the benefits of
MySQL 8 along with real-world applications.

, Installing and Upgrading MySQL 8, describes detailed steps for installing MySQL
8 on different platforms. It also explains how to upgrade to or downgrade from MySQL 8.

Preface

[2]

, MySQL 8 Using Programs and Utilities, introduces command-line programs for
the MySQL 8 server and client. It also provides information on the available GUI tools with
its configuration.

, MySQL 8 Data Types, focuses on a detailed explanation of MySQL 8 data types.
It also explains data type categorization based on the types of content. We cover data types
along with their properties in each category. We also cover storage requirements for data
types.

, MySQL 8 Database Management, mainly explores the administration part of
MySQL 8. This chapter covers components and plugin management, along with user and
role management. In addition, it explains globalization configuration, caching techniques,
and different types of logs available in MySQL 8.

, MySQL 8 Storage Engines, explains several types of storage engines and details of
the InnoDB storage engine. This chapter provides information on custom storage engine
creation, along with steps to make it pluggable in installed MySQL 8.

, Indexing in MySQL 8, explains indexing, along with the possible ways of
implementing it. It compares types of indexing.

, Replication in MySQL 8, explains replication and the different types of replication
available in MySQL 8. It also describes the configuration and implementation of replication
along with different approaches.

, Partitioning in MySQL 8, explains the setting of several types of partitioning,
selection, and pruning of partitioning. It also explains how to cope up with restrictions and
limitations while partitioning.

, MySQL 8 Scalability and High Availability, explains how to do scaling and how
to handle different challenges during implementation. The reader gets an understanding of
diverse ways to achieve high availability in MySQL 8.

, MySQL 8 Security, focuses on MySQL 8 database security. This chapter covers
general factors that affect security, the security of core MySQL 8 files, access control, and
securing the database system itself. This chapter also includes details of security plugins.

 , Optimizing MySQL 8, explains how to configure MySQL 8 for better
performance. This chapter also describes use cases with a few performance results to
validate. This will help you know various touch points to look out for when dealing with
optimizing MySQL 8.

Preface

[3]

, Extending MySQL 8, shows how to extend MySQL 8 and add new functions,
along with debugging and porting to MySQL 8.

, MySQL 8 Best Practices and Benchmarking, explains the best practices of using
MySQL. It also explains various benchmarkings done for MySQL 8.

, Troubleshooting MySQL 8, explains many common and real-world scenarios of
troubleshooting for MySQL 8.

To get the most out of this book
We recommend that you get some basic knowledge of MySQL (any version) and SQL
commands before you start reading this book.

This book also covers practical scenarios and command execution, so if possible, install a
tool for easy execution of MySQL commands.

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

Preface

[4]

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from

our rich catalog of books and videos available at .
Check them out!

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It will download onto your computer."

Any command-line input or output is written as follows:

CREATE TABLE working_days (
year INT,
week INT,
days BIT(7),
PRIMARY KEY (year, week));

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Download WinMD5Sum option on the page."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

11
An Introduction to MYSQL 8

MySQL is a well-known open source structured database because of its performance,
easiness to use, and reliability. This is the most common choice of web applications for a
relational database. In the current market, thousands of web-based applications rely on
MySQL including giant industries such as Facebook, Twitter, and Wikipedia. It has also
proven to be the database choice for Software as a Service (SaaS) based applications such
as Twitter, YouTube, SugarCRM, Supply Dynamics, Workday, RightNow, Omniture,
Zimbra, and many more. We will discuss this in detail in the use cases of MySQL section later
in the chapter. MySQL was developed by MySQL AB, a Swedish company, and now it is
distributed and supported by Oracle Corporation. MySQL carries a valuable history with it.

MySQL has continued to improve in order to become an enterprise-level database
management system. MySQL 8 is expected to be a game-changer as today we are in the age
of digitization. MySQL 8 is all tuned to serve many new use cases that in prior versions
were difficult to achieve. Some of the use cases an enormous amount of data is produced
are social networking, e-commerce, bank/credit card transactions, emails, data stored on the
cloud, and so on. Analysis of all such structured, unstructured, or semi-structured
ubiquitous data helps to discover hidden patterns, market trends, correlations, personal
preferences.

"There is so much for each of us"
 - James Truslow Adams

Let's take an in-depth look at MySQL 8 new features, benefits, use cases along with a few
limitations of MySQL 8 after we have an overview of MySQL. This is going to be exciting,
let's get prepared.

An Introduction to MYSQL 8 Chapter 1

[7]

Overview of MySQL
Structured Query Language (SQL) is used to manipulate, retrieve, insert, update, and
delete data in relational database management system (RDBMS). To make it simpler, SQL
tells the database what to do and exactly what it needs. SQL is a standard language that all
RDBMS systems such as MySQL, MS Access, MS SQL, Oracle, Postgres, and others use.

RDBMS is the basis for SQL and for all modern database systems such as
MS SQL Server, IBM DB2, Oracle, MySQL, and Microsoft Access.

SQL allows users to access data from MySQL and define and manipulate the data. To
embed within other languages, you can leverage SQL modules, libraries, and precompilers,
which can help you create/drop databases and tables, allow users to create the view, and
stored procedures, functions, and so on, in a database. It can do various other operations
such as allowing users to set permissions on tables, procedures, and views.

MySQL as a relational database management
system
Data in a relational database is stored in an organized format so that information can be
retrieved easily. Data will be stored in different tables made up of rows and columns.
However, the relationship can also be built between different tables that efficiently store
huge data and effectively retrieve the selected data. This provides database operations with
tremendous speed and flexibility.

As a relational database, MySQL has capabilities to establish relationships with different
tables such as one to many, many to one, and one to one by providing primary keys, foreign
keys, and indexes. It can also perform joins between tables to retrieve exact information
such as inner joins and outer joins.

SQL is used as an interface to interact with the relational data in MySQL. SQL is
an American National Standard Institute (ANSI) standard language which we can operate
with data such as creation, deletion, updating, and retrieval.

An Introduction to MYSQL 8 Chapter 1

[8]

License requirements of MySQL8
Many industries prefer open source technology because of the technology's flexibility and
cost-saving features, while MySQL has put its footprint in the market by becoming the most
popular relational database for web applications. Open source means that you can view the
source of MySQL and customize it based on your needs without any cost. You can
download the source or binary files from its site and use them accordingly.

The MySQL server is covered under the General Public License (GNU), which means that
we can freely use it for web applications, study its source code, and modify it to suit our
needs. It also has the Enterprise Edition as well with advanced features included. Many
enterprises still purchase the support contract from MySQL to get assistance on various
issues.

Reliability and scalability
MySQL has great reliability to perform well without requiring extensive troubleshooting
due to bottlenecks or other slowdowns. It also incorporates a number of performance
enhanced mechanisms such as index support, load utilities, and memory caches. MySQL
uses InnoDB as a storage engine, which provides highly efficient ACID compliant
transactional capabilities that assure high performance and scalability. To handle the
rapidly growing database, MySQL Replication and cluster help scale out the database.

Platform compatibility
MySQL has great cross-platform availability that makes it more popular. It is flexible to run
on major platforms such as RedHat, Fedora, Ubuntu, Debian, Solaris, Microsoft Windows,
and Apple macOS. It also provides Application Programming Interface (APIs) to
interconnect with various programming languages such as C, C++, C#, PHP, Java, Ruby,
Python, and Perl.

Releases
Here is a list of major releases of MySQL so far:

Version 5.0 GA was released on 19th October, 2005
Version 5.1 GA was released on 14th November, 2008
Version 5.5 GA was released on 3rd December, 2010

An Introduction to MYSQL 8 Chapter 1

[9]

Version 5.6 GA was released on 5th February, 2013
Version 5.7 GA was released on 21st October, 2015

Now it's time for the major version release--MySQL 8--which was announced on 12th
September, 2016 and is still in the development milestone mode.

Core features in MySQL
Let's look back and quickly glance through some of the core features in MySQL. We will be
discussing various features throughout the book in detail as we progress.

Structured database
Structured databases are traditional databases that have been used by many enterprises for
more than 40 years. However, in the modern world, data volume is becoming bigger and
bigger and a common need has taken its place--data analytics. Analytics is becoming
difficult with structured databases as the volume and velocity of digital data grow faster by
the day; we need to find a way to achieve such needs in an effective and efficient way. The
most common database that is used as a structured database in the open source world is
MySQL.

Many organizations use a structured database to store their data in an organized way with
the formatted repository. Basically, data in a structured database has a fixed field, a
predefined data length, and defines what kind of data is to be stored such as numbers,
dates, time, addresses, currencies, and so on. In short, the structure is already defined
before data gets inserted, which gives a clearer idea of what data can reside there. The key
advantage of using a structured database is that data being easily stored, queried, and
analyzed.

An unstructured database is the opposite of this; it has no identifiable internal structure. It
can have a massive unorganized agglomerate or various objects. Mainly, the source of
structured data is machine-generated, which means information is generated from the
machine and without human intervention, whereas unstructured data is human-generated
data. Organizations use structured databases for data such as ATM transactions, airline
reservations, inventory systems, and so on. In the same way, some organizations use
unstructured data such as emails, multimedia content, word processing documents, web
pages, business documents, and so on.

An Introduction to MYSQL 8 Chapter 1

[10]

Database storage engines and types
Let's now look at an overview of different MySQL storage engines. This is an important
section that gives a brief of different database storage engines; we will be discussing this in
detail in , MySQL 8 Storage Engines. MySQL stores data in the database as a
subdirectory. In each database, data is stored as tables. When you create a table, MySQL
stores the table definition in with the same name as the table name. You can use the

 command to show information about your table:

mysql> SHOW TABLE STATUS LIKE 'admin_user' \G;
*************************** 1. row ***************************
 Name: admin_user
 Engine: InnoDB
 Version: 10
 Row_format: Dynamic
 Rows: 2
 Avg_row_length: 8192
 Data_length: 16384
 Max_data_length: 0
 Index_length: 16384
 Data_free: 0
 Auto_increment: 3
 Create_time: 2017-06-19 14:46:49
 Update_time: 2017-06-19 15:15:08
 Check_time: NULL
 Collation: utf8_general_ci
 Checksum: NULL
 Create_options:
 Comment: Admin User Table
1 row in set (0.00 sec)

This command shows that this is an table with the column name . There is
additional information that you can refer to for other purposes such as the number of rows,
index length, and so on.

The storage engine is the way to handle SQL operations for different table types. Each
storage engine has its own advantages and disadvantages. It is important to understand
each storage engine's features and choose the most appropriate one for your tables to
maximize the performance of the database. is the default storage engine when we
create a new table in MySQL 8.

An Introduction to MYSQL 8 Chapter 1

[11]

The MySQL server uses a plug-and-play storage engine architecture. You can load the
required storage engine and unload unnecessary storage engines from the MySQL server
with the help of the command as follows:

mysql> SHOW ENGINES \G;
*************************** 1. row ***************************
 Engine: InnoDB
 Support: YES
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 2. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES
 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: DEFAULT
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO

An Introduction to MYSQL 8 Chapter 1

[12]

*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: FEDERATED
 Support: NO
 Comment: Federated MySQL storage engine
Transactions: NULL
 XA: NULL
 Savepoints: NULL
9 rows in set (0.00 sec)

Overview of InnoDB
 is the default storage engine broadly used out of all other available storage engines.

It was released with MySQL 5.1 as a plugin in 2008. MySQL 5.5 and later has as a
default storage engine. It has been taken over by Oracle Corporation in October 2005, from
the Innobase Oy, which is a Finland-based company.

InnoDB tables support ACID-compliant commits, rollback, and crash recovery capabilities
to protect user data. It also supports row-level locking, which helps with better concurrency
and performance. It stores data in clustered indexes to reduce I/O operations for all SQL
select queries based on the primary key. It also supports constraints that
allow better data integrity for the database. The maximum size of an InnoDB table can scale
up to 64 TB, which should be good enough to serve many real-world use cases.

An Introduction to MYSQL 8 Chapter 1

[13]

Overview of MyISAM
 was the default storage engine for MySQL prior to 5.5 1. storage engine

tables do not support ACID-compliant as opposed to . tables support table-
level locking only, so tables are not transaction-safe; however, they are optimized
for compression and speed. It is generally used when you need to have primarily read
operations with minimal transaction data. The maximum size of a table can grow
up to 256 TB, which helps in use cases such as data analytics. supports full-text
indexing, which can help in complex search operations. Using full-text indexes, we can
index data stored in and data types.

Overview of memory
A memory storage engine is generally known as a heap storage engine. It is used to access
data extremely quickly. This storage engine stores data in the RAM so it wouldn't need I/O
operation. As it stores data in the RAM, all data is lost upon server restart. This table is
basically used for temporary tables or the lookup table. This engine supports table-level
locking, which limits high write concurrency.

Important notes about memory tables are as follows:

Because memory table stores data in the RAM, which has a very limited storage
capacity; if you try to write too much data into the memory table, it will start
swapping data into the disk and then you lose the benefits of the memory storage
engine
These tables don't support and data types, and it is not even required
as it has limited storage capacity
This storage engine can be used to cache the results; lookup tables, for example,
or postal codes and the names of states
Memory tables support B-tree indexes and Hash indexes

Overview of archive
This storage engine is used to store large amounts of historical data without any indexes.
Archive tables do not have any storage limitations. The archive storage engine is optimized
for high insert operations and also supports row-level locking. These tables store data in a
compressed and small format. The archive engine does not support or
operations; it only allows , , and operations.

An Introduction to MYSQL 8 Chapter 1

[14]

Overview of BLACKHOLE as a storage engine
This storage engine accepts data but does not store it. It discards data after every
instead of storing it.

Now, what is the use of this storage engine; why would anybody use it? Why would we run
an query that doesn't insert anything into the table?

This engine is useful for replication with large number of servers. A storage
engine acts as a filter server between the master and slave server, which do not store any
data, but only apply and rules and write a

. These are used to perform replication in slave servers. We will discuss
this in detail in , Replication in MySQL 8.

Overview of CSV
The comma separated values (CSV) engine stores data in the file type using the
comma-separated values format. This engine extracts data from the database and copies it
to out of the database. If you create a CSV file from the spreadsheet and copy it into
the MYSQL data folder server, it can read the data using the select query. Similarly, if you
write data in the table, an external program can read it from the CSV file. This storage
engine is used for the exchange of data between software or applications. A CSV table does
not support indexing and partitioning. All columns in the CSV storage engine need to be
defined with the attribute to avoid errors during table creation.

Overview of merge
This storage engine is also known as an storage engine. This storage engine
merges a table and creates it to be referred to a single view. For a merge table, all
columns are listed in the same order. These tables are good for data warehousing
environments.

The table is used to manage log-related tables, generally. You can create different months of
logs in separate tables and merge these tables using the merge storage engine.

 tables have storage limit for the operating system, but a collection of
(merge) tables do not have storage limits. So using a merge table would allow you to split
data into multiple tables, which can help in overcoming storage limits.

An Introduction to MYSQL 8 Chapter 1

[15]

Merge tables do not support partitioning. Also, you cannot partition a merge table or any of
a merge table's underlying tables in a different partition.

Overview of federated
This storage engine allows you to create a single database on a multiple physical server. It
opens a client connection to another server and executes queries against a table there,
retrieving and sending rows as needed. It was originally marketed as a competitive feature
that supported many enterprise-grade proprietary database servers, such as Microsoft SQL
Server and Oracle, but that was always a stretch, to say the least. Although it seemed to
enable a lot of flexibility and neat tricks, it has proven to be a source of many problems and
is disabled by default. This storage engine is disabled by default in MySQL; to enable it, you
need to start the MySQL server binary using the federated option.

Overview of the NDB cluster
NDB cluster (also known as NDB) is an in-memory storage engine offering high availability
and data persistence features.

The NDB cluster storage engine can be configured with a range of failover and load
balancing options, but it is easiest to start with the storage engine at the cluster level. NDB
cluster uses the NDB storage engine that contains a complete set of data, which is
dependent only on other datasets available within the cluster.

The cluster portion of the NDB cluster is configured independently of the MySQL servers.
In an NDB cluster, each part of the cluster is considered to be a node.

Each storage engine has its own advantage and usability, as follows:

Search Engine: NDBCluster
Transactions data:
Session data: or NDBCluster
Localized calculations: Memory
Dictionary:

An Introduction to MYSQL 8 Chapter 1

[16]

The following diagram will help you understand which store engine you need to use for
your requirement:

Now you have a better idea about various storage engines along with different use cases,
which will help you to make a decision based on your needs.

It's time to move on to our next topic where we will look at delightful new features
available in MySQL 8.

Improved features in MySQL 8
The MySQL database development team has recently announced its major release as
MySQL 8 Development Milestone Release (DMR). It contains significant updates and fixes
for problems that were much needed.

You might be wondering why it's 8 after 5.7! Were the intermediate versions, that is, 6 and
7, miss out? Of course not! Actually, 6.0 was preserved as part of the changeover to a more
frequent and timely release, while 7.0 for the clustering version of MySQL.

An Introduction to MYSQL 8 Chapter 1

[17]

Let's see some exciting features that have been introduced in this latest version, as depicted
in the following diagram:

It's time to look at MySQL 8 features in detail, which makes us excited and convinced about
the reasons for a major version upgrade of MySQL.

An Introduction to MYSQL 8 Chapter 1

[18]

Transactional data dictionary
Up until the previous version, the MySQL data dictionary was stored in different metadata
files and non-transactional tables, but from this version onwards, it will have a transactional
data dictionary to store the information about the database. No more , , or
files. All information will be stored in the database, which removes the cost of performing
heavy file operations. There were numerous issues with filesystem metadata storage such as
the vulnerability of the filesystem, exorbitant file operations, difficult to handle crash
recovery failures, or replication; it was also difficult to add new feature-related metadata.
Now this upgrade has made it simple by storing information in a centralized manner, and
will have improved performance as this data dictionary object can be cached in memory,
similar to other database objects.

This data dictionary will have data that is needed for SQL query execution such as catalog
information, character sets, collations, column types, indexes, database information, tables,
stored procedures, functions and triggers, and so on.

Roles
In MySQL 8, the privileges module has been improved by introducing roles, which means a
collection of permissions. Now we can create roles with a number of privileges and assign
them to multiple users.

The problem with the previous version was that we were not able to define generic
permissions for a group of users and each user has individual privileges. Suppose if there
are 1,000 users already existing that have common privileges, and you want to remove the
write permissions for these 1,000 users, what would you have done in the previous version?
You would have had to take the time-consuming approach of updating each user, right?
Arrgh! That's a long, long task.

Now with MySQL 8, it is easy to update any change in privileges. Roles will define all the
required privileges and this role will be assigned to those 1,000 users. We just need to make
any privilege changes in the role and all users will automatically inherit the respective
privileges.

Roles can be created, deleted, grant or revoke permission, grant or revoke from the user
account, and can specify the default role within the current session.

An Introduction to MYSQL 8 Chapter 1

[19]

InnoDB auto increment
MySQL 8 has changed the auto-increment counter value store mechanism. Previously, it
was stored in the memory, which was quite difficult to manage during server restarts or
server crashes. However, now the auto-increment counter value is written into the redo log
whenever the value gets changed and, on each checkpoint, it will be saved in the system
table, which makes it persistent across the server restart.

With the previous version, update of the auto-increment value may have caused duplicate
entry errors. Suppose if you updated the value of auto-increment in the middle of the
sequence with a larger than the current maximum value, but then subsequent insert
operations could not identify the unused values, which could cause a duplicate entry issue.
This has been prevented by persisting the auto-increment value, hence subsequent insert
operations can get the new value and allocate it properly.

If server restart happened, the auto-increment value was lost with the previous version as it
was stored in memory and needed to execute a query to find out the maximum
used value. This has been changed, as the newer version has the capability to persist its
value across the server restart. During the server restart, initializes the counter
value in memory using the maximum value stored in the data dictionary table. In case of
server crashes, initializes the auto-increment counter value that is bigger than the
data dictionary table and the redo log.

Invisible indexes
MySQL 8 provides you with a feature to make indexes invisible. These kinds of indexes
cannot be used by the optimizer. In case you want to test the query performance without
indexes, using this feature you can do so by making them invisible rather than dropping
and re-adding an index. This is a handy feature when indexing is supposed to be dropped
and recreated on huge datasets.

All indexes are visible by default. To make them invisible or visible, and
 keywords are used respectively, as described in the following code snippet:

ALTER TABLE table1 ALTER INDEX ix_table1_col1 INVISIBLE;
ALTER TABLE table1 ALTER INDEX ix_table1_col1 VISIBLE;

An Introduction to MYSQL 8 Chapter 1

[20]

Improving descending indexes
Descending indexes existed in version 5.7 too, but they were scanned in reverse order,
which caused performance barriers. To improve performance, MySQL 8 has optimized this
and scanned descending indexes in forward order, which has drastically improved
performance. It also brings multiple column indexes for the optimizer when the most
efficient scan order has ascending order for some columns, and descending order for other
columns.

The SET PERSIST variant
Server variables can be configured globally and dynamically while the server is running.
There are numerous system variables that we can set using :

SET GLOBAL max_connections = 1000;

However, such settings will be lost after server restart. To avoid this, MySQL 8 has
introduced the variant, which preserves variables across a server restart:

SET PERSIST max_connections = 1000;

Expanded GIS support
Until the previous version, it supported only one coordinate system, a unitless 2D place that
was not referenced to a position on earth. Now MySQL 8 has added support for a Spatial
Reference System (SRS) with geo-referenced ellipsoids and 2D projections. SRS helps
assign coordinates to a location and establishes relationships between sets of such
coordinates. This spatial data can be managed in data dictionary storage as
the table.

Default character set
The default character set has been changed from to . is the dominating
character set, though it hadn't been a default one in previous versions of MySQL. Along
with the character set default, collation has been changed from to

. With these changes globally accepted, character sets and collations
are now based on ; one of the common reasons is because there are around 21 different
languages supported by , which makes systems provide multilingual support.

An Introduction to MYSQL 8 Chapter 1

[21]

Extended bit-wise operations
In MySQL 5.7, bit-wise operations and functions were working for (64-bit integer)
data types only. We needed to pass as an argument and it would return the result
as . In short, it had maximum range up to 64 bits to perform operations. A user
needs to do conversion to the data type in case they want to perform it on other
data types. This typecasting was not feasible for data types larger than 64 bits as it would
truncate the actual value, which resulted in inaccuracy.

MySQL 8 has improved bit-wise operations by enabling support for other binary data types
such as , , and . This makes it possible to perform bit-wise
operations on larger than 64-bit data. No more typecasting needed! This allows the taking
of arguments and returning results larger than 64 bits.

InnoDB Memcached
Multiple get operations are now possible with the memcached plugin, which will
really help in improving the read performance. Now, multiple key value pairs can be
fetched in a single memcached query. Frequent communication traffic has also been
minimized as we can get multiple data in a single shot.

Range queries are also supported by the Memcached plugin. It simplifies range
searches by specifying a particular range and retrieves values within this range.

NOWAIT and SKIP LOCKED
When rows are locked by other transactions that you are trying to access, then you need to
wait for that transaction to release the lock on the same row so that you can access it
accordingly. To avoid waiting for the other transaction, has added support of the

 and options. will return immediately with an error in case
the requested row is locked rather than going into the waiting mode, and
will skip the locked row and never wait to acquire the row lock. Hence, will
not consider the locked row in the resulting set:

SELECT * FROM table1 WHERE id = 5 FOR UPDATE NOWAIT;
SELECT * FROM table1 FOR UPDATE SKIP LOCKED;

An Introduction to MYSQL 8 Chapter 1

[22]

JSON
JSON support had been implemented in MySQL 5.7; it was well-acknowledged feature. In
MySQL 8 it has added various functions that would allow us to get dataset results in JSON
data format, virtual columns, and tentatively 15 SQL functions that allow you to search and
use JSON data on server side. In MySQL8 there are additional aggregation functions added
that can be used in JSON objects/arrays to represent loaded data in a further optimized way.
The following are the two JSON aggregation functions that were introduced in MySQL8:

Cloud
In MySQL 8 a new option is introduced , which would be
helpful for vertical scaling of the servers. It actually automatically detects the memory
allocated to the virtual server and appropriately set MySQL 8 without any need to change
configuration files. These would be very handy features considering the adoption of
virtualization and cloud is there. In fact with this configuration, you might not even need to
get shell access of server to edit the configuration files. You can do this with the new

 feature that can set relevant configuration from the MySQL command line itself,
which can enhance security further as you almost wouldn't need shell access of the server.

Resource management
MySQL 8 has come up with a wonderful resource management feature that will allow you
to allocate resource to threads running on a server, which would be executed based on the
resources configured for the group. Currently, CPU time is a resource that can be
configured for a group. With this, you can tweak your workloads with virtual resource
management within MySQL itself. MySQL will identify on startup numbers of virtual CPUs
available and after that users with appropriate privileges can map the virtual CPUs with
resource group and align thread management to these groups.

We expect to see more features by the time MySQL 8 is available for general use. Let us now
look at benefits of using MySQL 8.

An Introduction to MYSQL 8 Chapter 1

[23]

Benefits of using MySQL 8
Whether you are a developer or an enterprise, you would obviously choose one that
provides good benefits and results when compared to other related products. MySQL
provides numerous advantages as the first choice in this competitive market. It has various
powerful features available that make it a more comprehensive database. Let's now go
through some benefits of using MySQL.

Security
The first thing that comes to mind is securing data because nowadays data has become
precious and can impact business continuity if legal obligations are not met; in fact, it can be
so bad that it can close down your business in no time. MySQL is the most secure and
reliable database management system used by many well-known enterprises such as
Facebook, Twitter, and Wikipedia. It really provides a good security layer that protects
sensitive information from intruders. MySQL gives access control management so that
granting and revoking required access from the user is easy. Roles can also be defined with
a list of permissions that can be granted or revoked for the user. All user passwords are
stored in an encrypted format using plugin-specific algorithms.

Scalability
Day by day, the mountain of data is growing because of extensive use of technology in
numerous ways. Because of this, load average is going through the roof. In some cases, it is
unpredictable that data cannot exceed up to some limit or number of users will not go out
of bounds. Scalable databases would be a preferable solution so that, at any point, we can
meet unexpected demands to scale. MySQL is a rewarding database system for its
scalability, which can scale horizontally and vertically; in terms of data, spreading database
and load of application queries across multiple MySQL servers is quite feasible. It is pretty
easy to add horsepower to the MySQL cluster to handle the load.

An Introduction to MYSQL 8 Chapter 1

[24]

An open source relational database management
system
MySQL is an open source database management system that makes debugging, upgrading,
and enhancing the functionality fast and easy. You can view the source and make the
changes accordingly and use it in your own way. You can also distribute an extended
version of MySQL, but you will need to have a license for this.

High performance
MySQL gives high-speed transaction processing with optimal speed. It can cache the
results, which boosts read performance. Replication and clustering make the system
scalable for more concurrency and manages the heavy workload. Database indexes also
accelerate the performance of query statements for substantial amount of data. To
enhance performance, MySQL 8 has included indexes in performance schema to speed up
data retrieval.

High availability
Today, in the world of competitive marketing, an organization's key point is to have their
system up and running. Any failure or downtime directly impacts business and revenue;
hence, high availability is a factor that cannot be overlooked. MySQL is quite reliable and
has constant availability using cluster and replication configurations. Cluster servers
instantly handle failures and manage the failover part to keep your system available almost
all the time. If one server gets down, it will redirect the user's request to another node and
perform the requested operation.

Cross-platform capabilities
MySQL provides cross-platform flexibility that can run on various platforms such as
Windows, Linux, Solaris, OS2, and so on. It has great API support for the all major
languages, which makes it very easy to integrate with languages such as PHP, C++, Perl,
Python, Java, and so on. It is also part of the Linux Apache MySQL PHP (LAMP) server
that is used worldwide for web applications.

An Introduction to MYSQL 8 Chapter 1

[25]

It's now time to get our hands dirty and look at MySQL 8; let's start with the installation of
MySQL 8 on a Linux platform in our case. We prefer MySQL 8 on a Linux operating system
as that has been a common use case across many organizations. We will be discussing more
installation in , Installing and Upgrading MySQL 8. You can use it on other
platforms that MySQL supports, such as Windows, Solaris, HP-UNIX, and so on. Linux
provides various ways to install the MySQL server, as follows:

 package
 repository
 repository

 repository
 package

 package
Compiling and installing from the source code

Limitations of MySQL 8
A coin has two sides; similarly, benefits of also using MySQL 8 would come along with a
few limitations. Let us walk through a few areas of MySQL 8 now.

Number of tables or databases
The number of databases or tables are not a limitation for MySQL 8; however, the operating
system file limit can be a limitation for MySQL 8. Storage Engine is allowed to scale
up to four billion tables as its peak number.

Table size
You may hit maximum table size limit, which is not restricted from MySQL 8; however, it
may be because of operating system filesystem limits.

An Introduction to MYSQL 8 Chapter 1

[26]

Joins
In a single join, one can use 61 tables, which can be referred. It is also applicable to the
tables that are referenced in view definition. Joins that are part of subqueries and views are
also considered to be part of the limitation.

Windows platform
There are few limitations when you have MySQL 8 used on the Windows platform:

Memory: 32-bit architecture has limitation to use only 2 GB of RAM for a process.
Ports: In case you have a high number of concurrency you might come across
Windows platform limitation of having 4000 ports available for client connections
in total.
Case-insensitivity: The Windows platform doesn't have case sensitivity, which is
why tables and databases need to be deliberately managed for case-insensitivity.
Pipes: , generally referred as pipe signs, they are not fully supported in
Windows. You might come across them in a few scenarios while doing database
administration activities.
Pathname separator: MySQL 8 escape character is , which is the pathname
separator for Windows. Hence while using path separator you can double slash
as "\\" as an alternative for a pathname separator.

Table column count
The table column for each table in MySQL 8 has a limit of 4096 columns. It might vary
based on a few other factors for columns count limit, as stated in the following section.

Row size
MySQL tables have a limit of 65,535 bytes for a row, although storage engines such as

 are capable of supporting larger chunks.

An Introduction to MYSQL 8 Chapter 1

[27]

InnoDB storage engine
Limitations on storage engine are what we will talk about a bit more specifically as

 now with MySQL 8 will play a prominent role.

Limitations of InnoDB storage engine
We will have a quick glance at a few of the limitations of storage engine:

The number of indexes supported can be maximum 64 for a table
For tables that use compressed or dynamic row format; 3072 is the index key
prefix length limit
For tables that use compact or redundant row format; 767 is the index key prefix
length limit
Total columns in a table, which includes virtual generated columns, are limited to
a maximum of 1,017
16 columns is the maximum permitted for multi-column indexes
The combined log file size cannot exceed 512 GB
Maximum table size supported by is 256 TB
AdminAPI is not supported while using unix socket connections
Multi-byte characters might give you unreliable aligned columns while
formatting of results in clusters

Restrictions
We will now have a quick glance at a few of the restrictions of the storage engine:

: It doesn't actually delete the complete table, instead it
deletes each row of the table one after another.

: It wouldn't provide you accurate data all the time; it
provides estimates.
When counting rows, the number of rows provided by is not accurate
because of concurrency; it would count only those counts visible to transactions
currently available.
If there is multiple queries executed, later one will be blocked
until the first one gets completed.

An Introduction to MYSQL 8 Chapter 1

[28]

 keeps an exclusive lock on the index at the end associated with
the column.
In a case the integer runs out of the value; the following insert
operations would show us duplicate-key errors.
Foreign keys that are cascaded cannot activate triggers.
There are a few column names reserved by MySQL that uses for internal
purposes. The following are a few such column names:

We might come across output shown in the following example in case of such
reserved column names used:

 mysql> CREATE TABLE chintan (c1 INT, db_row_id INT)
 ENGINE=INNODB;
 ERROR 1166 (42000): Incorrect column name 'db_row_id'

 locks are released immediately after the transaction is aborted or
committed, which is held by a transaction.
The addition of table locks are not supported, as locks are implicit to and

Data dictionary
Let us have a look at a few known limitations of data dictionary:

Individual tables for backup and restore are not supported by merely
copying the files.
Manually created directories for databases are not supported by MySQL 8. For
instance, using would have no impact on MySQL server data dictionary.

 operations would take more time than expected because such operations are
written to storage, undo logs and redo instead of files as what we would
have seen in prior versions of MySQL.

An Introduction to MYSQL 8 Chapter 1

[29]

Limitations of group replication in MySQL8
It's now time to discuss a few limitations of group replication in MySQL 8:

Large transactions: Transactions that result to GTID contents cannot be replicated
between the rest of the members of the group if they're too large. It is suggested
to use smaller chunks of data that cannot be replicated in around five seconds to
group members to avoid failures.
Cluster from a group: If you try to create clusters from an existing group
replication setup it will result in an error as the instance would already be part of
a replication group. This is noticed currently only in MySQL's wizard mode only;
an alternative solution for the issue is to disable wizard mode.
Serializable isolation level: Serializable isolation level is not supported when
multi-primary groups are used, which is the default configuration.
DDL and DML operations: If there is concurrent DDL and DML operations
executed against the same data object but on different servers is not supported
when multi-primary group mode is used.
Replication checksum: Currently MySQL design limitations create restrictions of
having replication event checksums.

Limitations of partitioning
We will be discussing limitations of partitioning in this section.

Constructs prohibition
The following are the constructs that are not allowed in expressions of partitions:

Declared variables
User variables
Stored procedures
Stored functions
UDFs
Plugins

An Introduction to MYSQL 8 Chapter 1

[30]

Operators
There are a few operators that are not permitted in partition expressions such as , , ,

 , and . Results for arithmetic operators such as , , and must have an integer value
or .

Tables
The following are a few specific areas that show us limitations of partitioning on tables:

The maximum number of partitions supported by MySQL 8 for a table is 8192.
This limit also considers sub-partitions.
Fulltext index and search is not supported on partitioned tables.
Tables that are temporary cannot be partitioned.
Log tables can't be partitioned.
Foreign keys are not supported on partitioned storage engine.
The data type of partition keys should be an integer column or can be an
expression to an integer. Expression or column values may be ; however,
expressions that include are not supported.
Upgrading partitioned tables that have been partitioned by would have to be
reloaded, which stands true other than the storage engine.

We have so far discussed overview, features, benefits, and a few limitations of MySQL. Let
us now walk through the wonderful use cases of MySQL.

Use cases of MySQL
MySQL has many advantages because it has its foot in many industries and various use
cases across the globe. The importance of MySQL doesn't depend only on how much data
you have, it's rather what you are going to do with the data. Data can be sourced and
analyzed from unpredictable sources and can be used to address many things.

An Introduction to MYSQL 8 Chapter 1

[31]

Let's now look at use cases with real-life importance made on renowned scenarios with the
help of MySQL:

The preceding figure helps us understand where MySQL is serving various industries.
Though it's not an extensive list of industries where MySQL has been playing a prominent
role in business decisions, let's now discuss a few of the industries.

An Introduction to MYSQL 8 Chapter 1

[32]

Social media
Social media content is information, and so are engagements such as views, likes,
demographics, shares, follows, unique visitors, comments, and downloads. At the end of
the day, what matters is how your social media-related efforts contribute to the business.

One notable example is Facebook, where MySQL had been used extensively. On top of
MySQL where petabytes of data was used to serve likes, shares, and comments. Facebook
has developed the storage engine on top of the MySQL storage engine,
which leverages many advantages of InnoDB storage engine as Facebook wanted to
primarily focus on storage optimization. Though currently MySQL is still used largely for
other common applications.

Government
The era of MySQL has been playing a significant role in government too; government
bodies have been using MySQL extensively because of splendid return on investments and
promoting open source. In fact, the government sector is carrying out a huge number of
implementations of MySQL worldwide.

This may come as a surprise to you; US Navy uses MySQL for its critical flight planning
activities. There are various activities such as weather conditions, flight plans, fuel
efficiency, maintenance of flights, and many more that are being tracked with the help of
MySQL as the database. It's a no-brainer that it needs to run 24x7 with full redundancy;
MySQL was able to achieve this serving US Navy aircraft across the globe.

Media and entertainment
YouTube is also one of the prominent users of MySQL. Anytime you watch a video on
YouTube it gets data from a relational database or a blob store using MySQL. YouTube also
uses Vitess; a project that was released by YouTube to frontend MySQL. Vitess helps to do
lots of optimization and acts as a proxy to serve each database request using MySQL.
MySQL replicas are heavily used in YouTube's implementation; leveraging MySQL caching
was one of the other prominent factors for YouTube.

An Introduction to MYSQL 8 Chapter 1

[33]

Fraud detection
When it comes to security, fraud detection, or compliance, and precisely if your solution
helps you in identifying and preventing issues before they strike, then it becomes a sweet
spot for business. Most of the time, fraud detection takes place a long time after the fraud
has occurred, when you might have already suffered loss. The next steps would be
obviously to minimize the impact of fraud and improve areas that could help you prevent
this from being repeated.

Many companies who are into any type of transaction processing or claims use fraud
detection techniques extensively. MySQL helps to analyze transactions, claims, and so on in
real time, along with trends or anomalous behavior to prevent fraudulent activities.

PayPal is one of such use cases that has built fraud detection system using MySQL. PayPal
has more than 100 million active users, which is distributed to US, Japanese, and European
data centers. High-availability for such use cases is a key criteria along with performance,
which MySQL has been able to deliver as expected.

Business mapping
Netflix has millions of subscribers; it uses MySQL for running its billing systems. The core
billing system of Netflix on MySQL is a prominent backbone for any business. Netflix has
billions of rows of data concurrently updated and of consisting data since its inception two
decades ago. Compliance was one of the key factors along with migration from Oracle with
minimal downtime; both of these were achieved with MySQL and has been expanding
tremendously every other day.

E-commerce
Uber is one of the other well-known customers of MySQL. Uber had been growing
enormously worldwide, and scalability, high-availability, and return on investments were a
few of the important criteria to be worked upon. Uber uses MySQL as its primary database
for its known private car transportation service. Uber heavily uses schema less database
architecture as its backend as a layer on MySQL.

There are many real-world MySQL use cases that have changed humanity, technology,
predictions, health, science and research, law and order, sports, e-commerce, power and
energy, financial trading, robotics, and many more. MySQL is an integral part of our daily
routine, which is not evident all the time, but yes, it plays a significant role in what we do in
many ways.

An Introduction to MYSQL 8 Chapter 1

[34]

Summary
In this chapter, we started with an overview of MySQL along with major features of the
MySQL database and explored the newly added features in MySQL 8. After this, we took a
deep dive into exciting new features of MySQL 8 along with benefits of using MySQL for
your business applications. We understood MySQL 8's current limitations and restrictions,
which is important for us when performing the implementations. Finally, we glanced
through a few impressive use cases from the real world that play prominent roles in our
daily routine, and they all use MySQL as their database.

In the next chapter, we will learn detailed steps for installing MySQL 8 on different
platforms. The chapter also covers methods to upgrade or downgrade from MySQL 8, and
they will all be discussed in detail.

22
Installing and Upgrading

MySQL 8
In the previous chapter, we provided an overview of MySQL along with MySQL 8's new
features, use cases, and limitations. MySQL is very flexible in terms of platforms, such
as RedHat, Fedora, Ubuntu, Debian, Solaris, Microsoft Windows, and so on. It has the
support of an API to connect with different languages, such as C, C++, C#, PHP, Java, Ruby,
and many more. For any programming platform, the most important and monotonous task
is to set up the environment with the necessary software tools. That won't be the case for
MySQL 8, as this chapter is focused on setting up the environment with MySQL 8.

This chapter explains MySQL 8's installation steps in detail with the necessary prerequisites.
Separate installation steps are provided to set up MySQL 8 on various platforms. The
chapter also covers methods to upgrade to or downgrade from MySQL 8.

We will cover the following topics in this chapter:

The MySQL 8 installation process
Post-installation setup for MySQL 8
MySQL 8 upgrading
MySQL 8 downgrading

The MySQL 8 installation process
This section will guide readers in MySQL 8 version selection, where to get MySQL 8 from,
and how to install MySQL 8. It also explains the post-installation steps required for setup.
This chapter provides information on how to upgrade or downgrade from MySQL 8.

Installing and Upgrading MySQL 8 Chapter 2

[36]

General installation guide
MySQL 8 is available on many operating systems with different versions. The MySQL 8
release is managed in two ways:

 Development release: This has the newest feature but is not recommended for
use in production
 General release: This is a stable release and users can use it for release in
production also

Naming conventions are followed in each release of MySQL 8, which indicates its status.
Each release name consists of three digits and an optional suffix. For example, mysql.8.1.2-
rc. The numbers are interpreted as follow:

The first number (8) indicates a major version of the release.
The second number (1) indicates a minor version of the release. A combination of
major and minor numbers describes the series of the release.
The third number (2) indicates the version within the release series. It is
incremented on each bug fix release.

The most recent version of the release is the most preferable for use. The suffix given in the
example indicates the stability of the MySQL 8 release. The MySQL 8 release follows three
suffixes:

Development Milestone Release (dmr): MySQL 8 follows the milestone model,
where each milestone indicates thoroughly tested features.
Release Candidate (rc): A new feature might get released in this version but the
aim is to fix bugs within the previously released features.
Absence of a suffix: This indicates General Availability (GA) or production
release. This release is stable and passed through earlier stages. It is reliable and
suitable for use in production.

As described, preceding each release is the DMR, followed by the RC, and finally the GA
release status. Now, after deciding the MySQL 8 version for the installation, it's time to
select the distribution format.

The binary distribution is recommended for general-purpose use. It is available in native
formats for many platforms. For example, the RPM package for Linux and DMG package
for OS X.

Installing and Upgrading MySQL 8 Chapter 2

[37]

Downloading MySQL 8
To get MySQL 8 from the official site, refer to the following URL:

. MySQL also provides a mirror site:
. When you reach the download page, you can see the version selection tab at

the bottom side of the page, where two tabs are displayed:

Generally Available (GA) release
Development release

Based on the previous section, select the suitable version from the list and click on the
Download button.

Verifying the package integrity
This is a stage where the downloaded package is available and ready for the installation. It's
an optional step, but we recommend it to avoid errors during the installation process. There
are three different ways available to check integrity:

Using MD5 checksums
Using cryptographic signatures
Using the RPM integrity verification mechanism

This is the simplest way to check integrity and requires little effort. The MySQL download
page itself provides an MD5 checksum, which is unique for each MySQL product. After
downloading MySQL 8, we just have to make sure that the checksum of the downloaded
file matches with the checksum provided on the download page. There are many tools
available for different operating systems to compare checksums. Here, we are providing an
example of MD5 checksums using the command line and using one graphical tool, named
winMD5Sum, for the Windows operating system.

Perform the following steps for the command line execution:

Download the utility from 1.
Unzip the file under location2.

Installing and Upgrading MySQL 8 Chapter 2

[38]

Go to the command line and execute the following command:3.

 E:\Softwares\md5>md5.exe
 E:\Softwares\mysql-installer-community-5.7.19.0.msi
 2578BFC3C30273CEE42D77583B8596B5
 E:\Softwares\mysql-installer-community-5.7.19.0.msi

Perform the following steps for the graphical tool execution:

Open the link: .1.

Click on the Download WinMD5Sum option on the page. It will download2.
 on to your computer.

Run the downloaded and install it on your local3.
machine.

After successful installation, open the winMD5Sum tool. This opens one dialog4.
box where you have to select the downloaded file.

Click on the calculate button. This will calculate the MD5 checksum of the5.
downloaded file.

Enter the MD5 checksum available on the MySQL download page in the compare6.
text box and press the compare button.

This technique of integrity verification requires a public GPG build key. This key is
available from the URL. Once the build key is downloaded, you have
to perform the following steps:

Import the build key1.
Download the desired MySQL 8 package and its related signatures from the2.
MySQL site

Make sure the MySQL package name and its downloaded signature file
name are the same. Both the files must be placed under one common
storage location.

Installing and Upgrading MySQL 8 Chapter 2

[39]

Now, its time to execute the following command for verification:3.

 cmd> gpg --verify package_name.asc

For Microsoft Windows, some GUI tools also available for integrity checks. One of the most
popular is . To perform the same check on Linux, we have commands available
because the RPM package itself contains a GPG signature and MD5 checksum. Execute the
following command to verify the package:

cmd> rpm --checksig package_name.rpm

This technique of verification is more reliable than the MD5 checksum but it is very
complex and requires more effort for integrity checks.

Installing MySQL 8 on Microsoft Windows
MySQL is available for both 32-bit and 64-bit versions. There are different ways available to
install MySQL 8 on Microsoft Windows. The most common approach is to use an installer,
which installs and configures MySQL 8 on your local system.

Before installing MySQL Community 8.0 Server, make sure that the
Microsoft Visual C++ 2015 redistributable package has been installed on
the system.

MySQL 8 either runs as a standard application or runs as a Windows service. Use it, as the
service enables users to control and measure operations using the Windows service
management tool. Three major distribution formats are available for each platform:

Installer distribution: This includes the MySQL 8 server along with other
products such as MySQL Workbench, MySQL for Excel, and MySQL Notifier. An
installer is also useful for upgrading products into other versions.
Source distribution: As the name implies, this contains all the source code along
with all the supported files. The Visual Studio compiler is required to make it
executable.
Binary distribution: This distribution is available in ZIP file format. It contains all
the required files except the installer. The user has to unpack the file into a
selected directory.

Installing and Upgrading MySQL 8 Chapter 2

[40]

Windows-specific considerations
Before installing MySQL 8 on Microsoft Windows consider following points:

Antivirus software: As we know, antivirus software uses the fingerprinting
technique, which will consider rapidly changed files as a potential security risk.
In MySQL 8, there are some directories that contain MySQL 8 related data and
temporary tables information and are updated frequently. So, there is a
possibility that antivirus software will consider those files as spam. This will
also impact performance.

Antivirus software provides configurations to exclude some of the directories, so
it is recommended to exclude the MySQL 8 data directory and temp directory.
MySQL 8, by default, stores temporary data into a Microsoft Windows temporary
directory. To change this default configuration in MySQL 8, refer to file's

 parameter.

Large table support: Use MySQL 8 on NTFS or any new filesystem to support
large tables whose size is more than 4 GB. For these larger tables, the user has to
define the and properties at the time of table
creation.

MySQL 8 installation layout
Microsoft Windows, by default, considers the directory for the MySQL
8 installation. However, we have a choice for the directory selection at the time of
installation. Whatever the location of the installation, the subdirectory structure after
installation remains same. For the Microsoft Window layout, refer to the following table:

Directory Contents of
Directory Notes

mysqld server,
client and utility
programs

Log files, databases
The Windows system
variable defaults
to

Example programs
and scripts

Installing and Upgrading MySQL 8 Chapter 2

[41]

Include ()
files

Libraries

Miscellaneous
support files,
including error
messages,
character set files,
sample
configuration files,
SQL for database
installation

You can learn more about this topic at
.

Choosing the right installation package
There are multiple options available for package formats while installing MySQL 8 on
Windows. MySQL provides a facility to debug the installation process using program
database (pdb) files. These files are available in a ZIP distribution:

The installer package: This is a wizard-based process and is easy to use. The
installer package is available for 32-bits only but can install MySQL 8 on the 64-
bit configuration also. It does not contain the debugging component of MYSQL;
we have to download it separately in the form of a ZIP file. The installer package
is available in two different formats:

Web Community: As the name implies, this is available for web
installation. It means the Internet is required for the installation
using the web community. Its size is approx 19 MB. Its name is
defined as MySQL-installer-community by the appending version.
Community: This package format is used for offline installation. Its
size is approx 301 MB. Its name is defined as MySQL-installer-web-
community by the appending version.

Installing and Upgrading MySQL 8 Chapter 2

[42]

An installer is the most common way for MySQL product installation and
upgrade.

The Noinstall Archives: This is a manual installation process that contains files
for the incomplete installation package. As it is a manual process, no GUI is
available. The user has to manually install and configure MySQL 8 and other
products if required. Unlike the installer, it provides two different files for 32-bit
and 64-bit configuration in a ZIP format.

The MySQL 8 installer
The MySQL 8 installer is mainly used to reduce the complexity of the installation process
along with the management of MySQL products running on the Windows platform. In the
product list, we can consider:

MySQL servers
MySQL applications
MySQL connectors
Documentation and samples

The MySQL 8 installer has two editions :

Community Edition: This can be downloaded at
. As described in previous section, both Web Community

and Community package formats are available for the installer.

Commercial Edition: Refer to to download the
Commercial Edition. The Commercial Edition contains all the products that are
available in the Community Edition along with the following products:

Workbench SE/EE
MySQL Enterprise backup
MySQL Enterprise firewall

Installing and Upgrading MySQL 8 Chapter 2

[43]

As mentioned previously, the installer will guide a user through the wizard. Once we start
the installer in our host machine it will detect already installed MySQL products and
consider them in a list of products to be managed. The following are the steps that are
required in the initial setup of the installer:

MySQL installer licensing and support authentication: This is the step where1.
the user must accept the license agreement before starting the MySQL 8
installation. After accepting the terms, the user is allowed to add, update, or
remove MySQL products. In the Commercial Edition, credentials are required to
unbundle products and must match with the user's Oracle account in the support
site.
Choosing a setup type: This is the step where the user must select MySQL2.
products for installation. The installer also provides the option of a predefined
setup, which contains a set of MySQL products. So, you have the flexibility of
selecting one setup type as per your requirements. The following are some setups
available in the installer.
Developer default: This installs the version of MySQL 8 server that was selected3.
at the time of download:

MySQL server
MySQL shell
MySQL router
MySQL Workbench
MySQL for Visual Studio
MySQL for Excel
MySQL notifier
MySQL connectors
MySQL utilities
MySQL documentation
MySQL samples and examples

Server only: This installs only the MySQL server.4.
Client only: This is the same as the developer default setup type, except it does5.
not contain the MySQL 8 server or any client-specific package added to it.

Installing and Upgrading MySQL 8 Chapter 2

[44]

Full: This installs all the available products of MySQL, such as ,6.
, , and a few more.

Custom: This option installs only those products that are selected by the user7.
from the catalog. Here, the user has the freedom to choose only the required
products, rather than installing the complete bundle of products.
Path conflicts: When the hosting system already contains a MySQL product and8.
the user is trying to install a different version of that MySQL product on the same
path, then the installer will show a path conflict error in the wizard. The installer
enables the user to take action on the path conflict in the following ways:

Choose a different location using the Browse button from the wizard
Choose a different setup type or version by custom selection
Overwrite the existing folder by moving on to the next step
Cancel the wizard steps, delete existing products, and start the installer
again

Check requirements: Each MySQL product has a file9.
attached to it, which contains all the prerequisite software lists. During the initial
setup, the installer will check the availability of the required software and prompt
the user to update the host in case of missing requirements.
MySQL installer configuration files: The installer configuration files are located10.
at . The following are the configuration file details:

File or Folder Description Folder Hierarchy

MySQL installer for
Windows

This folder contains all of the files
needed to run MySQL installer
and ,
a command-line program with
similar functionality.

The folder has one file
for each version of MySQL server.

 files contain keys and
formulas to calculate some values
dynamically.

This file contains the
prerequisites for every product to
be installed.

Installing and Upgrading MySQL 8 Chapter 2

[45]

The file (or product
catalog) contains a list of all
products available for download.

The folder
contains all standalone files
bundled with the full package or
downloaded afterward.

Reference:

The MySQL installer follows a workflow for each product:

Product download: The installer will download all the required product MSI files1.
into the folder.
Product installation: The installer manages the status of each product by Ready |2.
Install | Installing | Complete.
Product configuration: This phase uses a step-by-step configuration process for3.
products. The installer will change the status from Ready | Configure.
Installation complete: This finalizes the installation and the user can start using4.
the application after the installation.

There are two options available for high-availability implementation in MySQL 8, using the
installer:

Standalone MySQL server / Classic MySQL replication (default): This option
configures multiple servers manually or uses the latest version of MySQL Shell to
configure the cluster.
InnoDB cluster sandbox test setup (for testing only): This is also known as the
sandbox cluster. This option allows you to create an cluster on the local
system for testing only. The MySQL installer toolbar provides configurations for
a number of instances in clustering.

Cluster nodes run on different ports. After configuration, click on the Summary tab to get
the port details of each cluster.

Installing and Upgrading MySQL 8 Chapter 2

[46]

The MySQL installer performs some basic configurations for the MySQL 8 server,
including:

The installer will create a configuration file for the MySQL 8 server. File
contents will be decided as per the selected options of the installation process.
By default, the installer will add the Windows service for the MySQL 8 server.
The required default installation and data paths of the MySQL 8 server will be
provided by the installer.
The installer will create some user accounts with roles and permissions for
MySQL 8 server. It can create a Windows user with limited privileges to the
MySQL 8 server.
Using Show Advanced Options, MySQL installer allows for defining custom
paths for logging options. For example, you can configure the separate path for
an error log, show a query log, and much more.

The following server configuration is required for MySQL 8:

Server configuration type: Based on the server configuration type, system
resources will be assigned to the MySQL 8 server.
Development: By considering the host as a personal workstation, it configures
MySQL 8 to use the minimum amount of memory.
Server: As servers, some other applications are also running on the machine, so it
will configure a medium amount of memory.
Dedicated: In case of a dedicated machine for the MySQL 8 server, this option
configures the maximum use of available memory for the MySQL 8 server.
Connectivity: This option indicates the connection for the MySQL 8 server. The
following options are available:

TCP/IP: This option enables TCP/IP connection with MySQL 8.
Users are allowed to define the port number along with the firewall
setting for the port on the network access.
Named pipe: This option allows you to define the pipeline name
for the connection.
Shared memory: This allows you to define the memory name for
the MySQL 8 server.

Advanced configuration: This configuration enables additional logging features
which will manage logs in individual files. Users are allowed to configure paths
for individual files. For example, configuring a custom path for a binary log.

Installing and Upgrading MySQL 8 Chapter 2

[47]

MySQL Enterprise Firewall: This option is used for the Commercial Edition
only. Check the Enable Enterprise Firewall option to enable the firewall.
Accounts and roles: Accounts and roles are used to manage access rights for the
users. During the installation process, the MySQL installer allows you to set root
account passwords and user accounts.

Root account password: It is required to enter root password
during the installation process. The installer will check the
password strength and give a warning if there is a violation of a
predefined policy.
MySQL user accounts: This is an optional step where a new
MySQL user account defines with existing user roles. Predefined
roles have their own privileges.

Windows service: The MySQL 8 service can be configured in the following two
ways:

Configure as a Window service: This is the default option selected
during the installation process. It further provides two options:

Start service on system startup: This option is
selected by default and will start the MySQL 8
service automatically at system startup.
Run Window service as: This option allows
attaching the user account with the MySQL 8 service.
By default, the system account is selected where the
service is considered as network service. With a
custom user, it first sets privileges for the user by
using the local security policy in Microsoft
Windows.

Configure as an executable program: This deselects the Windows
Service option during the installation process.

Plugins and extensions: This step is available for a new installation. If the user
wants to upgrade from an older MySQL version, then the user needs to choose
the Reconfigure option in the MySQL installer.
Advance options: To enable this option, select the Show advance configuration
check box in the Type and Networking step. This option enables the user to
define a specific path for log files, such as an error log, a general log, a slow query
log, and bin log.

Installing and Upgrading MySQL 8 Chapter 2

[48]

Apply server configuration: Once all the configuration has been done by the user
in the MySQL installer, click on the Execute button to make it available. When the
installation has been completed by pressing the Finish button, the MySQL
installer and all the MySQL installed products are available in the Windows Start
menu.

This section contains details on how the MySQL installer handles product catalogs and
manages dashboards.

The product catalog is a component where a list of all the released MySQL products is
available, which support Microsoft Windows. The MySQL installer updates the catalog on a
daily basis and the option is also available for the manual update of the catalog. The
product catalog performs the following actions to manage the list:

Populate the available products list on a regular basis
Check for the product's update as installed in the host

The product catalog lists all the products that are available in the development, general, or
any minor release.

The MySQL installer dashboard provides the facility to manage MySQL products
installation in the host workstation. The following are the ways to manage products using
the dashboard:

The MySQL installer provides a configuration to update the catalog at specific
time intervals. The user can enable or disable automatic updates by the
configuration. The dashboard shows a special icon at the product level when its
new version is available.
The user can manage products with the following actions:

Add: Use to download and install one or more products.
Modify: Use to add or remove features in installed products.
Upgrade: Use to upgrade products. Make sure the checkbox is
selected at the product level for upgrading in the upgradeable
products pane.
Remove: Use to uninstall products from the populated list.

The dashboard provides the reconfiguration feature, where the user can change
already configured options and values. After applying changes, the MySQL
installer will stop the MySQL 8 server and restart it again to make them available.

Installing and Upgrading MySQL 8 Chapter 2

[49]

The dashboard provides the facility to download the products catalog without
upgrading it. The Do not update at this time checkbox is available to check
current changes related to products without downloading. To perform this
functionality, select the checkbox and click on the catalog link.

The MySQL installer includes the M file, which provides the
functionality to execute commands using Command Prompt. This functionality is installed
by default during the initial installation of the MySQL installer. There are some commands
available to manage MySQL products. To see the details of these commands, execute the

 command.

MySQL 8 installation using a ZIP file
To install MySQL 8 using a ZIP archive, perform the following steps:

Extract install archive: In this step, select a specific directory for the extraction of1.
the installed MySQL 8 archive. Microsoft Windows by default installs it into
the location. At the time of the installation process, make sure the
logged in user has administrative rights.

Make sure no MySQL service is running during the installation of MySQL
as a Window service.
During the command execution type -- install first and then specify --
default file option; otherwise, the file will start the MySQL 8
server.

Create option file: The option file is the place where the user can configure2.
commands related to MySQL 8. This file is referred to by MySQL 8 on every
server startup. In Microsoft Windows, when the MySQL 8 server starts, it
searches for an option file in the Windows directory and in the MySQL 8 base
directory. Mainly and files are used as option files and they are
in plain text form.

Installing and Upgrading MySQL 8 Chapter 2

[50]

With the Windows operating system:

To get directory, refer to the environment1.
variable.

 is available at the default location of MySQL server2.
installation.
Path names in options file are specified using forward slashes3.
rather than backslashes. If you want to use backslashes then
double them.

As mentioned, the option file is the same as a normal text file; the user can modify
it using any text editor. Consider an example where the MySQL 8 installation
directory and data directory are at different locations. In this case, the user must
mention the location of both the directories in the options file under the
section:

 [mysqld]
 # set basedir to your installation path
 basedir=E:\\mysql
 # set datadir to the location of your data directory
 datadir=E:\\mydata\\data

Remember, a ZIP archive does not initialize data directory. To initialize
data directory and populate tables in the MySQL 8 system database, the
user has to execute the command. This process will be
covered in the later section on post-installation.

Select server type: The following two servers are available for Microsoft3.
Windows in MySQL 8:

Binary Description

mysqld Optimized binary with named-pipe support

mysqld-debug
Like , but compiled with full debugging and automatic memory
allocation checking

MySQL 8 supports TCP/IP on all Microsoft Windows platforms with
pipes. But the default option is in normal mode because the pipes option
has a performance impact. It slows down the overall performance. You
can learn more about this at:

.

Installing and Upgrading MySQL 8 Chapter 2

[51]

Start MySQL 8 server: This step describes how to start the MySQL 8 server for4.
the first time. It can be started using the command line or as a Windows service.
To start it using the command line, execute the following command. Assume that
MySQL 8 is installed under the folder:

 E:\> E:\MySQL\MySQL Server 8\bin\mysqld

After the execution of the preceding command, the user can see a list of
messages that help the user to identify an error if one exists. The last two
lines in Command Prompt are displayed as follows. They indicate that the
MySQL 8 service has started and is ready for the server-client request:

 mysqld: ready for connections
 Version: '8.0.4' socket: '' port: 3306

The user can omit the console for error logs because MySQL 8 is maintaining
logs in separate log files under a data directory with the
extension. When starting the MySQL 8 server, the user has to execute same
command each time, using Command Prompt. To stop the MySQL 8 server,
execute the following command:

 E:\> E:\MySQL\MySQL Server 8\bin\mysqladmin -u root shutdown

Initially, when MySQL 8 is installed, the root account password is not set.
After first starting the MySQL 8 server, the user has to set it manually. Steps
to set the password are described in detail under the post-installation section.

The path of and may vary depending on the
installation location of MySQL 8. If the password was set on the root user
of the MySQL 8 server then execute the command with the -p option and
provide a password for successful execution.

Set the environment variable for MySQL 8. As mentioned in the preceding5.
section, we have written the command with the complete path of the MySQL 8
server installation. To simplify this command, we have to define the environment
variable for MySQL 8 in Microsoft Windows by performing the following steps
(in Windows 10):

Right click on My Compute and select Properties:1.

Click on Advance system settings.1.
Click on the Environment Variables button available at the2.
right bottom side.
Go to System Variables section and find the PATH variable.3.

Installing and Upgrading MySQL 8 Chapter 2

[52]

Select the PATH variable and click on the Edit button.4.
A new dialog box opens; click on the New button and enter5.
the path of the MySQL 8 server installation up to the file
location. For example,
Press the OK button in all the related dialog boxes to apply6.
this change in Windows.

After applying the environment variable, the user is able to execute any
MySQL command in Command Prompt without giving the complete path of
MySQL 8.

Start MySQL 8 as a Windows service: It is recommended to use MySQL 8 as a6.
Windows service because it will start when Windows starts and stop when
Windows stops. There is no need to start the MySQL 8 service explicitly in this
case. Use the Microsoft Windows services utility to manage the MySQL 8 service.
To install the MySQL server as a service, use the following command:

 E:\> E:\MySQL\MySQL Server 8\bin\mysqld --install

This command has the following options for additional arguments:

If we are not defining a service name, then the command will consider the default
service as MySQL.

Use the argument to specify the option file name, which
contains the service name

The user can also use the option followed by the service name

Use the following command to set the MySQL service as a Window service and refer to the
file as the option file to refer to the MySQL 8 configuration:

E:\> E:\MySQL\MySQL Server 8\bin\mysqld --install MySQL --defaults-
file=E:\my-opts.cnf

Installing and Upgrading MySQL 8 Chapter 2

[53]

So far, we have discussed the MySQL 8 service as a Windows service but there is a
command available with the option to start MySQL 8 without the
Windows service. To remove the MySQL 8 service, use the command, as follows:

E:\> E:\MySQL\MySQL Server 8\bin\mysqld --install-manual
E:\> "E:\MySQL\MySQL Server 8\bin\mysqld" --remove

Installing MySQL 8 on Linux
For MySQL 8 installation on Linux, various solutions are available. The user can choose any
of the distributions for his requirement. Th following are the different distributions and
among them, three of which are described in detail:

Installation using the repository
Installation using the repository
Installation using the repository
Installation using the package
Installation using the package
Installation using Docker
Installation using the Native Software repository
Installation using Juju

Installation using the Yum repository
Perform the following steps to install MySQL 8 using the repository:

Download the repository from the 1.
 link.

Select the MySQL package for your installation.2.
Execute the installation command to add the MySQL repository into your3.

 repository:

 shell> sudo yum localinstall package_name.rpm
 shell> yum repolist enabled | grep "mysql.*-community.*"

Replace with the actual name of the RPM package. After
installation, execute the second command to check whether the repository has
properly installed.

Installing and Upgrading MySQL 8 Chapter 2

[54]

Select Release Series: The MySQL Yum repository contains various series of4.
releases for the installation. Execute the following command to check the list of
the available series:

 shell> yum repolist all | grep mysql

In the MySQL Yum repository, the latest GA series was enabled by default for
installation but apart from that other development series are also available in the
disabled state. For the development series installation, execute the following two
commands to disable the GA release and to enable the require development
series:

 shell> sudo yum-config-manager --disable mysql57-community
 shell> sudo yum-config-manager --enable mysql80-community

Another way of defining the release series is using the manual entry in the
repository file. For example, add following entry into
the file:

 mysql80-community]
 name=MySQL 8.0 Community Server
baseurl=http://repo.mysql.com/yum/mysql-8.0-community/el/6/$basearch/
 enabled=1

Here, means enable this series and means disable this
series. Yum allows only one enabled sub-repository for one release at a time; if
multiple release series are enabled then only the latest series will be selected by
the Yum repository. After saving the changes in the configuration file, execute the
following command to check that the correct sub-repositories have been selected
or not:

 shell> yum repolist enabled | grep mysql

Installation of MySQL 8: Execute the following command:5.

 shell> sudo yum install mysql-community-server

It will install the MySQL 8 server with all its dependencies, such as the client, the
character sets for client, and the required libraries.

Start MySQL 8 server: The first command will start the MySQL service and the6.
second command shows the current status of the MySQL service:

 shell> sudo service mysqld start
 shell> sudo service mysqld status

Installing and Upgrading MySQL 8 Chapter 2

[55]

During the initial startup, the following tasks are performed:

The server is initialized
The SSL certificate and key files are generated in the data directory
The plugins name is installed and enabled
A super account is created

Installation using the RPM package
RPM packages are available from the Yum repository and SLES repository for MySQL 8. It
is the recommended way of installation for MySQL 8. RPM packages follow
the syntax, where distribution and
arch indicate the Linux distribution and processor respectively. The package is a
bundle of all the required packages and they are dependent on one another. The RPM
package follows the same steps as discussed in the Yum repository installation. In the RPM-
based system, the MySQL service is not automatically started. To start it manually, execute
the following command:

shell> sudo service mysqld start

As with other installations, the RPM package installation also creates files and directories in
the system on following path :

Files or Resources Location

Client programs and scripts

mysqld server

Configuration file

Data directory

Error log file
For RHEL, Oracle Linux, CentOS, or Fedora
platforms: For
SLES:

Value of

System V script
For RHEL, Oracle Linux, CentOS, or Fedora
platforms: For
SLES:

Installing and Upgrading MySQL 8 Chapter 2

[56]

Systemd service For RHEL, Oracle Linux, CentOS, or Fedora
platforms: For SLES:

Pid file

Keyring directory

Unix manual pages

Include () files

Libraries

Miscellaneous support files (for
example, error messages, and
character set files)

Installation using the Debian package
 packages are available for the MySQL APT repository or from the MySQL

Developer Zone's download area. Each MySQL component has its own package for
the installation but a tarball bundle is prepared to combine different packages into
a single bundle. The tarball naming convention is

 where represents the MySQL version, indicates the Linux
distribution version, and CPU indicates the processor. To install MySQL 8 using the
package, perform the following steps:

Download the required tar package from the MySQL site.1.
Unpack the package with the following command:2.

 shell> tar -xvf mysql-server_MVER-DVER_CPU.deb-bundle.tar

The library may be required, so execute the command for the library3.
installation:

 shell> sudo apt-get install libaio1

Execute the command for the pre-configuration of the MySQL server:4.

 shell> sudo dpkg-preconfigure mysql-community-server_*.deb

Installing and Upgrading MySQL 8 Chapter 2

[57]

This is the process implemented before installation, which applies on the set of
 packages and other packages that use with their config script to

examine the system. During this process, the system will ask for the root user
password of the MySQL 8 installation.

Install the dependencies required for the MySQL 8 installation:5.

 shell>sudo apt-get -f install

The MySQL 8 configuration files are available under the following path in
the package:

Configuration files are stored under
The data directory is stored under
Binaries, libraries, and headers are stored under and under

Post-installation setup for MySQL 8
Post-installation is a process that describes the basic steps or configuration that the user has
to perform after MySQL 8 installation.

Data directory initialization
In previous sections, we have seen different methods of MySQL 8 installation. Some of the
methods will automatically create a data directory for MySQL 8. For generic binary
distribution and source distribution, data directory creation is a must. Data directory
initialization is performed by either of the following two commands:

E:\> bin\mysqld -initialize
E:\> bin\mysqld --initialize-insecure

Either of these commands can be chosen based on the user's requirements to generate a
random initial password or not. These two commands can be used by the user, regardless of
the platform for the data directory initialization. Initializing is a way in which random
initial root passwords will be generated. In the case of , no
password will be generated.

Installing and Upgrading MySQL 8 Chapter 2

[58]

Another option is to specify the installation directory and data directory by using command
line arguments, as shown in the following command:

E:\> bin\mysqld --initialize --basedir E:\mysql --datadir :\mydata\data

The user can also specify these directories in a separate file, known as the file,
under the parameter. This configuration is described in detail under the file
section in this chapter. When the user executes either of the commands, performs
the following steps in the execution:

It checks the existence of the data directory1.

The MySQL 8 server creates a system database and its table, grant tables, help2.
tables, and time zone tables

It initializes a system tablespace with data structure for tables3.

The superuser account and other reserved accounts will be4.
created

Securing the initial MySQL account
This section explains how to assign a password to the root account during the first
execution of the MySQL 8 server on the workstation. When the user installs MySQL 8 using
the installer in Windows or using the package in Linux, the installation process
provides the option to enter a password and assign that password to the root account by
itself. But with the package, the random password is generated for the root account
which is written into the server log file during the installation process. The initial root
account may or may not have a password. To assign a password at the initial stage, use
either of the following procedures:

If the root account has a random password:
Look in the server log files to get an auto-generated password.1.
Connect to the MySQL 8 server with the auto-generated password by2.
executing the following command:

 shell> mysql -u root -p
 Enter password: (enter the random root password here)

Installing and Upgrading MySQL 8 Chapter 2

[59]

Set the new password for the account:

 mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'newPassword';

If the root account has no password:
Connect with the MySQL 8 server without a password:1.

 mysql -u root

2. Set the new password for the account:

 mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'newPassword';

After assigning the new password, you have to use the new password whenever you want
to connect with MySQL 8.

Starting and troubleshooting MySQL 8 services
This section explains how to start the MySQL 8 server and how to troubleshoot problems
during the start process. After successful installation of the MySQL 8 server on the Linux
system, execute the following command to start the MySQL 8 service:

shell> sudo service mysqld start

To check in detail whether the service has started or not refer to the log file. You can use the
status command to check the status of the MySQL 8 service:

shell> sudo service mysqld status

After getting a message of the service starting/running, you can connect with MySQL 8 by
using the following command:

shell> mysql -uroot -p

Installing and Upgrading MySQL 8 Chapter 2

[60]

The preceding command prompts for the password, so enter the password and press the
Enter key. The MySQL prompt will be displayed where you can enter commands for
execution. During the execution of the preceding commands, some common problems may
arrive, so here we will present the following troubleshooting suggestions:

Check into the files to find the exact error that occurred during the service1.
startup. As mentioned in the previous section, the file and files are
located under the data directory. Its naming conventions are
and . By reading the last few lines of the file, you can identify the
problem that occurred during the last command executed.

Check that the required port/socket is available.The following errors will indicate2.
that the required ports and sockets are not available for use, meaning that they
are in use with other programs. To identify this, track all the problems by
disabling the service. Another reason is your firewall settings are blocking the
access of the required port, so modify the firewall setting and give permission to
the required ports:

Can't start server: Bind on the TCP/IP port: the address is already in
use
Can't start server: Bind on the Unix socket

Defining the specific parameters into the file is recommended. If the3.
parameters are not define into the file then MySQL 8 will consider the default
parameters, so refer to all the available parameters provided by MySQL 8 before
using it.

Verify that the directory path and permission are properly defined or not.4.
This directory is used as the current directory for MySQL 8. To find the currently
set path of the data directory, execute the command with the

 command. If the directory is located at a different place other
than the MySQL installation directory, then use the option with
the command. For permission, you will get an Error code 13, which
indicates the permission denied error. To overcome this issue, change the
permission of the required files and folder. Another way is to log in with the root
user, but this is not possible in all the scenarios, so the first approach is
recommended to overcome the permission issue.

Installing and Upgrading MySQL 8 Chapter 2

[61]

Executing commands to test the server
After performing the preceding steps, now your MySQL 8 service has started and has
connected with a specified user. Now, it's time to check your MySQL 8 server works
satisfactorily or not by executing the following basic commands:

shell> bin/mysqladmin version

This command lists all the information related to the installed MySQL server, which
contains its version details, protocol version, and much more. Execute the following
commands after connecting with MySQL 8 to check that information has been properly
retrieved from the server:

mysql>mysqlshow
mysql>mysqlshow mysql

The first command shows the list of databases available in the server. Lists may vary as per
the system, but and must be available in the list. The second
command lists all the tables created under the database.

Upgrading MySQL 8
In previous versions of MySQL, the data dictionary is stored in the file-based system while
in MySQL 8 it is stored in the data dictionary structure. So, the up-gradation process will
move the file-based structure into the data dictionary structure. Up-gradation into MySQL 8
is possible from the MYSQL 5.7 GA version, which means from 5.7.9 or higher. For non-GA
versions of 5.7, up-gradation is not possible. Before starting the up-gradation process, the
following points need to be understood.

Upgrading methods
Two methods are in use for up-gradation that are differentiated by their implementation
method. Let us discuss these methods in detail.

In-place upgrade of MySQL
As the name implies, this is a process where we replace the existing old version package of
MySQL with a newer version. Before starting, make sure the old server has stop and after
replacing the package, restart the MySQL 8 server on the existing data directory with the
mySQL upgrade.

Installing and Upgrading MySQL 8 Chapter 2

[62]

Perform the following steps for in-place upgradation:

With an encrypted tablespace, rotate the master key with the following1.
command:

 ALTER INSTANCE ROTATE INNODB MASTER KEY;

Configure the shutdown parameters with the 2.
command:

 SET GLOBAL innodb_fast_shutdown = 1; -- fast shutdown
 SET GLOBAL innodb_fast_shutdown = 0; -- slow shutdown

Shut down the old MySQL version, using the following command:3.

 mysqladmin -u root -p shutdown

It is the up-gradation process where the user will replace the old package with4.
the new MySQL 8 package.
Start the MySQL 8 server, using the existing directory.5.

On the server startup, it will check for dictionary tables. If they are not
present then the server creates tables in the directory, and populates
metadata and processes with its normal startup sequence. If these steps are
successfully executed then the server performs cleanup by creating
the directory. In addition, the server renames events and
proc tables into and . If this step fails then
server will revert all the changes.

After successful completion when MySQL 8 has started, execute6.
:

 mysql_upgrade -u root -p

After up-gradation, shut down and restart the server to check whether all the7.
changes have been applied or not.

Installing and Upgrading MySQL 8 Chapter 2

[63]

Logical upgrade for MySQL 8
Export or take a dump of the old MySQL version. Install the new MySQL 8 version and
load the dump file into the new MySQL 8 version with the MySQL upgrade. Perform the
following steps to apply the logical up-gradation:

Use the command to export the data:1.

 mysqldump -u root -p --add-drop-table --routines --events --all-
databases --
 force > data-for-upgrade.sql

and options are used to include stored routines
and events in the dump file and define these options explicitly to get an
effect.

Shut down the old MySQL server.2.
Install the new version of MySQL 8.3.
Initialize the directory:4.

 mysqld --initialize --datadir=/path/to/8.0-datadir

Start the MySQL 8 server with the new directory:5.

 mysqld_safe --user=mysql --datadir=/path/to/8.0-datadir

Load the SQL dump file into the new database:6.

 mysql -u root -p --force < data-for-upgrade.sql

Upgrade MySQL with the following command:7.

 mysql_upgrade -u root -p

Upgrading prerequisites for MySQL 5.7
Before starting up-gradation, perform the following checks to avoid failure during later
stages:

Execute the following command to check there is no absolute datatypes or1.
function:

 mysqlcheck -u root -p--all-databases--check-upgrade

Installing and Upgrading MySQL 8 Chapter 2

[64]

Check for native partitioning support, using the following command:2.

 SELECT TABLE_SCHEMA, TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE ENGINE NOT IN ('innodb', 'ndbcluster')
 AND CREATE_OPTIONS LIKE '%partitioned%';

This command will list tables that use the storage engine which doesn't support
native partitioning. After executing the preceding query, if any table is found then
remove the partitioning on the table and change the storage engine, as shown in
the following command:

 ALTER TABLE table_name ENGINE = INNODB;
 ALTER TABLE table_name REMOVE PARTITIONING;

Make sure MySQL 5.7 does not contains any table which is used as a data3.
dictionary in MySQL 8.
Check that the foreign key constraint name doesn't contains more than 644.
characters, using the following code:

 SELECT CONSTRAINT_SCHEMA, TABLE_NAME, CONSTRAINT_NAME
 FROM INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS
 WHERE LENGTH(CONSTRAINT_NAME) > 64;

Make sure MySQL 5.7 doesn't contain features that are not available in MySQL 8,5.
for example:

If a table used a storage engine that is not supported by MySQL 8, so
was altered with the supported storage engine
A configuration change where you use an option or variable that is not
available in MySQL 8

MySQL 8 downgrading
Downgrading is the reverse process of up-gradation, where we will move from a higher
version of MySQL to a lower version of MySQL. In this section, we cover how to
downgrade from MySQL 8 to MySQL 5.7. A downgrade that does not support a version
skip means that downgrading from MySQL 8 to MySQL 5.6 is not supported. Within the
same series where a version skip is supported means you can downgrade from MySQL 8.z
to MySQL 8.x by skipping the MySQL 8.y version. First, we will explain some basic points
that need to be understood before starting downgrading.

Installing and Upgrading MySQL 8 Chapter 2

[65]

Downgrading methods
An in-place downgrade means shutting down the new version of MySQL 8, replacing its
binaries or packages with the old version of MySQL. Restarting the old version means
MySQL 5.7 on the existing data directory. This downgrade method is supported between
GA versions within the same series. Perform the following steps for an in-place downgrade:

Shut down the newer version of MySQL 8.1.
After the shutdown, remove the redo log files from the directory to2.
avoid downgrade issues:

 rm ib_logfile*

Position the older version of MySQL in place of the newer version binaries or3.
package.
Start the downgraded version of MySQL by specifying the directory, using4.
the following command:

 mysqld_safe --user=mysql --datadir=/path/to/existing-datadir

Execute the command:5.

 mysql_upgrade -u root -p

Shut down and restart the MySQL server again to check if all the changes have6.
been applied or not.

For MySQL installation based on APT, SLES, and the Yum repository
installations, in-place downgrades are not supported

Logical downgrade
Take a dump of all the tables using in the new version. Install the new version
of MySQL 8 with the new database and load the old version dump into the new database.
This downgrade is also supported within the same GA release series and for the release
level. MySQL 8.0 to 5.7 downgrade is supported using the logical downgrade method.

Installing and Upgrading MySQL 8 Chapter 2

[66]

To perform the logical downgrade, follow these steps:

Take a dump of the database, using the following code:1.

 mysqldump -u root -p --add-drop-table --routines --events
 --all-databases --force > data-for-downgrade.sql

Shut down the MySQL server, as shown here:2.

 mysqladmin -u root -p shutdown

Initialize the new directory to the older MySQL version, using the following3.
code:

 mysqld --initialize --user=mysql

Start older MySQL with the new directory, using the following code:4.

 mysqld_safe --user=mysql --datadir=/path/to/new-datadir

Load the dump into the older MySQL sever, as shown here:5.

 mysql -u root -p --force < data-for-upgrade.sql

Execute the :6.

 mysql_upgrade -u root -p

Restart the server to apply all the changes, using the following code:7.

 mysqladmin -u root -p shutdown
 mysqld_safe --user=mysql --datadir=/path/to/new-datadir

Manual changes required before downgrading
This section describes some of the changes that need to be executed manually by the user
before downgrading:

System table changes: MySQL 5.7 manages individual tablespace for system
tables while in MySQL 8, system tables were migrated into a single tablespace file
known as . So, before downgrading to MySQL 5.7, move the system
table back to the individual tablespace files with the following commands:

 ALTER TABLE mysql.columns_priv TABLESPACE=innodb_file_per_table;

Installing and Upgrading MySQL 8 Chapter 2

[67]

 ALTER TABLE mysql.component TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.db TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.default_roles TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.engine_cost TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.func TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.general_log TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.global_grants TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.gtid_executed TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.help_category TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.help_keyword TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.help_relation TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.help_topic TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.innodb_index_stats
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.innodb_table_stats
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.plugin TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.procs_priv TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.proxies_priv TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.role_edges TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.server_cost TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.servers TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.slave_master_info
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.slave_relay_log_info
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.slave_worker_info
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.slow_log TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.tables_priv TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.time_zone TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.time_zone_leap_second
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.time_zone_name TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.time_zone_transition
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.time_zone_transition_type
TABLESPACE=innodb_file_per_table;
 ALTER TABLE mysql.user TABLESPACE=innodb_file_per_table;

Installing and Upgrading MySQL 8 Chapter 2

[68]

In MySQL 8.0.2, the storage engine of six system tables changes from MyISAM to
InnoDB. Their names are , , , ,
and . So, before downgrading, change the storage engine of these tables by
executing the following command. Apply the same command for the remaining
tables:

 ALTER TABLE mysql.columns_priv ENGINE='MyISAM'
 STATS_PERSISTENT=DEFAULT

In MySQL 8.0.2, was changed by adding two tables, so, before
downgrading to MySQL 5.7, drop those columns from the table:

 ALTER TABLE mysql.user drop Create_role_priv;
 ALTER TABLE mysql.user drop Drop_role_priv;

InnoDB changes: Before starting in-place downgrading, shut down MySQL
using the option. Shut down the server
with . Removing the redo logs is recommended for
in-place downgrading.

Summary
To choose the proper software with its version for development is an important phase,
right? In this chapter, we understood how to select the proper version of MySQL 8 by
understanding its version pattern. We also learned the execution steps of MySQL 8
installation using the installer and command line in Microsoft Windows. For the Linux
platform, we installed MySQL 8 using the Yum repository, RPM package, and Debian
package. Post-installation describes the basic configuration to start with MySQL 8. Finally,
we explained how to upgrade and downgrade from MySQL 8 with execution steps.

In the next chapter, we will learn about various programs and utilities available for MySQL
8. It mainly focuses on how to use these programs for MySQL 8 along with command-line
executions.

33
MySQL 8 – Using Programs

and Utilities
In the previous chapter, we installed MySQL 8 and got to know alternative ways to install
MySQL 8. We also learned how to migrate and upgrade to MySQL 8. The following are the
summary topics explained in the previous chapter:

MySQL 8 Installation
Post Installation Setup
MySQL 8 Upgrading
MySQL 8 Downgrading

In this chapter, the reader will learn about various programs and utilities available in
MySQL 8. The reader will also get to know how to use programs and utilities in MySQL 8.
The reader will learn about using command-line programs used in MySQL 8. The reader
will learn the syntax for the program and how they are being used with specific options to
perform specific operations. The following is a summary of the topics covered in this
chapter.

Overview of MySQL 8 programs
MySQL 8 command-line programs
MySQL 8 client programs
MySQL 8 administrative programs
MySQL 8 environment variables
MySQL GUI tools

MySQL 8 – Using Programs and Utilities Chapter 3

[70]

Overview of MySQL 8 programs
There are various different programs in the MySQL installation. A brief overview of these
programs is covered in this section. Upcoming sections will cover a detailed description for
each of them and the description will have its own invocation syntax and options to
perform the operation.

Most of the MySQL distribution will have all these programs, apart from those that are
platform-specific; for example, server startup script not used in Windows. RPM (Red-hat
package manager) distributions are very specialized and are part of the exceptions to all
programs available in distributions. What is specialized about RPM distributions? Well,
they have different programs for different operations; for example, one program will be
executed for the server, a second program will be executed for the client, and so on. If it
looks like one or more programs is missing in your installation, then don't worry. See

, Installing and Upgrading MySQL 8, for information on the types of distributions
available and what is included in them. It might be the case that the distribution which you
have does not include all the programs and you need to install an additional package.

Each of the MySQL 8 programs will have their own options, but most of them will have a
option that can be used to retrieve descriptions about all the options that the

program has. For example, try on the command line (that is your shell or
Command Prompt).

The description on the first few lines will have specific version information about MySQL
that is installed along with operating system and license information. The next line will start
with , that is, a syntax of the program command
usage, and later lines describe the options available to be used along with them as per the
usage description. This was just a glimpse of what we will be looking at: program details
with options, their usages and default options, overriding default option values on various
command-line programs, client programs, administrative programs, and so on.

For detailed information about executing programs and specifying program options in the
command line see the MySQL 8 command line programs section, which will be followed by a
list of installations, client and server start up, and other utility programs.

MySQL 8 – Using Programs and Utilities Chapter 3

[71]

MySQL programs in brief
Let us start with the MySQL server programs first!!

 is the first program, also considered to be the main program for MySQL
installation. It works with several scripts to help with starting and stopping the server. The
following are the programs divided into categories based on their operational scope:

Startup programs
Installation/upgradation programs
Client programs
Administrative and utilities programs

Startup programs
The startup programs are the programs that are used during MySQL start up and initiate
the required background services based on the configuration.

: This is the MySQL server daemon. All the other client programs interact
with the database using this server program. It must be started and be running at
all times except for maintenance.

: This is one of the server startup program scripts and attempts to
start the program.

: Another server startup program script, which is used in those
systems, uses V-style run directories containing scripts. It starts system services at
particular run levels. It calls to start the MySQL server.

: As the name suggests, this is a startup program script to start or
stop multiple MySQL servers on the system.

Installation/upgradation programs
The programs regarding the operations of installation and upgradation are listed here with
their respective usage:

: This program is used to compile error message files from error source
files and it is used during the MySQL build or install operation.

: This program is used to update the security
configuration in order to enable security during installation of MySQL.

MySQL 8 – Using Programs and Utilities Chapter 3

[72]

: As the name suggests, this program is for generating
 certificates and key files and files, if those files are missing

and are required to support secure connections.
: This program gets the content of the host system zone

info database (files describing time zones) and loads the information in the time
zone tables of MySQL.

: As the name suggests, it is used for upgrade operations. It
checks for any incompatibility and makes repairs if it is necessary. It also updates
the grant tables with any changes in new versions of MySQL.

Client programs
The client programs are among the programs that are commonly used to connect to the
MySQL database and perform different query operations:

: This is the most commonly used program. It is an interactive command-
line tool for executing SQL statements directly or using a file in batch mode.
Detailed information is followed in the next MySQL 8 command line
programs section.

: This is the program responsible for performing various
administrative operations, such as creating or dropping databases, flushing
tables, reloading grant tables, reopening log files, and much more. The program
is also used to retrieve information from the server, such as version, process, and
status.

: This is the client program used for maintenance of tables,
performing analysis, checks, repairs, and optimizing tables.

: This is the client program that dumps the MySQL database to a file
in text, SQL, or XML formats. It is commonly known as a database back up
program.

: This is the client program that imports text files into respective
tables using . It is also commonly known as the data import
program.

: The client program which dumps MySQL database into SQL file.
: The client that shows information of databases, tables, columns, and

indexes.
: This is the client program that is used to check client load capability

for the MySQL server. The program mimics multiple clients accessing the server.

MySQL 8 – Using Programs and Utilities Chapter 3

[73]

Administrative and utilities programs
The following are the programs that perform various administrative activities. They are
depicted along with some of the utilities which help in administrative operations:

: The program for the offline file checksum.
: The utility program gives information of full-text indexes in

 tables.
: The program used to check, describe, repair and optimize

tables.
: The utility program for processing a log file contents.

: The utility program that produces smaller read-only tables
through compression.

: The utility program that enables authentication
credentials storage in an encrypted and secure login path file named

.
: The utility program that can read binary log file statements. In the

event of a server crash, a binary log file executed statements can be big help.
: The utility program that can read and summarize the contents

of a slow query log.

Environment variables
The MySQL client programs that communicate with the MySQL server using libraries use
the following environment variables:

: This variable is responsible for the default Unix socket file
which will be used for connecting to a localhost

: This variable is responsible for providing the default port
number and is used in TCP/IP connections

: This variable is responsible for providing the default password.
: This variable is responsible for providing debug trace options

during debugging operations
: This variable is responsible for providing the directory where the

temporary files and tables will be created

MySQL 8 – Using Programs and Utilities Chapter 3

[74]

For a detailed list and uses of environment variables in
programs, see MySQL 8 environment variables section. The use of

 is insecure.

MySQL GUI tool
The MySQL Workbench GUI tool, provided by Oracle corporation, is used in the
administration of MySQL servers and databases, for creating, executing, and evaluating
queries. It is also used for migrating schema and data from other relational database
management systems to be used with MySQL. There are other GUI tools, including MySQL
Notifier, MySQL for Excel, phpMyAdmin, and many more.

MySQL 8 command-line programs
In the previous section, we went through various types of programs provided by MySQL 8
and outlined their usage in brief.

In this section, we will look at command-line programs and learn about executing programs
from command lines. We will take a detailed look at the provision for options and how they
can be utilized for the administration.

Executing programs from the command line
Executing programs from the command line (shell or Command Prompt) is one of the most
used forms of administration in MySQL. Plenty of programs have been added along with
options for administration.

Executing MySQL programs
To execute a MySQL program, enter the program name followed by options or any other
arguments required to tell the program what you want it to do. Following are some
sample executing commands. Here represents the command interpreter. Typical
prompts will be for a Windows machine with or as the
command interpreter, for a Unix machine with , or as the command
interpreter, and for a Mac machine with or as the command interpreter:

shell> mysql --verbose --help

MySQL 8 – Using Programs and Utilities Chapter 3

[75]

shell> mysql --user=root --password=******** mysampledb
shell> mysqldump -u root personnel
shell> mysqlshow --help

There are nonoption arguments, arguments without any leading dash, giving
supplementary information to the program. As an example, if you see the second line of the
preceding example, it has a third nonoption argument with a database name ,
so the command tells the

 program that you wanted to use as the database name.

Arguments beginning with single or double dash are used for specifying the
program options. Specifying the program options indicates the type of connection the
program will connect to the server or will affect the mode of operation. Syntax for the
options are explained with details, see the Specifying options for programs section.

Connecting to the MySQL server
In this section, we will explain how we can establish connection to the MySQL server. We
will be using client programs for connecting to the MySQL server. For connecting to the
server program, we need some information to specify the , , and the

 of the MySQL account because we need to tell the client program which host the
server is running in and the associated username and password. Although there will be
default option values associated to these options, you can override the option value
whenever it is necessary. For example, consider using the common client program

shell> mysql

In the preceding program, no option has been specified but the following defaults will be
applied automatically:

Hostname default value applied as
Username default value applied as per the login name (ODBC name in Windows
or Unix login name)
If the or option is not specified along with the program, then it
will not send any option value to the program
The first non-option argument is considered as the default database name for the

 program and if no such option is specified, then does not select any
default database

MySQL 8 – Using Programs and Utilities Chapter 3

[76]

The principles applied to the client program are also applicable to other client
programs, such as , or . Now let us see the example
client program connecting with arguments of a specific option value:

shell> mysql --host=localhost --user=root --password=mypwd mysampledb

As you can see in the preceding example with specific option values, the host is to be
considered as the and the user value is provided as . The password is
also specified and, finally, a non-option argument is specified that tells the program to use

 as the default database name.

Specifying options for programs
In the earlier section, we have seen how program options change the operation mode based
on argument values specified for the option in the client program. Here we will look at
several ways to specify options for MySQL programs. These include:

Providing the options on the command line followed by the program name. This
is the common way of providing options but it will be applied specifically to the
execution of the program at that time only.
Providing the options in the options file that is being read by the program before
it starts execution. This is the common way for providing the options that you
want the program to use each time it executes.
Providing the options in the environment variables. By using this method, you
can also specify options that you want to apply every time the program is being
executed. In general practice, using option files is commonly used for this
purpose but specifying option values in the environment variables is also very
useful in some cases; for example, when running multiple MySQL instances on a
Unix system.

The MySQL program checks which options are to be given first by examining the related
environment variables, then it processes option files, and then it considers option
arguments in the command line. Thus, the command-line options have the highest
precedence and the environment variables have the lowest. However, there is one exception
that applies and that is the option file in the data directory processed
last, so it takes higher precedence to the command-line options.

MySQL 8 – Using Programs and Utilities Chapter 3

[77]

Options on the command line
With the command line program options, follow these rules:

Options are followed by the program name.
Option arguments begin with a single dash or double dashes, depending on if
they are using the short form or the longer form of the option name.
The option name is case sensitive. For example, and are both valid as they
are the respective short forms for and , thus stating
different meanings to the program.
Options can also take a value followed by the option name. For example,

 or tells the client program to take the localhost
as the hostname.
With a short option that takes a value, the value can follow the option letter
immediately or the single space between the two will also work. The only
exception to this rule is when specifying the MySQL password option.
With the long option that takes a value, the value and name can be separated by
the = sign.
(-) and (_) can be used interchangeably within the option name, such as

 or Both are valid and work the same way
but the underscore cannot be used in place of a leading dash.
An option value taking a numeric value can be used with a suffix of K, M, or G to
indicate a multiplier of 1,024 with lowercase or uppercase. Consider the following
example where the command is telling the program to ping the
server 1,024 times and sleep for seconds for each ping:

 shell> mysqladmin --count=1k --sleep=10 ping

For filename options values, avoid using the meta character because it will not
be interpreted as per expectation.
Option values containing spaces must be enclosed by quotation marks when a
value is specified on the command line.

MySQL 8 – Using Programs and Utilities Chapter 3

[78]

Modifying program options
Some of the options are of the type and control a behavior that can be turned on or
off. Let us consider, for an example, the program. It supports the
option that controls displaying the first row of the column names in the first line of query
results. In order to disable the column names, the following specifications will work for us:

--disable-column-names
--skip-column-names
--column-names=0

As you can see in the preceding example, the and the and
 have the same effect. It is also applicable when turning the option on with the

suffix and the prefix.

If the option is specified with the , and if the option specified does not
exist, the program will issue a warning instead of exiting.

For some of the programs, the is available to be used with the option
name for specifying the limit. It can also be used with environment variables.

Modifying options with files
Most of the MySQL programs can read startup options from the option files, also sometimes
called configuration files. It is a very convenient way of providing the options that are
commonly used and once specified you need not specify them each time you execute the
program. To check whether the program reads option files, use the option. For
example, consider the program, which should use and , if it
reads option files. The help message will indicate which option file it looks for and for
which option group:

The MySQL program with the option does not read any
option files apart from . If the server program started with
the option system variable disabled then the
program does not read the file.

The majority of the option files are plain text files that can be created and edited by any text
editors. Exceptions among those files are , which has login path options,
encrypted by the utility program.

MySQL 8 – Using Programs and Utilities Chapter 3

[79]

MySQL checks option files for Windows and Unix systems in specific order and follows the
precedence that starts from reading global options, such as in the Windows system:

 and
 and

 and
 and

The file specified with , if any
Login path options in (client program only)
For system variables persisted with or (if it is the
server program) in

Similarly, in Unix systems it follows the following order of precedence for reading option
files:

 (server program only)
The file specified with , if any

 for user-specific options
 for user-specific login path options (client program only)

For system variables persisted with or (if it is the
server program) in

In the preceding options, refers to the current user's home directory.

Empty lines in option files are ignored, along with comments. Comments can be specified
using or characters and can start in the middle of any line as well.

 is the name of the program or group for which options are to be set. They are not
case sensitive. Once a group line is added to the option file, all the following lines apply to
the named group until another group line is specified or at the end of the option file.

MySQL 8 – Using Programs and Utilities Chapter 3

[80]

This is similar to the in the command line turning on the named optimization.

This is similar to the in the command line but in place of the value, you can
specify the value with spaces, which you cannot in the command line.

It is possible using directives in the option files to include another option file and
 to search for specific directories to check for option files. For example,

 and , for directories. The
only thing that MySQL does not consider is any order during the directory search.

Any option files to be used in the directive on a Windows
system must end with the or extension and in Unix systems
they must end with .

Command-line options affecting option file handling
Most of the MySQL programs support option files. As they affect option file handling, they
must be given in the command line and not as part of an option file.

In order to make them work properly, they must be given before other options. Some of the
exceptions are as follows : might be used immediately after

, , or .

 and are also used to modify option file handling.

Setting program variables with options
Many MySQL programs have internal variables that we can set during runtime operations
using the statement and also using the same syntax by which we specify option values.
This will work when the program is started. For example, if we use the option value syntax
then we have to specify like this: . To
specify the runtime option using the , we can specify like this:

.

MySQL 8 – Using Programs and Utilities Chapter 3

[81]

To find out if the option variable syntax is correct, you can go to
and use the following: .

Setting environment variables
In Command Prompt, we can set environment variables which will affect the runtime
execution of the program, or can be set to affect future executions permanently. They can be
set up in the startup file or by using the interface provided by the system. A list of
environment variables that can affect the MySQL programs are given with details in
the MySQL 8 environment variables section.

To specify values for the environment variable, the syntax will be based on the underlying
command interpreter. For a Windows system, you can set the user variable using the
following syntax:

SET USER=your_user_name

For a Unix system, it depends on the shell, so you will need to use following syntax if using
, , , or :

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

If using or , use , which will get the shell variable available to the
execution environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables that are executed will immediately affect the
program in execution but if you wanted to get the environment variable to persist, you need
to specify it on the interface provided by the system or you may set it up in the startup file
that the command processor uses at startup. On Windows, this can be set up from the
control panels option to set environment variables and in Unix, this can be set up based on
the command-line processor you use. For , you need to put the value in or

 and for use .

MySQL 8 – Using Programs and Utilities Chapter 3

[82]

Server and server-startup programs
There are specific programs provided by MySQL which you need to execute first in order to
make MySQL work correctly. In the following sections, we will look at the server programs
and related startup programs that can be used with several options as per your
requirement.

mysqld - the MySQL server program
The MySQL server is a daemon program. All other programs connect with the database
through this server, so it should be running at all times. The daemon program usually gets
started from a script called . The program script is required, as it sets the
appropriate environment variables and executes the program with the
required arguments values.

The following are the options briefed in detail for various options available from command
line:

, : Displays the usage information of the program.
, : Sets the debugging level as specified.

, : Specifies the base directory used to
determine all other related directories.

: Used to allow large result sets. They are saved as temporary
results in a file.

: Specifies the IP address the server will bind it to.
, : Specifies the directory where the

database data files are stored.
, : Add various log information, which

includes connections and error information. If an argument is not provided, then
 is used as the log file, and here is the name of the

server machine.
: Adds changes to the data (ISAM) files in logs. If an

argument is not provided, then is used as the log file and the log
generated by this option can only be read and manipulated with
the utility.

MySQL 8 – Using Programs and Utilities Chapter 3

[83]

: Logging the database updates info. The log file gets
named as , where the is the name of the server machine
and the is the argument to the option or generates a unique number if the
argument is not specified.

, : To specify the language (English,
French, German, and so on) for the server.

, : To enable new routines (and possibly unsafe routines).
, : To disable/enable new routines (and possibly unsafe routines).

, : To specify and set
value for the variables

: To get the name of the file having the process ID (PID) of the
running server. The default value for the file is , where the

 is the server machine's name.
, : To specify the network port number.

: To enable network security checks. But this reduces database
performance.

: To specify using only IP numbers (not names) for the
connections. This increases the network performance.

: To disable network connections, with only local access
being allowed.

: For giving all the threads the same priority.
: To disable access checking. This allows all the users full access to all the

databases.
: To specify not to perform thread locking.

: To enable thread locking.
: To specify the filename for the Unix socket.

, : Used to display debugging information during the shutting
down of the server.

, , and : To show the version information of the server.

mysqld_safe - MySQL server startup script
This is the most recommended way to start the MySQL server in a Unix- based system as it
adds a few safety features, such as logging information to error log if any error occurs at
runtime and restarting the server if there is an error.

MySQL 8 – Using Programs and Utilities Chapter 3

[84]

In some of the Unix platforms, MySQL installations from RPM or Debian
packages include the support to manage MySQL startup and
shutdown operations and so is not installed on those
systems.

 attempts to execute and to override the default behavior to specify
the name of the server that you wanted to execute. The option to specify the directory using

 is also available so that will look for the server in the directory.
Most of the options in are also available in and if the specified option
is unknown to then it gets passed on to . , which reads
out all the options from the , server, and sections in option files. For
backward compatibility, also reads sections but you should
rename such section to be on the current one that is .

As stated previously, there are very common options specified in both and
, so some of the options are excluded in the following list of options:

--core-file-size=size

To specify the size of the core file which should create.

--ledir=dir_name

If is not able to find the server, then use this option to specify the path name of the
directory in which the server is located. This option can be used only on the command line,
and not in option files. On platforms that use , the value should be given in the
value of .

--mysqld-safe-log-timestamps

This option is to specify the format for in the log output produced by
.

--mysqld=prog_name

To specify the server program name contained in the directory that you want to
start. If cannot find the server, use the option to specify the

 to the directory where the server with the specified name is located. This option
is only accepted on the command line, and not from the option files.

--open-files-limit=count

MySQL 8 – Using Programs and Utilities Chapter 3

[85]

The number of files which can open.

--plugin-dir=dir_name

To specify the path and name of the plugin directory.

--timezone=timezone

This option is to set the environment variable to the given option value,
depending on operating system time zone specification formats.

--user={ username | user_id }

Run the server as if you have the name of the user. Specify the or
specify the numeric as .

mysql.server - MySQL Server startup script
This is the server startup script that is used on MySQL distributions of Unix/Unix-like
systems. It uses for starting MySQL the server program. The program is also
used in systems using run directories containing scripts. It starts system services
at particular run levels.

basedir=dir_name

To specify the path of the MySQL installation directory.

datadir=data_dir

To specify the path of the MySQL data directory.

pid-file=file_name

To specify the pathname along with the filename in which the server writes its process ID.

service-startup-timeout=seconds

To specify in seconds how long to wait for confirmation of the server startup. If the server
does not start within this time, exits with an error indication. The default
value for the option is 900 seconds and a value of 0 means not to wait at all for startup and
providing negative values means to wait forever (there should not be a timeout).

MySQL 8 – Using Programs and Utilities Chapter 3

[86]

mysqld_multi - managing multiple MySQL servers
 is designed for managing several processes that listen for the

connections on different Unix socket files and TCP/IP ports. It can also start or stop the
server and report its current status.

 searches for the group named in or in the file provided as
the option. Here N can be any positive number. This number is referred
to as the option group number, that is . Group numbers separate option groups from
one another and are in arguments to to specify which server is to be
started,stopped, or the status requested for. Options in this group are the same as we use in
the group used for starting .

To execute , the following syntax is used :

shell> mysqld_multi [options] {start|stop|reload|report} [GNR[,GNR] ...]

In the preceding syntax, start, stop, reload (stop and restart) and report refers to the
operation to be performed. Based on the list values specified, you can perform targeted
operations on single or multiple servers.

Please make sure that the data directory for all servers is fully accessible to
the Unix account by which the specific process is started. Do not
use a root account unless you know exactly what you are going to do with
it.

Installation programs
The programs discussed in this section are used during the installation process or when
upgrading the MySQL, so make sure you understand it correctly before doing any
modifications on the program.

comp_err - compiling the MySQL error msg file
This creates the file which is used by to identify the error messages
and display individual error codes. is normally run automatically when MySQL
is built. The file is compiled from the text file located in MySQL distributions
at . It also generates , ,
and header files.

MySQL 8 – Using Programs and Utilities Chapter 3

[87]

 has several options and can be retrieved using the option in the previous
command.

mysql_secure_installation - improving MySQL
installation security
The program has ways to enable and improve the security of the MySQL installation,
including:

Setting passwords for accounts.
Removing accounts that can be accessed outside the .
Removing anonymous accounts.
Removing test database privileges that permit anyone to access databases that
start with names .
Execute the command without any arguments if
you want normal usage with the local MySQL server. It will ask you further to
check which actions to perform.
The plugin can be used to strengthen password checking.
If the plugin is not already installed, it will ask you to install and once installed
and enabled, it can validate for the password.

Execute with the following syntax:

shell> mysql_secure_installation [options]

You can use the option here and retrieve a list of other options whenever required.

mysql_ssl_rsa_setup - creating SSL/RSA files
As the name suggests, this program is for generating SSL certificates and key files and RSA
key-pair files, if those files are missing and files are required to support secure connections.

 can also be used to create new files if any of the existing ones have
expired.

MySQL 8 – Using Programs and Utilities Chapter 3

[88]

The command is used by , so using it is
necessary to have installed on your machine. To generate these
files automatically by the server, it can use MySQL distributions compiled
using , which is another way to generate and files.

Execute , as shown here:

shell> mysql_ssl_rsa_setup [options]

Use the option here and retrieve a list of other options if required.

Using lowers the barrier to and makes it
easier to generate the required files but the files that are generated are self-
signed, which is not very secure. You can consider obtaining a CA
certificate from the respective authority.

mysql_tzinfo_to_sql - loading the timezone tables
This program gets the content of the zone info database (files describing time
zones) and loads the information in the time zone tables of MySQL. If the system does not
have a zone info database, you can use the downloadable package with
standard and non
standard from

.

 can be executed in the following different ways:

shell> mysql_tzinfo_to_sql tz_dir
shell> mysql_tzinfo_to_sql tz_file tz_name
shell> mysql_tzinfo_to_sql --leap tz_file

After running the program, it is highly recommended to restart the
server so that it will not use any previously cached data.

MySQL 8 – Using Programs and Utilities Chapter 3

[89]

mysql_upgrade - checking and upgrading MySQL tables
As the name suggests, this is used for upgrade operations. It checks for any incompatibility
and makes repairs if it is necessary and also updates the grant tables with any changes in
new versions of MySQL. It also updates the system tables so you can take advantage of any
new privilege or compatibility that might have been added in the newer version.

Before performing an upgrade always backup your current MySQL
installation.

If finds that a table has possible incompatibility, it performs a table check
and attempts repairing the table, and if it cannot repair it, it will ask for a manual table
repair.

 should be executed each time MySQL is upgraded. It communicates
directly with the MySQL server and sends the required SQL statements to perform an
upgrade.

Once we run , we should restart the server. If any changes made to system
tables are taken into effect, before running it, you should make sure the server is running.

Execute with the following syntax:

shell> mysql_upgrade [options]

You can use the option here and retrieve a list of other options whenever required.

MySQL 8 client programs
The MySQL 8 client programs are the programs that are commonly used to connect to the
MySQL database and perform different query operations.

The programs information detailed in the following subsection includes command
line tools with many commands and related options and configuration for ,

, , , , and so on.

MySQL 8 – Using Programs and Utilities Chapter 3

[90]

mysql - the command-line tool
This is the most commonly used program. The command-line tool is used for executing
SQL statements directly or using a file in batch mode. It has support for both interactive and
non-interactive modes. In this section, we will look at the command line and the
various options, commands, logging, and other related programs.

mysql options
 is a command line tool that has been provided for a long time and so it has plenty of

options to get your work done. The following is the table of options with formats and
descriptions:

Format Description

Enables automatic rehashing

Enables automatic vertical result set display

Do not use the history file

Displays binary values in hexadecimal notation

Disables \r\n - to - \n translation and treatment of
\0 as end-of-query

Uses specified network interface to connect to
MySQL server

Directory where character sets are installed

Writes column names in results

Displays result set metadata

Ascertains whether to retain or strip comments in
statements sent to the server

Compresses all information sent between client and
server

Indicates to server that client can handle expired
password sandbox mode

Number of seconds before connection timeout

The database to use

MySQL 8 – Using Programs and Utilities Chapter 3

[91]

Writes debugging log; supported only if MySQL
was built with debugging support

Prints debugging information when program exits

Prints debugging information, memory, and CPU
statistics when program exits

Authentication plugin to use

Specifies default character set

Reads named option file in addition to usual option
files

Reads only named option file

Option group suffix value

Sets the statement delimiter

Enables cleartext authentication plugin

Executes the statement and quit

Continues even if an SQL error occurs

Pathname to file containing RSA public key

Displays help message and exit

Patterns specifying which statements to ignore for
logging

Connects to MySQL server on given host

Produces HTML output

Ignores spaces after function names

SQL statement to execute after connecting

Writes line numbers for errors

Enables or disable for capability for

Reads login path options from .mylogin.cnf

Maximum packet length to send to or receive from
server

MySQL 8 – Using Programs and Utilities Chapter 3

[92]

The automatic limit for rows in a join when using

Enables named commands

Buffer size for TCP/IP and socket communication

Disables automatic rehashing

Do not beep when errors occur

Reads no option files

Ignores statements except those for the default
database named on the command line

Uses the given command for paging query output

Password to use when connecting to server

On Windows, connect to server using named pipe

Directory where plugins are installed

TCP/IP port number to use for connection

Print default options

Set the prompt to the specified format

Connection protocol to use

Do not cache each query result

Writes column values without escape conversion

If the connection to the server is lost, automatically
tries to reconnect

Allows only and statements that
specify key values

Do not send passwords to server in old (pre-4.1)
format

The automatic limit for statements when
using

Pathname to file containing RSA public key

The name of shared memory to use for shared-
memory connections

MySQL 8 – Using Programs and Utilities Chapter 3

[93]

Shows warnings after each statement if there are any

Ignores signals (typically the result of
typing Control+C)

Silent mode

Disables automatic rehashing

Do not write column names in results

Skips line numbers for errors

Disables named mysql commands

Disables paging

Disables reconnecting

For connections to localhost, the Unix socket file or
Windows named pipe to use

Path of file that contains list of trusted SSL CAs

Path of directory that contains trusted SSL CA
certificates in PEM format

Path of file that contains X509 certificate in PEM
format

List of permitted ciphers to use for connection
encryption

Path of file that contains certificate revocation lists

Path of directory that contains certificate revocation
list files

Path of file that contains X509 key in PEM format

Security state of connection to server

Logs interactive statements to syslog

Displays output in tabular format

Appends a copy of output to named file

Protocols permitted for encrypted connections

Flushes the buffer after each query

MySQL username to use when connecting to server

MySQL 8 – Using Programs and Utilities Chapter 3

[94]

Verbose mode

Displays version information and exit

Prints query output rows vertically (one line per
column value)

If the connection cannot be established, wait and
retry instead of aborting

Produces XML output

Reference :

To get more information on individual options, use that option along with the
option.

mysql commands
Each of the SQL statements that you issue are sent to the server for execution. There is also a
list of commands that itself interprets. To get the list of all those commands, type
or at the prompt.

Each of the commands have both long and short form that can be used; except short form
cannot be used in multi-line comments. The long form is not case sensitive but the short
form command is case sensitive.

The help command is used to display help messages, along with listing all the
available commands in .

To change default charsets, issuing the statement.

To clear the current output or previous query results from the command line.

MySQL 8 – Using Programs and Utilities Chapter 3

[95]

To reconnect the server by providing and arguments.

To edit the input statement currently provided.

To exit the command line.

To specify a string and reconfigure it with the prompt.

To exit the command line.

This is used to check for the status of the server connection that is currently being used.

To specify using the provided as the default database.

mysql logging
The program can do logging as per the following types.

On Unix systems, it writes the logs to the history file with the default name
 in the home directory.

On all platforms, if the option is provided, it writes the statements to the system
logging implementation. On Unix, it is , on Windows, it is event logs, on Linux
distributions, it often goes to the file.

MySQL 8 – Using Programs and Utilities Chapter 3

[96]

mysql server-side help
To get server-side help from , the following syntax is used.

mysql> help search_string

If you provide any argument after the help command, uses that argument for
searching the string for accessing server-side help from the MySQL reference manual
content. If there is no match for the searched string, the search operation fails and it appears
as follows:

mysql> help me
Nothing found
Please try to run 'help contents' fro a list of all accessible topics

If matches multiple contents of a topic, then it shows a list of matching
topic items. A topic can also be used as and looks for the entry for the
topic. It also contains the wildcard character and , which have the same meaning for
matching operations performed by the operator.

Executing sql from text files
The client is generally used interactively but it will also allow you to execute SQL
statements from a file. In order to do so, create a , which contains several
statements that need to be executed, as follows:

shell> mysql db_name < text_file

Instead if is kept as the first statement of the e then you can skip
specifying the from the command line:

shell> mysql < text_file

If already using the connection, then use the source or command:

mysql> source file_name

By using the option, each statement gets displayed just before the result
produced by it.

MySQL 8 – Using Programs and Utilities Chapter 3

[97]

mysqladmin - client for administering a MySQL server
 is the client for administrative operation. It can be used to check the server's

configuration, connection status, drop and create database, and much more.

The execution syntax for the command is as follows:

shell> mysqladmin [options] command [command-arg] [command [command-org]]
...

 supports plenty of program commands, starting from to
create new database with name , to get debug information,
to drop a database, , where can be replaced with logs, hosts, privileges,
status, tables, threads, and so on. to kill the server thread or multiple threads,

 to set a new password, to check the server's availability,
 to stop the server, to start replication on a slave server,

 to stop replication on the slave server, to display server system variables
and their respective values.

 commands give results with values of uptime, threads, questions,
slow queries, opens, and flush tables with relevant information.

Along with the command list, there are options that come in handy when retrieving specific
information from the server. Such information can be retrieved using the

 command.

mysqlcheck - a table maintenance program
This program is used for table maintenance. It checks, repairs, optimizes, or analyzes
tables.The program can be time consuming, particularly for largesized tables.

 uses the command for checks and repair of all the tables.
The server must be running to use the command.

 uses , , , and
in a convenient way for the user. If the table repair fails by then a manual table
repair is required.

The following is the execution syntax for the command :

shell> mysqlcheck [options] db_name [tbl_name ...]
shell> mysqlcheck [options] --databases db_name ...
shell> mysqlcheck [options] --all-databases

MySQL 8 – Using Programs and Utilities Chapter 3

[98]

 has a special feature that is the default behavior of checking tables. It can be
changed by renaming the binary, such as renaming to the
program by creating a copy of and adding a symbolic link to ,
after which can repair tables instead. This also works with
the and options to make them the default operation for
the command.

Similar to other administering programs, this program also have many options that can be
used to get specific information, and by using the command, a list of
options can be retrieved.

mysqldump - a database backup program
This program is a utility program used for making a logical backup by generating a set of
SQL statements which can be executed to reproduce the original database table data and
object definition. It dumps one or more database for backup or may transfer to another SQL
server. It can also generate data output in different formats, such as CSV, XML, or other
delimited text files.

It should not to be considered as a fast or scalable solution for backing up large amounts of
data. The backup takes some time and restoring data can be very slow, as SQL statements
involve index creation, disk I/O for insertion, and so on. It can retrieve and dump table data
row by row; otherwise it can take a whole table and buffer it in the memory for dumping it.

The following is the execution syntax for :

shell> mysqldump [options] db_name [tbl_name ...]
shell> mysqldump [options] --databases db_name ...
shell> mysqldump [options] --all-databases

There are more than 25 options available for modifying the operation of the
command and they can be retrieved by using the command. Specific
modifications can be used in this command for debugging options, help options, connection
options, DDL options, and so on, based on your requirement.

MySQL 8 – Using Programs and Utilities Chapter 3

[99]

mysqlimport - a data import program
This client program provides the interface to SQL statements. The
majority of the options correspond to the clauses of the syntax.

The execution syntax for is as follows:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

Options for the commands can be specified on the CLI or in the or
 group of the options file as per your requirement. It provided options to retrieve

and modify import operations for the data, such as using a different delimiter format,
debugging, forcing the path of a file, providing default values, ignoring and locking tables,
and so on, which can be retrieved by using the command.

mysqlpump - a database backup program
This program is a utility program used for making a logical backup by generating a set of
SQL statements that can be executed to reproduce the original database table data and
object definition. It dumps one or more databases for backup or may transfer to another
SQL server.

 has the following important features :

Parallel processing of databases and objects in databases, which speeds up the
dump processing
More control over which database objects and databases to dump
Dump user accounts data to account management statements rather than
inserting data into the system database
The capacity to create compressed output
Showing the progress indicator
Dump file reloading; for tables it adds indexes after rows are inserted

 dumps all the databases, as specified explicitly specified in the following code:

shell> mysqlpump --all-databases

MySQL 8 – Using Programs and Utilities Chapter 3

[100]

To dump multiple databases, specify followed by the database names to
dump. You can also specify followed by database names not to
dump. There are many options to be used for dumping databases or objects, such as for
specifying exclusion or inclusion of databases options, applicable for objects such as tables,
triggers, routines, events, users, and so on, if they support multiple option entries:

shell> mysqlpump --include-databases=db1,db2 --exclude-tables=db1.t1,db2.t2

The preceding command dumps databases and but it will exclude table from
the database and table from the database .

 uses parallelism to achieve the concurrent processing and it can be between
databases or within a database. specifies the default number
of threads used in the queue created by the program and the value of is by default.

 sets up the processing queue as per the database name
list provided. Thus, additional queues and the number of threads can be controlled.

 does not dump , , or by default but can do
so by specifying the option and similarly it also does not dump the

.

mysqlsh - the MySQL Shell
The advanced command line client and editor for MySQL is the very well known MySQL
Shell. It has capabilities for scripting in Python and JavaScript. When connected to the
MySQL server using the X Protocol, the X DevAPI can work with documents and
relational data. It includes the AdminAPI, which enables you to work with an
cluster.

MySQL Shell has many options associated with it, but the important ones are listed as
follows:

--port=port_num, -P port_num

The TCP/IP port number to use with . The default port is .

--node

Creates a node session to a single server using the X Protocol and is deprecated in 8.0.3.

--js

MySQL 8 – Using Programs and Utilities Chapter 3

[101]

Starts JavaScript mode.

--py

Starts Python mode.

--sql

Starts SQL mode.

--sqlc

Starts SQL mode in ClassicSession.

--sqln

Starts SQL mode in NodeSession.

--sqlx

Starts SQL mode by creating an X protocol connection.

--ssl*

Options beginning with specify connecting the server using SSL and also finding
certificates and SSL keys. It works the same way as for the MySQL Server and it accepts SSL
options : , , , , ,

, , , .

 Other options not listed can be retrieved using the command.

mysqlshow - showing database, table, and column
information
This is the client mainly used to quickly check which databases, their tables, columns, and
indexes exist or not. It provides an interface to some of the SQL statements.

The execution syntax for the command is as follows:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

MySQL 8 – Using Programs and Utilities Chapter 3

[102]

By executing the preceding command, you will get information about the databases, tables,
or columns for which you have privileges:

A list of databases is shown if no database is given
A list of all matching tables in the database is shown if no table is given
A list of all the matching columns and column types in the table is displayed if no
column is given

In the previous command execution, if you used the SQL wildcard
character (, , ,), then names that are matched by the wildcard are
displayed. and wildcard characters, if given, are converted into SQL
and wildcard characters. It might create confusion when trying to
display a column with a table or a column name with in the name, it
displays only names matching the pattern, but it can be fixed easily by
adding an extra at the end of the command line as a separate argument.

The program has many options to get the desired information by using specific option
arguments. A few of the important ones are given as follows:

--character-sets-dir=dir_name

Specifies the directory name where character sets are installed.

--compress, -C

If both the client and the server support compression, all the information sent is
compressed.

--enable-cleartext-plugin

 Enables the authentication plugin.

--get--server-public-key

Requests the RSA public key from the server required for key-pair-based password
exchange. Also, if a client connects to the server using a secure connection, RSA-based
password exchange is not needed and is ignored.

--keys, -k

MySQL 8 – Using Programs and Utilities Chapter 3

[103]

Displays table indexes.

--ssl*

Specifies options starting with to connect to the server using an SSL connection by
using certificates and SSL keys.

Many other options not listed here can be retrieved by using the
 command.

mysqlslap - load emulation client
This is the diagnostic client program that is used to check client load capability for the
MySQL server. The program mimics multiple clients accessing the server.

The execution syntax is as follows:

shell> mysqlslap [options]

There are many options available to modify the command in execution, some of them, such
as or , provide a way to specify SQL statements or files with statements
with specific delimiters.

 runs at three different stages :

Creating table, schema, and optionally stored programs or data to test. It uses a1.
single client connection only.
Running the load test. It uses multiple client connections.2.
Cleaning up (dropping tables if specified earlier, and disconnecting). It uses a3.
single client connection.

For example, creating our own query statement with 20 clients and 100 selects to each of
them will look as the following

mysqlslap --delimiter=";" --create="CREATE TABLE t (i int);INSERT INTO t
VALUES (21)" --query="SELECT * FROM t" --concurrency=20 --iterations=100

 can also add or create a query statement of it's own, as shown in the following
code block:

mysqlslap --concurrency=7 --iterations=20 --number-int-cols=2 --number-
char-cols=2 --auto-generate-sql

MySQL 8 – Using Programs and Utilities Chapter 3

[104]

Here, will build a statement with a table of two columns and two
columns and seven clients querying 20 times to each of them. It also supports specifying
statement files for creating and querying separately and running the load test. It provides
many such alterations in load testing execution with options that you can check by
executing the command on the command line.

MySQL 8 administrative programs
This section describes different administrative programs along with some utilities that will
help in doing administration operations such as performing check sum, compression and
extraction, and so on.

ibdsdi - InnoDB tablespace SDI extraction utility
This is a utility program that extracts serialized dictionary information from
tablespace files. Serivalized dictionary information that is SDI data will always be present in
all persistent tablespace files. It can be run on file-per-table on tablespace files and
general tablespace files, system tablespace files, and data dictionary tablespace files, but
using a temporary tablespace or undoing a tablespace is not supported.

 can be used while the server is offline or at runtime. It reads uncommitted data of
SDI from a specified tablespace and undoes logs and redoes logs that are not accessible.

Execution for the will look like the following command line:

shell> ibd2sdi [options] file_name1 [file_name2 file_name3 ...]

 also supports multiple tablespaces but does not run on more that one tablespace at
a time as the system tablespace. Specifying each file will work as follows :

shell> ibd2sdi ibdata1 ibdata2

 outputs SDI data in JSON format.

There are many options available for the program which can be retrieved using
the command.

MySQL 8 – Using Programs and Utilities Chapter 3

[105]

innochecksum - offline InnoDB file checksum
utility
This is a checksum utility for files. It reads tablespace files, calculates
checksums for them, and compares them with stored checksum values. If the comparison
fails, it reports error with damaged page details. It was developed to verify integrity of the
post-power outage but it can also be used after copying the files. It is very useful in the
event of any damaged page found when running It will shut down the running
server, so to avoid any production issue due to damaged pages.

If a tablespace file is open, it cannot be used by . The execution syntax for
the command will look as the following:

shell> innochecksum [options] file_name

 command also has few options to display information of the pages being
verified and can be retrieved with command.

myisam_ftdump - displaying full-text index utility
This is a utility for displaying information about tables and indexes. It
will scan and dump the entire index, which can be a slow and lengthy process. If the server
is already running, then you need to make sure to insert a statement first.

Execution for the command will look like the following code block:

shell> myisam_ftdump [options] <table_name> <index_num>

In the previous example, should be the name of the table with the
 index extension.

Suppose the test database has a table named mytexttable with the following definition:

CREATE TABLE mytexttable (id INT NOT NULL, txt TEXT NOT NULL, PRIMARY KEY
(id), FULLTEXT (txt)) ENGINE=MyISAM;

The index created on id is 0 on index and on the it is . If the working
directory is the test database directory, then execute as follows:

shell> myisam_ftdump mytexttable 1

MySQL 8 – Using Programs and Utilities Chapter 3

[106]

 can also be used to generate a list of index entries in order of frequency of
occurrence as follows (the first line in Windows and the second line for Unix systems):

shell> myisam_ftdump -c mytexttable 1 | sort /R
shell> myisam_ftdump -c mytexttable 1 | sort -r

 also has several options that can be retrieved by using
the command.

myisamchk - MyISAM table-maintenance utility
 is a command line tool for getting information about database tables, checking,

repairing, and optimizing non-partitioned tables. It works with tables.

 and statements can also be used to check and repair
tables.

Execution for the command is shown in the following code block:

shell> myisamchk [OPTIONS] tables[.MYI | .MYD]

Before running the command, you must make sure that any
other program is not using the tables. Otherwise, it will display warning
message saying: warning: clients are using or haven't closed the table
properly. To do this effectively, shut down the MySQL server or lock all
tables being used by .

myisamlog - displaying MyISAM log file content
This program is a utility for processing content of a MyISAM log file. When starting the
MySQL server, use the option.

Executing the command uses syntax as shown in the following code block:

shell> myisamlog [options] [file_name [tbl_name] ...]

MySQL 8 – Using Programs and Utilities Chapter 3

[107]

The default operation is marked as an update and if recovery is done all writes, updates,
and deletes are done and errors are counted only. is the default log filename.

The program has some options used to specify offsets, recovery, open a number of files, and
a few more, which can be retrieved by using the command.

myisampack - generating compressed, read-only
MyISAM tables
This is a utility program that compresses tables. It compresses each of the columns
in tables separately and compresses the data file by about 40% to 70%.

MySQL preferably uses the function to do memory mapping on compressed tables;
otherwise, it uses normal read/write file operations.

 does not support partitioned tables.

Once tables are packed, they become read only.

Stopping the server and then going for compress tables is safe way to perform the compress
operation.

Execution syntax for looks like the following block on the command line:

shell> myisampack [options] file_name ...

Specify the index file name with or without the file and also add the if you
are not in the database directory.

After compressing a table with , you should use to rebuild
the indexes of the compressed table. It supports some of the common options, such as
versioning, debugging, and so on along with specific compression checks, such as ,

, , , and so on. If you want to check in detail,
you can execute the command on the command line.

MySQL 8 – Using Programs and Utilities Chapter 3

[108]

mysql_config_editor - MySQL configuration utility
This is a utility to store and update the authentication credentials in an encrypted login
pathfile with the name .

For further details, use the command to
execute on the command line.

mysqlbinlog - utility for processing binary log
files
This program is a utility for processing a server's binary log files. The binary log files
contain events data which describes modifications to database content. The server writes
such content to the file in a binary format. In order to get them in to a readable (text) format,
the utility is used.

 can also be used to display the content of relay log files written by a slave
server during the replication setup because the format for the relay log and the binary log
files are same.

Execution for the program syntax is as shown in the following code block:

shell> mysqlbinlog [options] log_file ...

There are several options that modify the format of the output and usage of .
They are listed as follows:

It can be converted into a hex dump format that contains byte position, event
timestamp, and type of the event that occurred
It also provides a row event display format that displays data modifications
information in the form of pseudo-SQL statements
It is also used for making a backup of the binary log files by providing the
required option values, such as a path for the backup file and type or format of
the output in the backup
When you connect to the MySQL server using , it provides a
specific server ID to identify itself and requests binary log files from the server

The program has some common options which are not mentioned but can be retrieved
using the command.

MySQL 8 – Using Programs and Utilities Chapter 3

[109]

mysqldumpslow - summarizing slow query log
files.
The program is a utility that helps in reading the log contents of slow query log files,
containing queries taking a longer time to execute. It parses MySQL slow query log files
and prints out the summary of the query content.

It generally groups queries that are similar, apart from particular number or string data
values. It abstracts those values and display a summary output using and , respectively.
The and options are used to modify abstraction behavior of the value.

Execution of the program in the command line syntax is as shown in the following code
block:

shell> mysqldumpslow [options] [log_file ...]

You can modify the output by using some options, such as limiting the number of result
 , where is the number of query results to be displayed. stands for sort type by query

time, lock time, or by rows count, and for reversing the sort order.

MySQL 8 environment variables
In this section, we will look at the number of environment variables that are used directly or
indirectly for different MySQL programs, changing their behavior with the use of
environment variables.

Options provided on the command line take precedence over values specified in the option
files and on the environment variables, and similarly values in options take precedence over
the environment variables; so in most cases, it is preferred to use an option file instead of
environment variables to modify the behavior.

The following is the list of environment variables and descriptions for the variable:

: The name of your C++ compiler for running CMake
: The name of your C compiler for running CMake

: The default username for Perl DBI
: Trace options for Perl DBI

: The default path for the history file is

MySQL 8 – Using Programs and Utilities Chapter 3

[110]

: Used to specify the location of .
: Enables the

 authentication plugin
: Directory in which to look for client plugins

: Client plugins to preload
: Debugs trace options when debugging

: optional group suffix value (such as specifying
)

: The path to the history file; if this variable is set, its
value overrides the default for

 : Patterns specifying statements that mysql should not log
to , is given

: The path to the directory in which the server-specific file
resides

: The path to the directory in which the server-specific file
resides

: The default password when connecting to ; using this is
insecure

 : Default TCP/IP port number
 : Name of the login path file

: Used by the shell to find MySQL programs
: Location of the file

: Directory in which temporary files are created
: This should be set to your local time zone

: User-file creation mode when creating files
: User-directory creation mode when creating directories

: Default user name on Windows when connecting to

 is the pathname for the login path file that is created by
.

The and variables are used as modes instead of masks.

It is necessary to set if using pkg-config for building MySQL programs.

MySQL 8 – Using Programs and Utilities Chapter 3

[111]

MySQL GUI tools
There are many MySQL GUI tools available for performing various operations, starting
with creating databases to performing daily administration tasks.

MySQL Workbench
MySQL Workbench is a graphical tool to work with the MySQL server and databases. It
fully supports MySQL versions 5.1 and above. In this section, we will briefly discuss the
capabilities of MySQL Workbench.

Five main function provided by MySQL Workbench are as follows:

SQL development: This creates and manages database connections, and
configuration for connection parameters. It executes SQL statements using
the built-in SQL editor and it replaces the standalone application query
browser provided earlier.
Data modeling: This creates models of database schema graphically, with
reverse and forward engineering between two different schema as well as on
a live database. It provides a comprehensive table editor, with easy to use
facilities for editing tables, columns, triggers, indexes, options, inserts,
partitioning, routines, views, and privileges.
Server administration: This creates, maintains, and administers server
instances.
Data migration: This allows migration from PostgreSQL, SQLite, Sybase
ASE, Microsoft SQL Server, and other relational database management
system objects, tables, and data to MySQL. It also facilitates migration from
earlier versions to the latest release version.
MySQL Enterprise support: This provides enterprise level support for the
product; for example, MySQL Enterprise backup, MySQL Audit.

MySQL workbench is available in two different editions, the Commercial
Edition and the Community Edition. The Community Edition is provided
without any cost. The Commercial Edition provides additional features,
such as database documentation generation.

MySQL 8 – Using Programs and Utilities Chapter 3

[112]

MySQL Notifier
MySQL Notifier is a simple tool used to monitor and adjust the status of local/remote
MySQL server instances. It is an indicator which is placed in a system tray. It is installed
with the MySQL installer itself.

MySQL Notifier acts as quick launcher with list actions clubbed together that can be act and
monitored very easily from the system tray itself and along with that it keeps monitoring
based on specified interval and notifies on status change.

MySQL Notifier usage
MySQL Notifier stays in system tray and provides one click option for MySQL status and
maintenance. Followings are important usage of MySQL Notifier.

MySQL Notifier provides start, stop, and restart of MySQL Sever instances
MySQL Notifier configures MySQL server services and automatically detects and
adds new MySQL server services
MySQL Notifier monitors both local and remote MySQL instances

Summary
In this chapter, we dived deep into the ocean of commands that are used for almost all the
activities for the MySQL server, starting with installation, server start up, client programs to
administrative programs, and several utility programs to cater for different purposes on a
routine basis for database administration. The chapter also provided a working knowledge
of making database backups and importing the databases with or without specific tables.

The next chapter will focus on MySQL 8 data types in detail. It will categorize data types
based on their content types and it will describe properties in detail for each of the
categories and storage level details that should be kept in mind during table and column
design.

44
MySQL 8 Data Types

In the previous chapter, we learned how to use MySQL 8 command-line programs and
utilities to perform various operations on the MySQL 8 database. It is always good to
have hold on command-line tools. It provides flexibility to work in non-GUI environments.
The focus of this chapter is data types. Isn't it fascinating to know the type of data the
programming language supports or the storage engine can store? It is a fundamental
feature of any programming language or database. At the same time, it is the most ignored
topic, as well. The majority of programmers don't spend enough time assessing the storage
requirements for used in a piece of code. Actually, it is extremely important to
understand the basic and custom data types that the database supports, which is why this
chapter exists.

The following is a list of topics to be covered in this chapter:

Overview of MySQL 8 data types
Numeric data types
Date and time data types
String data types
JSON data type
Storage requirements for data types
Choosing the right data type for columns

MySQL 8 Data Types Chapter 4

[114]

Overview of MySQL 8 data types
All standard SQL data types are supported in MySQL. These data types are classified in a
few categories, such as numeric types, string types, date and time types, and the JSON data
type. When we assign a data type to a column, certain conventions must be followed. These
conventions are necessary for MySQL to allow values to be stored in a column:

M denotes the maximum display width for integer types. For floating point and
fixed point types, it is the total number of digits that can be stored. For string
types, it is the maximum length. The maximum value allowed depends on the
data type.
D is applicable to floating points and fixed point types. It denotes the number of
digits after the decimal point. The maximum allowed value is 30, but must be less
than or equal to M-2.
fsp is applicable to date and time types. It denotes the fractional seconds
precision, which means the number of digits following the decimal point for the
fractional part of seconds.

This overview is brief so that the detailed descriptions of the features of each data type can
be covered in topics to follow.

Numeric data types
The MySQL 8 numeric data types include integer or exact data types, decimal or
approximate data types, and bit data types.

By default, data type values are stored as . If we have set the
 flag on MySQL, data type values are stored as

. occupies less space compared to .

MySQL 8 Data Types Chapter 4

[115]

Integer types
All standard SQL integer types are supported by MySQL.

The following is a table describing the required storage and range for each integer type.
Along with standard integer data types, MySQL also supports , , and

:

Type Storage (Bytes) Minimum Value Maximum Value

Signed / Unsigned Signed / Unsigned

1 -128 127

0 255

2 -32768 32767

0 65535

3 -8388608 8388607

0 16777215

4 -2147483648 2147483647

0 4294967295

8 -9223372036854775808 9223372036854775807

0 18446744073709551615

The range of signed numbers includes both -ve and +ve numbers, whereas the range of
unsigned numbers includes +ve numbers only.

The following is the column declaration for the unsigned integer column:

CREATE TABLE employees
(salary INTEGER(5) UNSIGNED);

 and can be used interchangeably. But consider if we declared a column as:

CREATE TABLE employees
(id INT(255));

MySQL 8 Data Types Chapter 4

[116]

The maximum value that an column can store is either 2147483647 (in case of a
signed) or 4294967295 (in case of an unsigned). here defines the
visible length of a number. On the one handed, it is impractical to display a number
digits long. On the other hand, supports 10 digit numbers as a maximum value.
So, it will be converted to in the preceding case. Now, this raises another question:
if the number of digits for a maximum integer number is 10, then why should it be
converted to and not ? The reason is that one digit is kept for storing the
sign.

 is an attribute which indicates that the number value should be prefixed with
zeros if the length of the number value is smaller than the length of the column. The
statement demonstrates a way to declare a column with the attribute. The
following is an example:

CREATE TABLE documents
(document_no INT(5) ZEROFILL);

We specified the value to be stored as ; it will be stored as if we provided
the option.

Fixed point types
Fixed point types represent numbers with a fixed number of digits after the decimal or
radix point. MySQL has and as fixed point, or exact, value data types.
These values are stored in a binary format. Fixed point data types are useful, especially in
storing monetary values in multiplication and division operations. The value of a fixed
point data type is an integer number scaled by a specific factor, according to the type. For
example, the value of 1.11 can be represented in fixed point as , with a scaling factor of
1/100. Similarly, 1,110,000 can be represented as , with a scaling factor of 1000.

The following code block demonstrates the declaration of a data type:

CREATE TABLE taxes
(tax_rate DECIMAL(3, 2));

In the preceding example, is the precision and is the scale. An example value could be
4.65, where is the precision and is the scale:

Precision: Denotes the number of significant digits stored for the values
Scale: Represents the number of digits after the decimal point

MySQL 8 Data Types Chapter 4

[117]

Precision and scale define the range of values that can be stored in the column. So, in the
preceding column declaration, can store values falling between -9.99 and 9.99.

The syntax for defining the type in standard SQL is as follows:

DECIMAL(M)

In MySQL, this is equivalent to:

DECIMAL(M, 0)

Declaring a column with is equivalent to in MySQL.

In MySQL, 10 is the default value for , if it's not provided.

The maximum number of digits supported for the type is 65, including precision
and scale. We can limit the number of digits on values which can be entered for a column
by using precision and scale. If a user enters a value with a larger number of digits than
permitted in scale, the value will be truncated to match the permitted scale.

 is often considered to be an alternative to or . As mentioned earlier,
 numbers are an exact representation of numbers in mathematics. The only

problem with the data type is that it occupies much more space, even for small
numbers. For example, to store a value of 0.000003, the column declaration should have the
data type defined as .

If the scale is , the column values don't have decimal points or fractional values.

Floating point types
Floating point numbers represent real numbers in computing. Real numbers are useful for
measuring continuous values, such as weight, height, or speed.

MySQL has two floating point data types for storing approximate values: and
.

MySQL 8 Data Types Chapter 4

[118]

For floating point numbers, precision is an important factor. Precision defines the measure
of accuracy. MySQL supports single precision and double precision floating point numbers.
It consumes four bytes to store a single precision floating point number with the data
type, whereas it consumes eight bytes to store a double precision floating point number
with the data type.

In MySQL, is a synonym for . As mentioned earlier, if
 is enabled, a column defined with the data type will be treated

similarly to .

The preceding description depicts or as similar to . No, it is not.
There is a huge difference. As described earlier, fixed point data types such as or

 can store exact values, up to the maximum digit after the decimal point, whereas
floating point data types, such as or , store approximate values. The values
stored are detailed enough, but not completely accurate. There remains a minor inaccuracy.

Let's understand this through the following code example:

mysql> CREATE TABLE typed_numbers(id TINYINT, float_values FLOAT,
decimal_values DECIMAL(3, 2));

mysql> INSERT INTO typed_numbers VALUES(1, 1.1, 1.1), (2, 1.1, 1.1), (3,
1.1, 1.1);

mysql> SELECT * FROM typed_numbers;
+------+--------------+------------------+
| id | float_values | decimal_values |
+------+--------------+------------------+
1	1.1	1.10
2	1.1	1.10
3	1.1	1.10
+------+--------------+------------------+

mysql> SELECT SUM(float_values), SUM(decimal_values) FROM typed_numbers;
+--------------------+---------------------+
| SUM(float_values) | SUM(decimal_values) |
+--------------------+---------------------+
| 3.3000000715255737 | 3.30 |
+--------------------+---------------------+

MySQL 8 Data Types Chapter 4

[119]

In the preceding example:

We created a table containing and type columns.1.
We inserted the same values in two columns, named and2.

.
We executed a query to fetch the sum of stored values.3.

Though the same values, the output is different. The sum of looks more
precise compared to that of the . The sum of looks less
precise. This is because of internal rounding performed by the MySQL engine for floating
point data types, which results in the approximation stored value.

Standard SQL has a provision for specifying precision while defining a column. The
precision is in bits specified following the keyword within parenthesis. MySQL also
supports specifying precision values for or , but the precision is used to
determine the size:

Precision from 0 to 23 results in a 4 byte single precision column
Precision from 24 to 53 results in an 8 byte double precision column

The following is an example of column declaration attributes:

FLOAT(M, D)
where,
M - number of digits in total
D - number of digits may be after the decimal point

So, the column defined as the following will store a value such as 99.99:

FLOAT(4, 2)

While storing floating point values, MySQL performs rounding. So, the value inserted as
99.09 into a column may be stored as 99.01 as an approximate result.

Though the floating point column definition supports specifying precision,
it is advisable to use or with no precision or
number of digits, so as to take advantage of maximum flexibility and
portability.

MySQL 8 Data Types Chapter 4

[120]

Problems with floating point values
As described earlier, floating point data types store approximate real numbers. Trying to
store an exact value and use it in comparison operations considering exact values may lead
to various problems. Also, floating point values are interpreted in a platform and
implementation-dependent manner. For example, different CPUs or operating systems may
evaluate floating point numbers differently. This essentially means that the value intended
to be stored in the floating point data type column may not be the same as the actual value
stored or represented internally.

The previous point becomes essential when we use floating point numbers in comparison.
Consider the following example:

mysql> CREATE TABLE temp(id INT, col1 DOUBLE, col2 DOUBLE);

mysql> INSERT INTO temp VALUES (1, 5.30, 2.30), (1, -3.00, 0.00),
 (2, 0.10, -10.00), (2, -15.20, 4.00), (2, 0.00, -7.10),
 (3, 0.00, 2.30), (3, 0.00, 0.00);

mysql> SELECT id, SUM(col1) as v1, SUM(col2) as v2 FROM temp
 GROUP BY id HAVING v1 <> v2;
+------+--------+--------+
| id | v1 | v2 |
+------+--------+--------+
1	2.3	2.3
2	-15.1	-13.1
3	0.0	2.3
+------+--------+--------+

In the preceding example, it seems that the first two rows in the output have similar
numbers. It is possible that they might not be, in the case of floating point types. If we want
to ensure, in the preceding case, that similar-looking values are considered, we have to
compare the difference against a predefined number with precision. For example, in the
preceding case, if we modify the clause to check the condition

, it will return the expected output.

As interpretation of floating point numbers is platform dependent, if we
try to insert a value which is outside of the range of floating point data
type supported values, it may insert +- inf or +- 0.

MySQL 8 Data Types Chapter 4

[121]

Bit value type
Have you ever come across a requirement to store binary representations of numbers? Can
you think of such use cases? One such use case is to store weekly working days information
for a year. We will touch base on this example later in the section.

The data type is used to store binary bits or groups of bit values. It is also one of the
options to store Boolean, yes/no or values.

The type column can be defined as:

column_name BIT
or
column_name BIT(m)
where m = number of bits to be stored

For a data type, can vary from to . Supplying is optional. The default value for
 is .

The following is an example of how a column can be defined:

CREATE TABLE working_days (
year INT,
week INT,
days BIT(7),
PRIMARY KEY (year, week));

After the data type column declaration, next is storing bit values in a column. The bit
values are a combination of zeros (0s) and ones (1s). The notation is used to
specify bit values.

The following are the examples of how to store 11 and 55 in a column:

CREATE TABLE bit_values (val BIT(7));

INSERT INTO bit_values VALUES(b'1011');
INSERT INTO bit_values VALUES(b'110111');

What happens if the value stored in the column is less than the number of bits ()
specified in the column definition? MySQL will pad the value with 0s on the left of the
number. So, for the preceding example, the values stored will be 0001011 and 0110111,
respectively.

MySQL 8 Data Types Chapter 4

[122]

How do we define a column to store ? The following code block
shows that:

CREATE TABLE boolean_values (value BIT(1));
or
CREATE TABLE boolean_values (value BIT);

INSERT INTO boolean_values VALUES(b'0');
INSERT INTO boolean_values VALUES(b'1');

Bit value literals
To store bit values in a table column, we must understand bit literals. As mentioned earlier,
bit literals can be written using the notation. There is another notation, which is
the notation.

One important note about or notations is that the letter case
of the leading doesn't matter. We can specify or . A leading is case-
sensitive, and can't be replaced with .

The following is the list of legal and illegal bit value literals.

Legal bit value literals:

Illegal bit value literals:

 (and are the only binary digits)
 (is not valid; it should be)

As a default, a bit literal is a binary string. We can confirm this with the query, as shown in
the following code block:

mysql> SELECT b'1010110', CHARSET(b'1010110');
+--------------+----------------------+
| b'1010110' | CHARSET(b'1010110') |
+--------------+----------------------+
| V | binary |
+--------------+----------------------+

MySQL 8 Data Types Chapter 4

[123]

mysql> SELECT 0b1100100, CHARSET(0b1100100);
+--------------+----------------------+
| 0b1100100 | CHARSET(0b1100100) |
+--------------+----------------------+
| d | binary |
+--------------+----------------------+

Practical uses of BIT
Let's continue with the working days per week in a year example. Please refer to the

 table schema provided earlier.

How can we specify that the Monday and Friday in the week in the year are non-
working days? The following is the query for this:

INSERT INTO working_days VALUES(2017, 4, 0111011);

If we fetch the records using the query, the following is the output:

mysql> SELECT year, week, days FROM working_days;
+--------+---------+--------+
| year | week | days |
+--------+---------+--------+
| 2017 | 4 | 59 |
+--------+---------+--------+

In the preceding output, the days, though being of bit data types, show integer values. How
can we show bit values in the output?

The answer is the MySQL function. The function converts an integer value to its
binary representation:

mysql> SELECT year, week, BIN(days) FROM working_days;
+--------+---------+------------+
| year | week | days |
+--------+---------+------------+
| 2017 | 4 | 111011 |
+--------+---------+------------+

MySQL 8 Data Types Chapter 4

[124]

As you can see, the leading zeros are removed from the days' bit value in the output. To
accomplish the representation in the output, on top of the function, we can use
the MySQL function:

mysql> SELECT year, week, LPAD(BIN(days), 7, '0') FROM working_days;
+--------+---------+------------+
| year | week | days |
+--------+---------+------------+
| 2017 | 4 | 0111011 |
+--------+---------+------------+

Type attributes
As shown earlier, while defining integer columns, we can also specify an optional display
width attribute. For example, indicates an integer number with a display width of
digits. When this column is used in the query, the output will display the number
left padded with spaces. So, if the value stored in the column is , then it will be
displayed as . The will be a space in the actual output.

However, the display width doesn't limit the range of values which can be stored in the
 column. The question then arises: What if we store a value for which the display

width is larger than the display width specified? The display width doesn't prevent values
wider than the display width of a column from being displayed correctly. So, values wider
than the column display width are displayed in full width, using more than the number of
digits specified with the display width.

As mentioned earlier, MySQL column definition provides an optional attribute
called . This optional attribute, when specified, replaces left padded spaces with
zeros. For example, for a column defined as the following, a value of 82 is retrieved as
00082:

INT(5) ZEROFILL

This optional attribute is useful where the proper formatting of numbers is important.

The attribute is ignored when the column value is used in
expressions or in a query.

MySQL creates temporary tables when complicated joins are used in a
query to store intermediate results. In such a case, we may face issues if
we specified a column with display width. In these cases, MySQL
considers that the data values fit within the display width.

MySQL 8 Data Types Chapter 4

[125]

Another important attribute is . The attribute permits only non-
negative values to be stored in the column. It is also useful when we need support for a
larger range of values to be stored with the same data type.

 is also supported by floating point types and fixed point types.

If we specify a attribute for a column, is
automatically added to the column.

Another important attribute for integer and floating point columns is .
When we insert a value in the column defined with the attribute,
MySQL stores instead of . A value of 0 will be treated the same as that of
a value, unless the mode is enabled. Here, the value is the
largest value stored in the column. It is extremely important that the column is defined as

. Otherwise, the value will be stored as , even though
the attribute is provided.

Overflow handling
When an out-of-range value is stored in the numeric type column in MySQL, the value
stored depends on the MySQL mode:

If mode is enabled, MySQL will not accept the value and throw an error.
The operation fails.
If modes are enabled, the value is clipped by MySQL to an
appropriate value, and that is what is stored in the column.

Date and time data types
, , , , and form the group of date and time data types

for storing temporal values. Each of these types has a range of permitted values. Apart from
the permitted values, a special value can also be used to specify an invalid value
which MySQL cannot represent. The zero value can be 00-00-0000. MySQL allows this value
to be stored in a column. This is sometimes more convenient than storing values.

MySQL 8 Data Types Chapter 4

[126]

The following are the general considerations we must take care of while working with date
and time types.

The way MySQL treats storage and retrieval operations for date or time types is different in
the context of the format. Basically, for a date or time type value stored in the table, MySQL
retrieves values in a standard output format. In the case of inputting a date or time type
value, MySQL attempts to apply different formats on the supplied input value. So, it is
expected that the supplied value is valid, or unexpected results may occur if used values in
unsupported formats.

Though MySQL can interpret input values with several different formats, parts of the date
value must be supplied in a year-month-day format. For example, 2017-10-22 or 16-02-14.

Supplying a two-digit year creates ambiguity for MySQL to interpret the year because of
the unknown century. The following are the rules that must be followed, using which
MySQL interprets two-digit year values:

Year values between 70-99 are converted to 1970-1999
Year values between 00-69 are converted to 2000-2069

It is possible to convert a value from one temporal type to another temporal type following
certain rules. We will discuss these rules later in the chapter.

If the date or time value is used in a numeric context, MySQL will automatically convert the
value to a number.

We have one interesting use case. We want to develop an audit log feature where we store
every user-entered value. Suppose that in one of the date fields, the user entered an invalid
date, 2017-02-31. Will this be stored in the audit log table? Certainly not. How do we
complete the feature, then? MySQL has the mode. If enabled, it
will allow invalid dates to be stored. With this mode enabled, MySQL verifies that the
month is in the range of 1-12 and day is in the range of 1-31.

As ODBC cannot handle zero values for date or time, such values used
through Connector/ODBC are converted to .

MySQL 8 Data Types Chapter 4

[127]

Following table shows zero values for different data types:

Data Type Zero Value

0000-00-00

00:00:00

0000-00-00 00:00:00

0000-00-00 00:00:00

0000

The preceding table shows values for different temporal data types. These are special
values, as these are allowed by MySQL and are very useful in certain cases. We can also
specify values using or . MySQL has an interesting mode configuration:

. If this configuration is enabled, MySQL shows a warning if the temporal
type has a value with the date as .

DATE, DATETIME, and TIMESTAMP types
This section describes the most commonly used MySQL date and time data types: ,

, and . This section explains the similarities and differences between
these data types.

The data type is suitable when the values we wish to store have a date part, but the
time part is missing. The standard MySQL date format is YYYY-MM-DD. The date values
are retrieved and displayed in the standard format unless functions are applied. The
MySQL supported range of values is 1000-01-01 to 9999-12-31. Supported, here, means the
values may work, but there is no guarantee. The same is the case for the data
type.

The data type is suitable for values containing date and time parts. The standard
MySQL format is YYYY-MM-DD HH:MM:SS. The supported range of values is
1000-01-01 00:00:00 to 9999-12-31 23:59:59.

Similar to , the data type is also suitable for values containing date
and time parts. However, the range of values supported by the data type is
1970-01-01 00:00:01 UTC to 2038-01-19 03:14:07 UTC.

MySQL 8 Data Types Chapter 4

[128]

Though they look similar, the and data types differ significantly:

The data type requires 4 bytes to store date and time values.
The data type requires 5 bytes to store date and time values.

 can store values till 2038-01-19 03:14:07 UTC. If we wish to store
values beyond 2038, the data type should be used.

 considers UTC as the time zone while storing values.
stores values without time zone consideration.

Let's use an example to understand the difference between and
within the context of .

Suppose the initial value is set to :

SET time_zone = '+00:00';

Let's create a table called . The table has two columns; one is and
another is of the type . We will store the same date and time values in both
columns. With the help of the query, we will try to understand how the
representations differ in output:

mysql> CREATE TABLE datetime_temp(
 ts TIMESTAMP,
 dt DATETIME);

mysql> INSERT INTO datetime_temp
VALUES(NOW(), NOW());

mysql> SELECT ts, dt FROM datetime_temp;
+------------------------+-------------------------+
| ts | dt |

+------------------------+-------------------------+
| 2017-10-14 18:10:25 | 2017-10-14 18:10:25 |
+------------------------+-------------------------+

In the preceding example, is the MySQL function which returns the current date and
time values. Looking at the output, it seems that both the and
representations are same. It is because the value is set to UTC. By
default, shows the date time value considering the UTC . On the
other part, shows date time without a .

MySQL 8 Data Types Chapter 4

[129]

Let's change the and observe the output:

mysql> SET time_zone = '+03:00';

mysql> SELECT ts, dt FROM datetime_temp;
+------------------------+-------------------------+
| ts | dt |
+------------------------+-------------------------+
| 2017-10-14 21:10:25 | 2017-10-14 18:10:25 |
+------------------------+-------------------------+

Looking at the output, it is clear that the considers the value set in
MySQL. So, the value got adjusted when we changed the time zone.
isn't impacted, so the output is not changed, even after changing the time zone.

If is used to store date and time values, we must consider it
seriously when migrating data to a different server located in a different
time zone.

If higher precision for the time value is required, and can include
trailing fractional seconds as small as microseconds (six digits). So, if we insert a date time
value with a microseconds value, it will be stored in the database. The format, including the
fractional part, is YYYY-MM-DD HH:MM:SS[.fraction], and the range is from 1000-01-01
00:00:00.000000 to 9999-12-31 23:59:59.999999. The range for , including the
fraction, is 1970-01-01 00:00:01.000000 to 2038-01-19 03:14:07.999999.

The fractional part is separated from the time value by a decimal point because MySQL
doesn't recognize any other delimiter for fractional seconds.

Date and time values stored with the data type are converted from the server's
time zone to UTC for storage and from UTC to the server's time zone for retrieval. If we
stored a value and then changed the server's time zone and retrieved the value,
the retrieved value would be different from the one we stored.

The following is the list of properties of date value interpretation in MySQL:

MySQL supports a relaxed format for values specified as string. In a relaxed
format, any punctuation character can be used as the delimiter between date
parts or time parts. This is a little bit confusing. For example, a value
might look like a time value because of the use of , but is interpreted as
a date.

MySQL 8 Data Types Chapter 4

[130]

The only recognized delimiter between the rest of the time part and the fractional
seconds part is the decimal point.
It is expected that month and day values are valid. With mode disabled,
invalid dates are converted to respective values and a warning message is
shown.

 values that include zero in the day or month column are not a valid
date. The exception to this rule is the value.

If MySQL is run with mode enabled, is identical to
. If this mode is enabled at the time of table creation,

values are converted to .

MySQL DATETIME functions
 is the function used to get the current date and time of the system:

mysql> SET @dt = NOW();

mysql> SELECT @dt;
+---------------------+
| @dt |
+---------------------+
| 2017-10-15 13:43:17 |
+---------------------+

The function is used to extract date information from the value:

mysql> SELECT DATE(@dt);
+------------------+
| DATE(@dt) |
+------------------+
| 2017-10-15 |
+------------------+

The function is used to extract time information from a date time value:

mysql> SELECT TIME(@dt);
+------------------+
| TIME(@dt) |
+------------------+
| 13:43:17 |
+------------------+

MySQL 8 Data Types Chapter 4

[131]

The and functions are very useful when you want to display or query a
database table based on the date or time value, but the actual value stored in the table
contains date and time information.

If we want to extract , , , , , , , and
information from or values, respective functions are available:

mysql> SELECT
 HOUR(@dt),
 MINUTE(@dt),
 SECOND(@dt),
 DAY(@dt),
 WEEK(@dt),
 MONTH(@dt),
 QUARTER(@dt),
 YEAR(@dt);
+-----------+-------------+-------------+---------+----------+
| HOUR(@dt) | MINUTE(@dt) | SECOND(@dt) | DAY(@dt)| WEEK(@dt)|
+-----------+-------------+-------------+---------+----------+
+------------+--------------+-----------+
| MONTH(@dt) | QUARTER(@dt) | YEAR(@dt) |
+------------+--------------+-----------+
+-----------+-------------+-------------+---------+----------+
| 13 | 43 | 17 | 15 | 41 |
+-----------+-------------+-------------+---------+----------+
+------------+--------------+-----------+
| 10 | 4 | 2017 |
+------------+--------------+-----------+

TIME type
MySQL or data types are used to represent specific times at
particular dates. How about storing only the time of the day or the time difference between
two events? MySQL's data type serves the purpose.

The standard MySQL format for storing or displaying data type values is .
The time value represents the time of the day, which is less than 24 hours, but the data
type, as mentioned earlier, can also be used to stored elapsed time or time difference
between two events. So, the column can store values greater than 24 hours.

MySQL 8 Data Types Chapter 4

[132]

The MySQL column is defined as follows:

column_name TIME;

The range of values that can be stored in the data type column is -838:59:59 to
838:59:59.

The MySQL column can also store the fractional seconds part up to microseconds (six
digits), similar to the column. Considering the fractional second precision, the
range of values varies from -838:59:59.000000 to 838:59:59.00000.

The MySQL column can also have an optional value:

column_name TIME(N);
where N represents number of fractional part, which is up to 6 digits.

The value usually takes 3 bytes for storage. In the case of the value including
fractional second precision, it will require additional bytes, based on the number of
fractional second precision.

The following table shows the number of additional bytes required to store fractional-
second precision:

Fractional Second Precision Storage (bytes)

0 0

1, 2 1

3, 4 2

5, 6 3

MySQL supports abbreviated values for the column. There are two distinct ways for
MySQL to interpret abbreviated values:

If the abbreviated value has a colon(), MySQL interprets it as time of the day.
For example, 11:12 is interpreted as 11:12:00 and not as 00:11:12.
If the abbreviated value doesn't have a colon(), MySQL assumes that the two
rightmost digits represent seconds. This means the value is interpreted as elapsed
time, rather than time of the day. For example, '1214' and 1214 are interpreted by
MySQL as 00:12:14.

MySQL 8 Data Types Chapter 4

[133]

The decimal point is the only delimiter accepted by MySQL to separate fractional second
precision from the rest of the time value parts.

MySQL, by default, clips the values that lie outside of the permitted range of values to the
closest endpoint of the range. For example, -880:00:00 and 880:00:00 are stored as -838:59:59
and 838:59:59. Invalid values are converted to 00:00:00. As 00:00:00 itself is a valid

 value, it is difficult to know if the value 00:00:00 was stored intentionally, or converted
from an invalid value.

MySQL accepts string and numeric values as the values.

Time functions
The function can be used to find the current time on the server. It is also
possible to add or subtract time values using the and functions. For
example, the following example adds two hours to the server's current time:

mysql> SELECT
 CURRENT_TIME() AS 'CUR_TIME',
 ADDTIME(CURRENT_TIME(), 020000) AS 'ADDTIME',
 SUBTIME(CURRENT_TIME(), 020000) AS 'SUBTIME';

+----------+-----------+-----------+
| CUR_TIME | ADDTIME | SUBTIME |
+----------+-----------+-----------+
| 10:12:34 | 12:12:34 | 08:12:34 |
+----------+-----------+-----------+

The function can be used to fetch the UTC time.

YEAR type
What is the preferred data type for storing manufacturing year? MySQL's answer to this is a

 data type. The data type requires 1 byte to store year information.

A column can be declared as:

manufacturing_year YEAR
or
manufacturing_year YEAR(4)

MySQL 8 Data Types Chapter 4

[134]

One notable thing is that earlier MySQL versions supported the type column
declaration. The support for has been discontinued from MySQL 8. It is possible
that we might want to upgrade the older MySQL database to the MySQL 8 database. In a
later section, we will explain the migration details from to .

MySQL represents values in a YYYY format. The range of values is from 1901 to 2155
and 0000.

The following is the list of formats supported for inputting values:

Four digit number from 1901 to 2155.
Four digit string from 1901 to 2155.
One or two digit number with the range of 0 to 99. values from 1 to 69 are
converted to 2001 to 2069 and from 70 to 99 are converted to 1970 to 1999.
One or two digit string with the range of 0 to 99. values from 1 to 69 are
converted to 2001 to 2069 and from 70 to 99 are converted to 1970 to 1999.
Inserting a numeric 0 has a display value of 0000 and an internal value of 0000. If
we want to insert 0 and want it to be interpreted as 2000, we should specify it as a
string 0 or 00.
The result of a function that returns an acceptable value context, for
example, .

MySQL converts invalid values to 0000.

Migrating YEAR(2) to YEAR(4)
As mentioned earlier, MySQL 8 doesn't support the type. Trying to create a
column with as a data type will give an error as follows:

mysql> CREATE TABLE temp(year YEAR(2));
ERROR 1818 (HY000): Supports only YEAR or YEAR(4) column.

The query, which rebuilds the table, will automatically convert to
. The column, after upgrading the database to the MySQL 8 database,

remains as , but the queries give errors.

MySQL 8 Data Types Chapter 4

[135]

There are multiple ways to migrate from to :

Using the query with attribute converts the
column to . It doesn't convert the values, though. If the
query is applied to a replication master, the replication slaves will replicate the

 statement. So, the change will be available on all the replication
nodes.
Using binary upgrade, without dumping or reloading data, is another way of
upgrading to . Running subsequently
executes and converts to without changing
values. Similar to the previous alternative, this will be replicated in replication
slaves if it is applied to a replication master.

An important thing to note is that while upgrading, we must not dump the data
with and reload the dump file after upgrading. This method has the potential to
change the values significantly.

Before to migration, application code must be reviewed for:

Code that selects the value in two digits.
Code that doesn't handle numeric insertions. Inserting into results
in , whereas inserting into results into .

String data types
Which is the most widely required and used data type for representing values? String or
character data types; it's easy, right? MySQL supports a wide range of string data types to
fulfill different storage requirements. String data types are categorized into two categories:
fixed length and variable length. , , , , , , ,
and are the MySQL-supported string data types. The storage requirement for each data
type is different and will be explained later in a separate section.

MySQL 8 Data Types Chapter 4

[136]

CHAR and VARCHAR data types
The data type is a fixed-length string data type in MySQL. The data type is often
declared with a maximum number of characters that can be stored as follows:

data CHAR(20);

In the preceding example, the data column can store string values that are capable of
storing maximum characters.

 and are similar in many ways, with certain differences. The data type
is preferred if the string values to be stored are of fixed size. It will give better performance
compared to if is used for fixed size strings.

The lengths vary from 0 to 255. The value in the column cannot exceed the maximum
length declared at the time of table creation. If the length of the string is less than the
maximum allowed length, MySQL adds padding on the right to the length specified. At the
time of retrieval, trailing spaces are removed. The following is an example:

mysql> CREATE TABLE char_temp (
 data CHAR(3)
);

mysql> INSERT INTO char_temp(data) VALUES('abc'), (' a ');

mysql> SELECT data, LENGTH(data)
 FROM char_temp;
+-------+--------------+
| data | LENGTH(data) |
+-------+--------------+
| abc | 3 |
+-------+--------------+
| a | 2 |
+-------+--------------+

As we can observe in the preceding example, the second record was inserted as , but
in the output, the trailing space is removed. So, the length is displayed to be instead of .

Most MySQL collations have a pad attribute. It determines how trailing spaces are treated
for comparison of non-binary strings. There are two types of collations: and

. In case of collation, trailing spaces are not considered in comparison.
Strings are compared without regard to trailing spaces.

MySQL 8 Data Types Chapter 4

[137]

In the case of collation, the trailing spaces are treated as any other character. The
following is an example:

mysql> CREATE TABLE employees (emp_name CHAR(10));

mysql> INSERT INTO employees VALUES ('Jack');

mysql> SELECT emp_name = 'Jack', emp_name = 'Jack ' FROM employees;
+-------------------+--------------------+
| emp_name = 'Jack' | emp_name = 'Jack ' |
+-------------------+--------------------+
| 1 | 1 |
+-------------------+--------------------+
mysql> SELECT emp_name LIKE 'Jack', emp_name LIKE 'Jack ' FROM employees;
+----------------------+------------------------+
| emp_name LIKE 'Jack' | emp_name LIKE 'Jack ' |
+----------------------+------------------------+
| 1 | 0 |
+----------------------+------------------------+

 is a MySQL operator used for comparison in the clause. It is specifically used
for pattern searching in a string. Trailing spaces are significant when comparing string
values with the operator.

If mode is enabled, at the time of retrieval,
the trailing spaces will not be removed.

The MySQL data type is a variable length string data type with a maximum length
of up to 65,535 characters. values are stored by MySQL as a one or two byte length
prefix, along with actual data. The actual maximum length of a is subject to the
maximum row size, which is 65,536 bytes shared among all columns.

If the value requires less than 255 bytes, one byte is used for determining length
prefix. If the value requires more than 255 bytes, two bytes are used for determining length
prefix.

If MySQL strict mode is enabled and a value to be inserted in the or column
value exceeds the maximum length, an error will be generated. If strict mode is disabled,
the value will be truncated to the maximum allowed length with a warning.

Unlike in the data type, values to be stored in are not padded. Also, trailing
spaces are not removed when the values are retrieved.

MySQL 8 Data Types Chapter 4

[138]

BINARY and VARBINARY data types
Another set of MySQL string data types is and . These are similar to

 and data types. An important difference between / and
/ is that / data types contain binary strings than

character strings. / uses binary character sets and collation.
/ are different from and data types. The

basic difference lies in the character set and collation referred to.

The maximum length for permitted values is similar to that of and . The only
difference is that the length of and is in bytes, rather than characters.

How would MySQL compare binary values? The answer is that the comparison happens
based on the numeric values for the bytes in the values.

Similar to / data types, the values are truncated if the length of the value
exceeds the column length, and a warning is generated. This is if mode is not
enabled. If mode is enabled, an error is generated.

 values are right-padded with the pad value 0x00 (zero bytes) to the specified
column length. The pad value is added on insert, but no trailing bytes are removed on
retrieval. While comparing values, all bytes are considered significant. This applies
to and operators, as well. Zero bytes and spaces are different when
compared with 0x00 < space. The following is an example of inserting a binary value:

mysql> CREATE TABLE temp(
 data BINARY(3));

mysql> INSERT INTO temp(data) VALUES('a ');

In this case, becomes on insertion. is converted to '. On
retrieval, values remain unchanged.

 is a variable length string data type. Unlike , for , padding is
not added on insertion and bytes are not stripped on retrieval. Similar to , all bytes
are significant in comparison for .

If the table has a unique index on columns, insertion of values in the column differing only
in number of trailing pad bytes will give a duplicate-key error. For example, if such a
column contains and we try to insert , it will cause a duplicate-key error.

MySQL 8 Data Types Chapter 4

[139]

The following example explains the padding of values in comparison:

mysql> CREATE TABLE bin_temp (data BINARY(3));

mysql> INSERT INTO bin_temp(data) VALUES('c');

mysql> SELECT data = 'c', data = 'c\0\0' from bin_temp;
+------------+-------------------+
| data = 'c' | data = 'c\0\0' |
+------------+-------------------+
| 0 | 1 |
+------------+-------------------+

In the case that it is required to retrieve the same value as specified without padding,
 is preferable.

If the value retrieved must be the same as the value specified for storage with no padding, it
might be preferable to use or one of the data types instead.

BLOB and TEXT data types
In what situation could we be required to store data in a Binary Large Object (BLOB)
column? Any idea? Storing a file or image, you said? It is partially true. Before we make a
decision to store the images or files in a database or file system, we need to assess the
situation. If the files are stored in a file system and migrated over to another operating
system, it is possible that file pointers could get corrupted. It will require additional efforts
to fix the file pointers. In such a case, storing files in a database is preferable. However, it
might impact performance if we store a large clogged file or image data in the database.

 is MySQL's solution to storing large binary information of variable lengths. MySQL
has four types: , , , and . The only difference
among these data types is the maximum length of values we can store. The storage
requirements for these data types are explained in later sections of the chapter.

Similar to , data types are , , , and . These
have maximum lengths and storage requirements similar to that of data types.

Like data types, values are stored as byte strings and have binary character
sets and collation. Comparisons and sorting are done on the numeric values of the column
values. values are stored as non-binary strings.

MySQL 8 Data Types Chapter 4

[140]

In the case of or data types, if the value contains excess trailing spaces, MySQL
truncates with a warning, regardless of the MySQL mode. MySQL doesn't pad or

 column values on insertion and doesn't strip bytes on retrieval.

For a column which is indexed, the index comparisons add trailing spaces as padding
at the end of the values. So, a duplicate-key error may occur on insertion if the only
difference between an existing value and the value to be inserted is in the
trailing spaces. can be regarded as and can be regarded as ,
with no restriction on the length of the values.

The following are the differences between , and , :

When creating indexes on or columns, we must specify index prefix
length

 and cannot have default values

 or values are represented internally as objects with separate allocations, unlike
other data types, for which the storage is allocated once per column.

ENUM data type
MySQL provides a data type for which lists of permitted values can be predefined when the
table is created. The data type is . If we want to restrict the user from inserting values
outside a range of values, we should define the column of data type . MySQL encodes
the user input string values into numbers for data types.

 provides the following mentioned benefits:

Compact data storage
Readable queries and output

The following is an example that showcases when is useful:

mysql> CREATE TABLE subjects (
 name VARCHAR(40),
 stream ENUM('arts', 'commerce', 'science')
);

mysql> INSERT INTO subjects (name, stream) VALUES ('biology','science'),
('statistics','commerce'), ('history','arts');

mysql> SELECT name, stream FROM subjects WHERE stream = 'commerce';

MySQL 8 Data Types Chapter 4

[141]

+------------+----------+
| name | stream |
+------------+----------+
| statistics | commerce |
+------------+----------+

mysql> UPDATE subjects SET stream = 'science' WHERE stream = 'commerce';

 values require one byte of storage. Storing one million such records in this table
would require one million bytes of storage, opposed to the six million bytes required by
the column.

The following are important limitations to consider:

 values are stored internally as numbers. So, if the values look like
numbers, literal values may mix up with their internal index numbers.
Using columns in clauses requires extra care. values are
assigned index numbers based on the order of listing. values are sorted
based on their index numbers. So, it is important to make sure that the
values list is in alphabetical order. Also, the column should be sorted lexically
than by index numbers.
The value must be a quoted string literal.
Each value has an index beginning with 1. The index of the empty string or
error value is 0. We can find invalid values by querying the table with

 in the clause. The index of value is .
Index refers to the position of a value within the list of values.
MySQL automatically removes trailing spaces from member values when a
table is created. Upon retrieval, values from an column are displayed in the
case used in the column definition. If a number is to be stored in the
column, the number is treated as an index into the possible values. The value
stored is the value with that index. In the case of a quoted numeric value, it
is still interpreted as an index if there is no matching string in the list of
enumerated values.
If an column is declared to contain values, the value is
considered a valid value for the column and becomes the default value. If

 is not allowed, the first value becomes the default value.

MySQL 8 Data Types Chapter 4

[142]

If values are used in a numeric context, the index is used. The following is an example
query to use values in a numeric context:

mysql> SELECT stream+1 FROM subjects;
+--------------+
| stream+1 |
+--------------+
| 4 |
| 3 |
| 2 |
+--------------+

SET data type
MySQL is a data type which can have zero or more values. A permitted list of values is
specified at the time of table creation. Each value must be from within the list of permitted
values. Multiple set members are specified by a comma () separated list of values. A
can have a maximum of 64 distinct members. If mode is enabled, an error is
generated if duplicate values are found in the column definition.

It must be taken care that member values do not contain commas; otherwise, they are
interpreted as member separators.

A column specified as can have any of the following
values:

Trailing spaces are removed automatically from member values. Upon retrieval,
column values are displayed using the letter case which was used in the column definition.

The following is an example of inserting values in the data type:

mysql> CREATE TABLE temp(
 hobbies SET('Travel', 'Sports', 'Fine Dining', 'Dancing'));

mysql> INSERT INTO temp(hobbies) VALUES(9);

MySQL 8 Data Types Chapter 4

[143]

The values are stored in the MySQL table as a bitmap in which each element is
represented by one bit. In the preceding case, each element in the is assigned a bit. If
the row has a given element, the associated bit will be one. Because of this approach, each
element has an associated decimal value. Also, because of the bitmap, though there are only
four values, will occupy one byte. The following is the table explaining this:

Element SET value Decimal value

Travel 00000001 1

Sports 00000010 2

Fine Dining 00000100 4

Dancing 00001000 8

Multiple elements can be represented by adding their decimal values. In the preceding
case, the decimal value 9 is interpreted as Travel, Dancing.

The data type is not so commonly used. This is because although it is a string data type,
it is a bit complex in implementation. The values that can be stored are limited to 64
elements. We cannot add commas as part of values, because a comma is a standard
value separator. From a database design point of view, using means the database is not
normalized.

JSON data type
JSON stands for JavaScript Object Notation. Suppose that we want to store user preferences
for a web application in the database. Usually, we may choose to create a separate table
with , , , fields. This may work well for a small number of users, but
in the case of thousands of users, the cost of maintenance is unaffordable compared to the
value it adds to the web application.

In MySQL, we can utilize the JSON data type for this requirement. MySQL supports the
native JSON data type, which enables efficient storage for JSON documents. MySQL
supports automatic validation of JSON documents stored in the JSON column. Trying to
store invalid JSON documents produces an error. JSON documents stored in JSON columns
are converted to an internal format. The format is binary, and structured to enable the
server to look up or nested values directly, by key or array index, without
reading other values.

MySQL 8 Data Types Chapter 4

[144]

A JSON column cannot have a default value. The JSON data type requires similar storage to
that of or . JSON columns are not indexed directly, unlike other string
data types.

The following is an example of inserting JSON values in a table:

mysql> CREATE TABLE users(
 user_id INT UNSIGNED NOT NULL,
 preferences JSON NOT NULL);

mysql> INSERT INTO users(user_id, preferences)
 VALUES(1, '{"page_size": 10, "hobbies": {"sports": 1}}');

mysql> SELECT preferences FROM users;
+---+
| preferences |
+---+
| {"hobbies": {"sports": 1}, "page_size": 10} |
+---+

In the preceding example, we have formatted the JSON value. As an alternative, we can also
use the built-in function. The function accepts a list of key/value pairs and
returns a JSON object. An example follows:

mysql> INSERT INTO users(user_id, preferences)
 VALUES(2, JSON_OBJECT("page_size", 1, "network", JSON_ARRAY("GSM",
"CDMA", "WIFI")));

The preceding query will insert the JSON value
. We can also use nested functions.

The function returns a JSON array when passed a set of values.

If the same key is specified multiple times, only the first key/value pair will be retained. In
the case of the JSON data type, the object keys are sorted and the trailing space between the
key/value pairs is removed. The keys in the JSON object must be strings.

Inserting a JSON value in a JSON column succeeds only if the JSON document is valid. In
the case that the JSON document is invalid, MySQL produces an error.

MySQL has one more important and useful function which operates on JSON values. The
 function takes multiple JSON objects and produces a single, aggregate object.

The function takes a JSON as an argument and tries to parse it into a JSON
value. It returns the value's JSON type if it is valid and produces an error if otherwise.

MySQL 8 Data Types Chapter 4

[145]

Partial updates of JSON values
What should we do if we want to update a value in a JSON document stored in a JSON data
type? One of the approaches is to remove the old document and insert a new document,
with updates. The approach doesn't seem good, right? MySQL 8.0 supports partial, in place
update of a JSON document stored in a JSON data type column. The optimizer requires that
an update must meet the following conditions:

The column must be of JSON type.
One of three functions, , or , can
be used to update the column. MySQL doesn't permit direct assignment of the
column value as a partial update.
The input column and target column must be the same. For example, a statement
such as cannot be
performed as a partial update.
The changes only update existing arrays or objects, and no new elements are
added to the parent object or array.
The replacement value must not be larger than the value being replaced.

Storage requirements for data types
This section explains storage requirements for different data types in MySQL. The storage
requirements depend on different factors. The storage engines represent data types and
store raw data differently.

A table has a maximum row size of 65,535 bytes, even if the storage engine is capable of
supporting larger rows. and data types are excluded.

The following table explains the storage details for numeric data types:

Data Type Storage required

1 byte

2 bytes

3 bytes

, 4 bytes

8 bytes

MySQL 8 Data Types Chapter 4

[146]

4 bytes if 0<=p<=24,
8 bytes if 25<=p<=53

4 bytes

, 8 bytes

, Varies

Approximately (M+7)/8 bytes

The following table explains the storage requirements for and data types:

Data Type Storage Required

1 byte

3 bytes

3 bytes + fractional seconds storage

5 bytes + fractional seconds storage

4 bytes + fractional seconds storage

The following table explains the storage required for fractional seconds precision:

Fractional Seconds Precision Storage Required

0 0 bytes

1, 2 1 byte

3, 4 2 bytes

5, 6 3 bytes

MySQL 8 Data Types Chapter 4

[147]

The following table explains storage requirements for string data types:

Data Type Storage Required

M w bytes, 0 <= M <= 255, where w is the number of
bytes required for the maximum-length character in the
character set

M bytes, 0 <= M <= 255

,) L + 1 bytes if the column values require 0 255 bytes, L + 2
bytes if the values may require more than 255 bytes

, L + 1 bytes, where L < 28

, L + 2 bytes, where L < 216

, L + 3 bytes, where L < 224

, L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration
values (65,535 values maximum)

1, 2, 3, 4, or 8 bytes, depending on the number of set
members (64 members maximum)

In the case of string data types, variable length strings are stored using the length of the
value and the length prefix. The length prefix varies from one to four bytes, depending on
the data type.

Storage requirements for the JSON data type are similar to that of and
. However, as the JSON documents are stored in binary representations, it

imposes an overhead in storing JSON documents.

Choosing the right data type for column
As a general practice, we should use the most precise type for storing data. For example, a

 data type should be used to store a string value that varies in length from 1 to 255
characters. Another example is that should be used to store
numbers ranging from 1 to 99999.

MySQL 8 Data Types Chapter 4

[148]

Basic operations such as , , , and division with
 data are performed with the precision of 65 decimal digits.

Based on the importance of accuracy or speed, use of or should be chosen.
Fixed point values stored in can be used for higher precision.

These are general guidelines, but the decision to use the right data type should be made
based on the detailed characteristics explained separately for each data type in the earlier
sections.

Summary
It was an interesting chapter with important content to learn, right? In this chapter, we
understood the significance of data types in MySQL. We saw different categories in which
MySQL data types are classified. We learned and understood the characteristics and
specifications of each data type in depth. We also learned MySQL data manipulation
functions and understood some of the MySQL settings and modes. In the later section of the
chapter, we learned storage requirements of data types. Finally, we learned general
guidelines for choosing the right data types.

Moving on to next chapter, we will learn MySQL database management. The chapter will
focus on server administration, understanding the basic building blocks of the MySQL
server, such as the data dictionary, system database, and so on. The chapter will explain
how we can run multiple server instances on a single machine and MySQL roles and
permissions.

55
MySQL 8 Database

Management
In the previous chapter, we learned about MySQL 8 data types, explaining in detail which
data types are available and how they are categorized. There are various properties
associated with each of these data types, and the storage capacity varies with each type. The
previous chapter also provided you with an in-depth understanding of MySQL 8 data
types. Now its time to get some practical knowledge on MySQL 8 administrative features.
Isn't it interesting to know more about the administrative features of MySQL 8, how
configuration will be done for it, and much more? It's extremely important for an
administrator to have detailed knowledge on how MySQL 8 works for globalization, how
logs are maintained, and how to enhance capability of the server. Now, let's start with some
fundamental concepts.

We will cover the follow topics in this chapter:

MySQL 8 server administration
Data directory
The system database
Running multiple instances on a single machine
Components and plugin management
Roles and permissions
Caching techniques
Globalization
MySQL 8 server logs

MySQL 8 Database Management Chapter 5

[150]

MySQL 8 server administration
There are many operating parameters that available with MySQL 8, and among them all the
required parameters are set by default during the installation process. After installation,
you are allowed to change the option file by removing or adding a comment sign () at the
start of the line of a specific parameter setting. The user is also allowed to set parameters at
runtime by using command line arguments or the option file.

Server options and different types of variables
In this section, we are going to cover server options, system variable, and status variables
available in MySQL 8 on startup.

Server option: As described in the previous chapter MySQL 8 uses the option file
and command line arguments to set startup parameters. Refer to

 for details on all
the available options. accepts many command options. For a brief
summary, execute the following command:

 mysqld --help

To see the full list, use the following command:

 mysqld verbose --help

Server System variable: The MySQL server manages many system variables.
MySQL provides the default value for each system variable. System variables can
be set using the command line or can be defined in the option file. MySQL 8 has
the flexibility to change these variables at runtime without server start or stop.
For more details refer to:

.
Server status variable: The MySQL server uses many status variables to provide
information about its operation. For more details refer to:

.

MySQL 8 Database Management Chapter 5

[151]

Server SQL modes
MySQL 8 provides different modes that will affect MySQL support and data validation
checks. This option makes it easier for the user to use MySQL in different environments. To
set different modes MySQL provides the system variable which can be set at
either a global or session level. Refer to the following points in detail to understand modes:

Setting the SQL mode
SQL mode can be setup on startup using the option. The user can
also define this option in the option file as . You can define multiple
nodes by adding comma separated values. MySQL 8 uses the following modes as default
modes: , , ,

, ,
 To change mode at runtime, execute the following commands:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

 To retrieve the values of both the variables, execute the following commands:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

The available SQL modes
This section describes all the available SQL modes. Out of them, the first three are the most
important SQL modes:

: This mode is used to change syntax and behavior, by making it closer to
standard SQL.

: As the name implies, this mode is related to transaction
and it is mainly used for transactional storage engines. When this mode is enable
for nontransactional tables, MySQL 8 will convert invalid values to the closest
valid value and insert the adjusted value into the column. If the value is missing,
then MySQL 8 will insert an implicit default value related to the column's data
type. In this case, MySQL 8 will generate a warning message instead of an error
message, and continue with the statement execution without breaking it.In the
case of transactional tables, however, MySQL 8 gives an error and will breaks
execution.

MySQL 8 Database Management Chapter 5

[152]

: This mode generally behaves like traditional SQL database
system. It indicates give error instead of a warning when an incorrect value
inserted into the column.

: This mode checks only the month range and the date
range of the date value. In other words, the month range must be between 1 to 12
and date range must be between 1 to 31. This mode is applicable for and

 data types and not for data type.
: Used to consider as an identifier quote character instead of a

string quote character. When this mode is enabled, you cannot use double
quotation to quote string literal.

: Used to handle the case of division by zero.
This mode output also depends on strict SQL mode status:

If this mode is not enabled, division by zero inserts and
produces no warning.
If this mode is enabled, division by zero inserts and produces
a warning.
If this mode and strict mode are enabled, division by zero produces
an error, unless is given as well. For

 and , division by zero inserts and
produces a warning.

: This mode is used to set a high precedence for the
operator. For example, when the mode is enabled the expression

 is parsed as instead of
.

: This mode applies to built-in functions rather than user defined
functions or stored procedures.

: This mode is used to prevent statements by
automatically creating new user accounts unless authentication information is
specified.

: This mode is used for auto incremental columns.
When 0 is found MySQL creates a new sequence number for the field, and that
will create problems when you are loading dump. Enable this mode before
reloading dump to resolve this problem.

: If this mode is enabled, backslash becomes an
ordinary character.

MySQL 8 Database Management Chapter 5

[153]

: This option is useful for slave replication servers where
the and directives are ignored on table
creation.

: Used to provide substitution of the default storage
engine. When this mode is enabled and the desired engine is unavailable, MySQL
gives an error and a table is not created.

: This indicates, don't print MySQL specific column options
in the output of .

: This indicates, don't print MySQL specific index options in the
output of .

: This indicates, don't print MySQL specific table options in
the output of .

: When this mode is enabled, it makes sure that
subtraction result must be a signed value even though any of the operand is
unsigned.

: The effect of this mode depends on the strict mode as defined
below:

If it is not enabled, 0000-00-00 is allowed and MySQL produces no
warning on insertion
If this mode is enabled, 0000-00-00 is allowed and MySQL records a
warning
If both this mode and strict mode are enabled, 0000-00-00 is not
allowed and MySQL produces an error on insertion

: This mode effect is also depending on the strict mode as
defined below:

If it is not enabled, dates with zero parts are allowed and MySQL
produces no warning on insertion
If this mode is enabled, dates with zero parts are allowed and
produce a warning
If this mode and strict mode are enabled, dates with zero parts are
not allowed and MySQL produces an error

: If this mode is enabled, MySQL will reject queries in
which list, list, and the condition refer to non
aggregated columns.

MySQL 8 Database Management Chapter 5

[154]

: This mode is applied on the column whose data
type is set as . When this mode is enabled, MySQL retrieves column values
by padding to their full length.

: When this mode is set as enabled will be considered as a
string concatenation operator instead of .

: By default, MySQL 8 will consider as a synonym of
, but when this flag is enabled MySQL will consider as a synonym

of .
: In this mode invalid data values are rejected.

: This mode indicates if truncation is allowed on
, , and columns or not. The default behavior is to perform

rounding on the values instead of truncation.

Combination SQL modes
MySQL 8 also provides some special modes as combinations of mode values:

: It includes the effects of the , ,
, , and modes.

: It includes the effects of the , ,
, , ,

and modes.
: It includes the effects of , ,

, , , ,
and .

: It includes the effects of , ,
, , ,

and .
: It includes the effects of the and

modes.
: It includes the effects of the and

modes.
: It includes the effects of the , ,

, , , ,
and modes.

MySQL 8 Database Management Chapter 5

[155]

: It includes the effect of the , ,
, , ,

and modes.
: It includes the effects of the ,

, , ,
, and

 modes.

Strict SQL mode
The strict mode is used to manage Invalid data or missing data. If strict mode is not enabled,
then MySQL will manage the insert and update operations by adjusting values and
generating warning messages. We can do the same on strict mode by enabling the

 or options. Let's take a key insertion example where a key value
exceeds the maximum limit. MySQL produces an error and stops the execution if strict
mode is enabled, and on the opposite side it allows key value by truncating if strict mode is
disabled. In the same way, in the case of the statement where the data is not
changed, MySQL will still produce an error, generating a warning message in case of
invalid values if strict mode is enabled. Strict mode is in effect if either
the or the option is enabled. These two
options behave similarly in the case of transactional tables and differently in the case of
nontransactional tables.

For transactional tables: If either of the modes are enabled, then MySQL will
produce an error and aborts the statement execution, in case of invalid or missing
values.
For nontransactional tables: The behavior of MySql will depend on the following
factors, when the tables are nontransactional:

: In this case, an error will be generated and
the execution will be stopped. But still, there is a possibility of error
where the partial data gets updated. To avoid this error scenario,
use a single-row statement, which will abort execution if the error
occurred during first row insertion/updation.

: This option provide flexibility to convert
an invalid value to the closest valid value. In case of missing value,
MySQL inserts the data type's default value into the column. Here,
MySQL generates a warning message and continues with the
execution.

MySQL 8 Database Management Chapter 5

[156]

Strict mode affects handling of divisions by zero, zero dates, and zeros in dates as describe
in the preceding points with
the , and modes.

The SQL mode will be applied on the following SQL statements:

ALTER TABLE
CREATE TABLE
CREATE TABLE ... SELECT
DELETE (both single table and multiple table)
INSERT
LOAD DATA
LOAD XML
SELECT SLEEP()
UPDATE (both single table and multiple table)

You can go to :
 for a detailed list of the errors associated with strict SQL mode in

MySQL.

The IGNORE keyword
MySQL provides an keyword which is optional for statement execution. The

 keyword is used to downgrade errors to warnings and applicable to several
statements. For multiple row statements, the keyword allows you to skip the
particular row, instead of aborting. The following statements support the keyword:

: Individual and statements do not
have support on this keyword, but when we insert into the table using
statement, rows that duplicate an existing row on a unique key value are
discarded.

: If this statement executes with the option MySQL avoid errors
occurred during execution.

: Duplicate values in unique key and data conversion issues will be
handled by this keyword during row insertion. MySQL will insert the closest
possible values into the column and ignore the error.

MySQL 8 Database Management Chapter 5

[157]

 and : At the time of loading data if duplication is found the
statement will discard it and continue insertion for the remaining data if the

 keyword is defined.
: In cases of duplicate key conflict on unique key during statement

execution, MySQL will update the column with the closest identified values.

The keyword also applies on some specific errors, listed
here: .

IPv6 support
MySQL 8 provides support for IPv6, with the following capabilities:

MySQL server will accept TCP/IP connections from clients with IPv6 connectivity
MySQL 8 account names permit IPv6 addresses, which enables DBA to specify
privileges for the clients that are connected with server, using IPv6
The IPv6 functions enable conversions between string and internal IPv6 address
formats, and checking whether the values represent a valid IPv6 address or not

Server side help
MySQL 8 provides statement, to get information from the MySQL reference manual.
To manage this information, MySQL uses several tables of system database. To initialize
these tables, MySQL provides the script. This script is available
at . After downloading and unzipping the
script file, execute the below command, for invoking the function:

mysql -u root mysql < fill_help_tables.sql

At the time of installation process content initialization occurs. In case of upgrading it will
be perform so; execute the above command manually.

MySQL 8 Database Management Chapter 5

[158]

The server shutdown process
The server shutdown process performs the following steps:

The shutdown process is initiated: There are several ways to initialize the1.
shutdown process. Execute the command which can be
executed on any platform. There are some system specific ways to initialize the
shutdown process; for example, Unix based systems will start to shut down when
it receives a SIGTERM signal. In the same way, Window based systems will start
to shut down when the service manager tells them to.
The server creates a shutdown thread if necessary: Based on the shutdown2.
initialization process, the server will decide to create new thread or not. If it is
requested by the client, a new thread will be created. If a signal is received, then
the server might create a thread or it might handle it by itself. If the server tries to
create a separate thread for the shutdown process and an error occurs, then it
produces the following message in the error log:

 Error: Can't create thread to kill server

The server stops accepting new connections: When the shutdown activity is3.
initiated, the server will stop accepting new connection requests, using a handler
of network interfaces. The server will be using Windows features such as named
pipe, TCP/IP port, the Unix socket file, and shared memory on Windows in order
to listen to new connection requests.
The server terminates current activity: Once the shut down process is initialized,4.
the server will start to break the connection with the client. In the normal
scenario, the connection threads will die quickly, but the ones which are working
or are in an ongoing activity stage will take a long time to die. So if a thread is
executing open transactions and if it gets rollback in the middle of execution then
the user might get only partially updated data. On the other hand, if the thread is
working on a transaction, then the server will wait until the transaction is
completed. Also, the user can terminate the ongoing transaction by executing
the or statements.
The server shuts down or closes storage engines: In this phase, the server5.
flushes the cache and closes all the open tables. Here, the storage engine performs
all the actions necessary for tables. flushes its buffer pool, writes the
current LSN into tablespace and terminates its thread. The flushes the
pending index.

MySQL 8 Database Management Chapter 5

[159]

The server exits: In this phase, the server will provide one of the following values6.
to the management processes:

0 = successful termination (no restart done)
1 = unsuccessful termination (no restart done)
2 = unsuccessful termination (restart done)

Data directory
The data directory is the place where MySQL 8 stores all the information that is managed
by itself. Each sub-directory of the data directory represents a database directory and its
related data. All the MySQL installations have the following standard databases:

The directory: This represents the sys schema, which contains the objects
useful for the Performance Schema information interpretation.
The directory: This directory is used to observe the
internal execution of the MySQL server at run-time.
The directory: This directory is related to the MySQL system database,
which contains the data dictionary table and the system tables. It contains the
information that is required by the MySQL server once it is running.

The system database
The system database mainly contains the data dictionary tables that stores the object's
metadata and system tables for other operational purposes. The system database contains a
number of system tables. We will learn more about them in the coming sections.

Data dictionary tables
The data dictionary tables contains the metadata about data objects. Tables of this directory
are invisible and are not read by general SQL queries such as , ,

, and so on. MySQL mainly exposes the metadata using the
 option.

MySQL 8 Database Management Chapter 5

[160]

Grant system tables
These tables are used to manage and provide grant information of users, database and
relevant privileges. MySQL 8 uses grant tables as transactional tables, not nontransactional
(, for example) tables, so all the operations on the transaction are either completed
or failed; no partial case will be made possible.

Object information system tables
These tables contains information related to the stored programs, components and server-
side plugins. The following main tables are used to store information:

Component: Works as a registry for the server. The MySQL 8 server loads all the
components listed by this table on server startup.
Func: This table contains information related to all the user-defined functions
(UDF). MySQL 8 will load all the UDFs listed in this table during server startup.
Plugin: Contains the information related to the server-side plugins. The MySQL 8
server loads all the available plugins during startup.

Log system tables
These tables are useful for logging and using csv storage engines. For example, the
functions and .

The server-side help system tables
These tables are useful to store help information. The following tables are available in this
category :

: Provides information about the help categories
: Provides keywords associated with help topics

: Helps in mappings between help keywords and topics
: Help topic contents

MySQL 8 Database Management Chapter 5

[161]

Time zone system tables
These tables are useful to store time zone information. The following tables are available in
this category:

: Provides the time zone IDs and whether they use leap seconds
: Will come in handy when leap seconds occur

: Helps in mappings between time zone IDs and names
 and : Time zone

descriptions

Replication system tables
These tables are useful to support the replication feature. It helps to store replication related
information when it is configured to as mentioned in following tables. The following tables
are available in this category:

: Used for creating the table for storing GTID values
: Provides the binary log information for MySQL Cluster

replication
, and :

Used to store replication information on slave servers

Optimizer system tables
This tables are useful for optimizer. The following tables are available in this category:

 and : Used for getting the
 persistent optimizer statistics

: Contains the optimizer cost estimates for general server
operations.

: Contains the estimates for operations specific to particular storage
engines

MySQL 8 Database Management Chapter 5

[162]

Other miscellaneous system tables
Tables that don't fall into the above-mentioned categories fall under this category. The
following tables are available in this category:

: Used by the storage engine
: Used by the storage engine to store fast

changing table metadata such as auto-increment counter values and index tree
corruption flags

You can learn more about the different system tables at:
.

Running multiple instances on a single
machine
There might be some situations where you are required to install multiple instances on a
single machine. It may be to check the performance of two different versions, or perhaps
there is a need to manage two separate databases on different MySQL instances. The reason
can be anything, but MySQL allows user to execute multiple instances on the same machine
by providing different configuration values. MySQL 8 allows users to configure parameters
by making use of the command line, option file, or by setting environment variables. The
primary resource used by MySQL 8 for this is the data directory and it must be unique for
the two instances. We can define the value for the same using the

 function. Apart from the data directory, we will also configure unique
values for the following options as well:

MySQL 8 Database Management Chapter 5

[163]

Setting up multiple data directories
As described above, each of the MySQL instances must have a separate data directory. The
user is allowed to define separate directories using the following methods:

Create a new data directory: In this method we must follow the same procedure
which was defined in , Installing and Upgrading MySQL. For Microsoft
Windows, when we install MySQL 8 from Zip archives, copy its data directory to
the location where you want to set up the new instance. In the case of an MSI
package along with the data directory, create a pristine data directory
named data under the installation directory. Once the installation is complete,
copy the data directory to set up additional instances.
Copy an existing data directory: In this method, we will copy an existing
instance's data directory to the new instance's data directory. To copy an existing
directory, perform the following steps:

Stop the existing MySQL instance. Make sure it's cleanly shut down so1.
that no pending changes are available in the disk.
Copy the data directory to the new location.2.
Copy the or option file used by the existing instance to3.
the new location.
Modify the new option as per the new instance. Make sure all the4.
unique configurations are done properly.
Start the new instance with the new option file.5.

Running multiple MySQL instances on Windows
The user is allowed to run multiple MySQL instances on a single Windows machine either
by using the command line and passing values or by the window service.

Starting multiple MySQL instances at the Windows command line: To execute
multiple instances using the command line, we can either specify the option at
runtime or we can set it in the option file. The option file is a better option to start
instances because there is no need to specify arguments every time at startup. To
setup or configure the option file, follow the same steps described in

, Installing and Upgrading MySQL.

MySQL 8 Database Management Chapter 5

[164]

Starting multiple MySQL instances as Windows services: To start multiple
instance on Windows as service, we have to specify different services with
unique names. As described in , Installing and Upgrading MySQL, use
the or options to define MySQL as a Windows
service. The following options are available to define multiple MySQL instances
as Windows services:

Approach 1: Create two separate option files for instances and
define the group inside it. For example, use the function

. The code for the same is given below for your
reference:

 [mysqld]
 basedir = C:/mysql-5.5.5
 port = 3307
 enable-named-pipe
 socket = mypipe1

We can do the same using function as well. The
following code depicts the process:

 [mysqld]
 basedir = C:/mysql-8.0.1
 port = 3308
 enable-named-pipe
 socket = mypipe2

You can install the MySQL8 services using the following
commands:

 C:\> C:\mysql-5.5.5\bin\mysqld --install mysqld1 --
 defaults-file=C:\my-opts1.cnf
 C:\> C:\mysql-8.0.1\bin\mysqld --install mysqld2 --
 defaults-file=C:\my-opts2.cnf

Approach 2: Create one common option file as for both
the services:

 # options for mysqld1 service
 [mysqld1]
 basedir = C:/mysql-5.5.5
 port = 3307
 enable-named-pipe
 socket = mypipe1

 # options for mysqld2 service

MySQL 8 Database Management Chapter 5

[165]

 [mysqld2]
 basedir = C:/mysql-8.0.1
 port = 3308
 enable-named-pipe
 socket = mypipe2

Execute the following commands to install MySQL services:

 C:\> C:\mysql-5.5.9\bin\mysqld --install mysqld1
 C:\> C:\mysql-8.0.4\bin\mysqld --install mysqld2

To start MySQL services, execute the following commands:

 C:\> NET START mysqld1
 C:\> NET START mysqld2

Components and plugin management
The component based structure is supported by MySQL server, to extend the server
capabilities. MySQL 8 uses the and SQL
statements to load and unload components at runtime. MySQL 8 manages component
details into the system table. So, every time a new component is
installed, MySQL 8 server performs the following tasks:

Load components into server to make available instantly
Load service registered component into the system table.

When we uninstall any component, MySQL server will perform the same steps, but in the
reverse order. To see which components are available, execute the following query:

SELECT * FROM mysql.component;

MySQL 8 server plugins
MySQL 8 server has a plugin API that enables the creation of server components. With
MySQL 8, you have the flexibility of installing a plugin at runtime or at startup. In the
following topics we will learn about the life cycle of the MySQL 8 server plugins.

MySQL 8 Database Management Chapter 5

[166]

Installing the plugins
The loading of the plugins varies with their types and characteristics. To get a clearer
picture of this, let's go though the following:

Built-in plugins: The server knows about the built-in plugins and loads them
automatically, on startup. The user is allowed to change the state of plugins by
any of their activation statuses, which will be discussed in the following section.
Plugins registered in the system table: On startup MySQL 8
server will load all the plugins which are registered in the table. If
the server is started with the option, the server will not
load the plugins listed there.
Plugins named with command-line options: MySQL 8 provides the

, , and options for loading
plugins with the command line. The and
options load the plugins on server startup after the built-in plugins are installed.
But, we can use the option to load the plugins, prior to
initialization of built-in plugins and storage engines.
Plugins installed with the statement: This is a
permanent plugin registration option, which will register the plugin information
in the table. It will also load all the plugins available in the plugin
library.

Activate plugin
To control the state (like the activation or deactivation) of plugins, MySQL 8 provides the
following options:

: Disables the named plugin. Some of the built-in plugins,
such as the plugin, are not affected by this
command.

: This command enables the specified plugin. If plugin
initialization failed during startup MySQL 8 will start with the plugin disabled.

: This is the same as the above command, except the
server does not start. This means that it forces the server to start with the plugin if
it is mentioned on startup.

: The same as the option, but
additionally prevents the plugin from being unloaded at runtime.

MySQL 8 Database Management Chapter 5

[167]

Uninstall plugin
MySQL 8 uses the statement to uninstall the plugin, without
considering whether it was installed during the runtime or at startup. But this statement
will not allow us to uninstall the built-in plugins and the plugins that were installed by
the option. This statement just unloads the
plugin and removes it from the table, so it requires additional delete
privileges on the table.

Getting information about the installed plugins
There are multiple ways to get information about the installed plugins. Some of them are
listed as follows, for your reference:

The table contains plugin details such
as , , , ,

, and many more. Each individual row of this table represents
information about the plugin:

 SELECT * FROM information_schema.PLUGINS;

The statement shows the name, status, type, library, and license
details for each of the individual plugins. If the library value is , it indicates
that it is a built-in plugin and hence, it cannot be unloaded.

 SHOW PLUGINS;

The table contains details regarding all the plugins which were
registered by the function.

Roles and permissions
 To put it simply, a role is a collection of privileges. To create a role in MySQL 8, you must
have the global or privilege. MySQL 8 provides various
privileges to attach to roles and users. Refer to

 for more details on the available privileges.

MySQL 8 Database Management Chapter 5

[168]

Now, let's take an example to understand the role creation and privileges assignment.
Assume we have a table already created in the current database and we want
to give access of this table to the role. This dilemma can be resolved by
making use of the following code:

CREATE ROLE hrdepartment;
grant all on hr_employee to hrdepartment;

The above code will help us to create the role and grant all the necessary
access to it. This topic will be covered in detailed in , Security.

Caching techniques
Cache is a mechanism used to improve performance. MySQL uses several strategies to
cache information in the buffer. MySQL 8 make use of the cache at the storage engine level
to handle its operations. It also applies the cache in prepared statements and stored
programs to improve performance. MySQL 8 has introduced various system level variables
to manage cache, such as ,

, ,
, and many more. We will cover caching in detail in

, Optimizing MySQL 8.

Globalization
Globalization is a feature which provides multi-language support for an application, such
as enabling the use of native languages. It is much easier to understand messages in our
own native language than other languages, right? To achieve this, globalization comes into
the picture. Using globalization a user can store, retrieve and update data into many
languages. There are certain parameters that are to be considered in globalization. We will
discuss them in detail in the following sections.

MySQL 8 Database Management Chapter 5

[169]

Character sets
Before going into detail about character sets it is required to understand what a character
set actually is, as well as its related terms, right? Let's start with the term itself; the character
set is a set of symbols and encoding. Another important term related to character set is
collation, the set of rules used for comparing characters. Let's take a simple example to
understand the character sets and collation. Consider two alphabets, P and Q, and assign a
number to each, so that P=1 and Q=2. Now, assume P is a symbol and 1 is its encoding.
Here, the combination of both the letters and their encoding is known as the character set.
Now suppose, we want to compare these values; the simplest way is by referring the
encoding values. With this as 1 is less than 2 we can say P is less than Q which is known as
collation. This is the simplest example to understand character sets and collation, but in real
life we have many characters, including special characters, and in the same way collations
have many rules.

Character set support
MySQL 8 supports many character sets, with a variety of collations. Character sets can be
defined at the column, table, database or server levels. We can use the character set for

, , and storage engines. To check all the available character sets of
MySQL 8, execute the following command:

mysql> show character set;
+----------+---------------------------------+---------------------+-------
-+
| Charset | Description | Default collation | Maxlen |
+----------+---------------------------------+---------------------+-------
-+
| armscii8 | ARMSCII-8 Armenian | armscii8_general_ci | 1 |
| ascii | US ASCII | ascii_general_ci | 1 |
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
.........
+----------+---------------------------------+---------------------+-------
-+
41 rows in set (0.01 sec)

MySQL 8 Database Management Chapter 5

[170]

In the same way, to see the collation of characters, execute the following command:

mysql> SHOW COLLATION WHERE Charset = 'ascii';
+------------------+---------+----+---------+----------+---------+---------
------+
| Collation | Charset | Id | Default | Compiled | Sortlen | Pad_attribute |
+------------------+---------+----+---------+----------+---------+---------
------+
| ascii_bin | ascii | 65 | | Yes | 1 | PAD SPACE |
| ascii_general_ci | ascii | 11 | Yes | Yes | 1 | PAD SPACE |
+------------------+---------+----+---------+----------+---------+---------
------+
2 rows in set (0.00 sec)

The collation will have the following three characteristics:

Two different character sets cannot have the same collation.
Each character set has a default collation. As displayed in the above code,
the command displays the default collation of the
character set.
Collation follows predefined naming conventions, which will be explained later.
Character set repertoire: A repertoire is the collection of characters in the dataset.
Any string expression will have a repertoire attribute and will belong to one of
the below values:

ASCII: An expression that contains characters in the Unicode
range U+0000 to U+007F.
UNICODE: An expression that contains characters in the Unicode
range U+0000 to U+10FFFF. This includes characters in the Basic
Multilingual Plane (BMP) range (U+0000 to U+FFFF) and
supplementary characters outside the BMP range
(U+01000 to U+10FFFF).

From the range of both values, we can identify that the ASCII is a subset of the UNICODE
range and we can safely convert ASCII values to UNICODE values without any loss in data.
The Repertoire is mainly used for the conversion of expressions from one character set to
another. In some of the conversion cases MySQL 8 throws an error like illegal mix of
collations; to handle these scenarios, repertoire is required. To understand its use, consider
the following example:

CREATE TABLE employee (
 firstname CHAR(10) CHARACTER SET latin1,
 lastname CHAR(10) CHARACTER SET ascii
);

MySQL 8 Database Management Chapter 5

[171]

INSERT INTO employee VALUES ('Mona',' Singh');

select concat(firstname,lastname) from employee;
+----------------------------+
| concat(firstname,lastname) |
+----------------------------+
| Mona Singh |
+----------------------------+
1 row in set (0.00 sec)

UTF-8 for metadata: Metadata means the data about the data. In terms of
database we can say that anything that describes database objects is known as
metadata. For example: column names, usernames, and many more. MySQL
follows the below two rules for metadata:

Include all characters in all the languages for metadata; this enables
a user to use his own language for column name and table name.
Manage one common character set for all metadata. Otherwise,
the and statements for tables in

 will not work properly.

To follow the above rules MySQL 8 stores metadata into the Unicode format. Consider that
MySQL functions such as , , , ,

, and have the UTF-8 character set by default. MySQL 8 server has
defined to specify character sets for metadata. Make sure that the
storage of metadata in Unicode does not mean that column headers and the
function will return values in the form of the metadata character set. It works as per the
 system variable.

Adding the character set
This section describes how to add character sets in MySQL 8. This method may vary based
on the character set type - it might be simple or complex depending on the character type.
The following four steps are required for adding character sets into MySQL 8:

Add a element for to the 1.
file. For the syntax, refer the already defined file for the other character set.

MySQL 8 Database Management Chapter 5

[172]

In this step, the process is different for simple and complex character sets. For2.
simple character sets, create a configuration file, , in
the directory to describe the character set properties. In
the case of complex character sets, the C source file is required. For example,
create the type in the strings directory. For each
element, provide .
Modify the configuration information:3.

Edit , and register the collations for the new1.
character set. Add these lines to the declaration section:

 #ifdef HAVE_CHARSET_MYSET
 extern CHARSET_INFO my_charset_MYSET_general_ci;
 extern CHARSET_INFO my_charset_MYSET_bin;
 #endif

Add these lines to the registration section:

 #ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
 #endif

If the character set uses , edit2.
strings and add to the definition
of the variable.
Edit with the following changes:3.

Add to the value of with in
alphabetic order.
Add to the value of in alphabetic
order. This is needed even for simple character sets, or

 will not recognize

Reconfigure, recompile, and test. 4.

MySQL 8 Database Management Chapter 5

[173]

Configuring the character sets
MySQL 8 provides the and options to
configure the character sets. The default character set has been changed from to

. is the dominating character set, though it hadn't been a default one in prior
versions of MySQL. With these changes globally accepted, character sets and collations
are now based on ; one of the common reasons is because there are around 21 different
languages supported by , which makes systems provide multilingual support. Before
configuring collation, refer to the collation list available at

.

Language selection
MySQL 8 uses English languages by default for the error messages, but allows user to
choose several other languages. For example, Russian, Spanish, Swedish, and many more.
MySQL 8 uses and , two system variables that manage
the language for error messages, and have the following properties:

: It is a system variable and is set up during server startup. It
is global variable so is commonly used by all the clients at runtime.

: This variable is used at global as well as at session level.
Individual users are allowed to use a different language for error messages. For
example, if is set during server startup but if you want to use French, then
execute the following command:

 SET lc_messages = 'fr_FR';

MySQL 8 server follows the below three rules for error message files:

MySQL 8 will find the file at a location constructed by two system
variables, and . For example, if you start
MySQL 8 with the below command then maps the locale to the
Dutch language and search for the error file in the
directory. MySQL 8 stores all language files in the

 directory. By default, the language files
are located in the directory under the MySQL base
directory.

 mysqld --lc_messages_dir=/usr/share/mysql --lc_messages=nl_NL

MySQL 8 Database Management Chapter 5

[174]

If the message file does not exist under the directory then MySQL 8 will ignore
the value of the variable and consider the value of
the variable as a location in which to look.
If the MySQL 8 server does not find the message file, then it shows a message in
the error log file and uses English for the messages.

Time zone settings for MySQL8
The MySQL 8 server manages time zones in three different ways:

System time zone: This is managed by the system variable,
which can be set either by or by the
environment variable before execution of mysqld.
Server's current time zone: This is managed by the system variable.
The default value of the variable is , which means the server
time zone is the same as the system time zone. MySQL 8 allows users to set
the global variable value at startup time by specifying

timezone in the option file, and at runtime by using the
following command:

 mysql> SET GLOBAL time_zone = timezone;

Pre-connection time zone: This is managed by the variable and
specific to the client that connects to the MySQL 8 server. This variable takes its
initial value from the global variable but MySQL 8 allows the user to
change it at runtime by executing the below command :

 mysql> SET time_zone = timezone;

This session variable affects the display and storage of zone specific values. For example,
values returned by the and functions. On the other hand, this variable
does not affects values which are displayed and stored in UTC format, such as with
the function.

MySQL 8 Database Management Chapter 5

[175]

Locale support
MySQL 8 uses system variables to control languages which will impact
what day, month name, and abbreviations will be displayed.
The , , and function outputs depend on the

 variable's value. The first question that comes to mind is, where are these
locales defined and how do we get them? Not to worry, refer to

. All locales are defined with language and region
abbreviations by Internet Assigned Numbers Authority (IANA). By default, MySQL 8
sets as the locale in the system variable. There is provision for the user to set the
value on server startup or to set if they have

 or privileges. MySQL 8 allows a user to check and set
the locale for his connection. Execute the following commands to check the locale on your
workstation:

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+
1 row in set (0.00 sec)

mysql> SET lc_time_names = 'nl_NL';
Query OK, 0 rows affected (0.00 sec)

MySQL 8 Database Management Chapter 5

[176]

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| nl_NL |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| vrijdag | januari |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| vrijdag vr januari jan |
+---+
1 row in set (0.00 sec)

MySQL 8 server logs
MySQL 8 server provides the following different type of logs that enable users to track the
activity of the server in various situations:

Log type Information written to log

Error log Problems encountered starting, running, or stopping

General query log Established client connections and statements received from clients

Binary log Statements that change data (also used for replication)

Relay log Data changes received from a replication master server

Slow query log Queries that took more than seconds to execute

DDL log (metadata
log) Metadata operations performed by DDL statements

MySQL 8 Database Management Chapter 5

[177]

You can learn more about the different type of logs at
.

MySQL 8 will not generate the logs in MySQL 8, except in error logs in Windows, unless we
enable it. By default, MySQL 8 will store all logs into a file under the data directory. When
we talk about files, so many questions come into our mind, right? For example; what will be
the size of file? How many files will be generated? How do we flush log files? MySQL 8
provides various configurations for managing log files; we will see all these configurations
in a later part of this chapter. Another important question is where do we store logs? In
tables or in files? Below are some points which describe the benefits of tables compared to
files:

If logs are stored into tables then their contents are accessible through SQL
statements. This means that users can execute select queries with required criteria
to get a specific output.
 Any remote user can connect to the database and get the details of the log.
Log entries are managed by standard format. You can check the structure of log
tables with the following commands:

The code for a general log:

SHOW CREATE TABLE mysql.general_log;

The code for a slow query log:

SHOW CREATE TABLE mysql.slow_log;

The error log
This log is used to record diagnostic messages like error, warnings and notes that occur
from the startup of MySQL 8 through till its end. MySQL 8 provides various configurations
and components for users to generate log files as per their requirements. When we start
writing into files some basics questions come to mind; what do we write? How do we write
it? Where do we write it to? Let's start with first question. MySQL 8 uses
the system variable and assigns the below filtering options to
decide what type of messages should be written into the error log file:

MySQL 8 Database Management Chapter 5

[178]

To write at the destination place MySQL uses the below format where the time stamp
depends on the system variable:

timestamp thread_id [severity] message

After writing log files, the first question that comes to mind is, how do we flush these logs?
For that, MySQL 8 provides three ways; , , or

. These commands will close and reopen the log file to which it is writing.
When we talk about how to write and where to write, there are so many things to
understand.

Component configuration
MySQL 8 uses the system variable to control error log components.
It allows users to define multiple components by semicolons, separated for the execution.
Here, components will be executed in the order in which they are defined. The user is
allowed to change the values of this variable with the following constraints:

: To enable any log component we must first install it using
this command, and then use the component by listing it in

 system variable. Follow the following commands to add
the component:

 INSTALL COMPONENT 'file://component_log_sink_syseventlog';
 SET GLOBAL log_error_services = 'log_filter_internal;
 log_sink_syseventlog';

 After execution of the installation command MySQL 8 will register the
component into the system table to make it available for
loading on each startup.

: To disable any of the log components, first remove it
from the system variable list and then uninstall it with
this command. Execute the below command to uninstall a component:

 UNINSTALL COMPONENT 'file://component_log_sink_syseventlog';

MySQL 8 Database Management Chapter 5

[179]

To enable error log components on each startup, define it in the file or use
. When we define it in it takes effect from the next restart,

whereas will give an immediate effect. Use the following command
for :

 SET PERSIST log_error_services = 'log_filter_internal;
 log_sink_internal;
 log_sink_json';

MySQL 8 also allows users to write error logs into system logs: for Microsoft, consider
Event log, and for Unix based systems, consider syslog. To enable error logging into system

, configure and the system log
writer components and follow the same instructions explain
above. Another way is to write a JSON string into the log file
configuration component. An interesting point about a JSON writer is that
it will manage file naming conventions by adding NN (two-digit numbers). For example,
consider file names as , , and so forth.

Default error log destination configuration
Error logs can be written into log files or on console. This section describes how to configure
the destination of error log on different environments.

: If this is given then the console will be considered the default
destination. takes precedence over in cases where both
are defined. If the default location is console, then MySQL 8 server sets
the variable's value as .

: If this is not given, or given without naming a file, then the default
file name is and the file will be created in the data directory
unless the is specified. If the file name is specified in

 option, then the naming convention would be a PID file base name with a
suffix of in the data directory.

MySQL 8 Database Management Chapter 5

[180]

All the above mentioned scenarios in Microsoft Windows will be managed by
the option in Unix systems.

: If this is not given then the default destination is the console. If no
file name is given, then as with Windows it will create a file in the data directory
with the name. The user is allowed to specify in an
option file under the or sections.

The general query log
The general query log is a general purpose log, used to record all the actions performed
by . In this log, file statements are written in the sequence in which they are
received, but the execution sequence may differ from the receiving sequence. It starts
logging from the connection of the client and continues until it disconnects. Apart from SQL
commands it also logs the means by which the protocol client is
connected, for example TCP/IP, SSL, Socket, and many more. As it logs most of the action
performed by it's very useful when we want to find what error occurred with the
client.

By default, this log is disabled. We can enable it by using the
command. When we do not specify any argument or define 1 as the argument it indicates
enable general query log, while 0 indicates disable log. In addition, we can specify log file
name with the command. If no file name is specified by
the command, then MySQL 8 will consider the default name as . Setting the
log file name has no effect on logging if the log destination value does not contain .
Server restarts and log flushing do not cause a new general query log file to be generated;
you have to use the (For Microsoft Windows) or (For Linux) commands to create
a new file. MySQL 8 provides a second approach for renaming files at runtime by disabling
the log using the following command:

SET GLOBAL general_log = 'OFF';

Once the log is disabled, rename the log file and enable the log again with the option.
Similarly, to enable or disable the log at runtime for particular connections use the session

 variable with the or option. One more option is aligning with the
general log file, that is, . By using this option, we can specify the destination
of log output; it does not mean logs are enabled.

MySQL 8 Database Management Chapter 5

[181]

The three following different options are available with this command:

: Log to tables
: Log to files
: Do not log into tables or files. , if present, takes precedence over any

other specifiers.

If the option is omitted, then the default value is file.

The binary log
The binary log is a file which contains all the events of a database that describe changes, for
example, table creation, data updates, and deletes from the table. It is not used for
the and statements as it is not updating any data. Binary log writing will
slightly reduce performance of database operations, however it enables users to use
replication setup and operation restore. The main purposes of the binary log are:

For replication in master-slave architecture: For replication based on binary file,1.
master server performs insert and updates operations which are reflected in the
binary log file. Now, slaves nodes are configured to read these binary files and
same events are executed in the binary file of the slave servers to replicate the
data onto the slave servers.
Data recovery operations: Once backup is restored into database, the events of2.
the binary log are recorded, and these events are in re-executed form, which
brings the database up to date from the point of the backup.

The binary log is enabled by default, which indicates that the log_bin system variable is set
as ON. To disable this log use or the option at
startup. To delete all binary log files, use the RESET MASTER statement, or a subset of them
with . MySQL 8 server uses the following three logging formats to
record information into the binary log file:

Statement based logging: This format is used by starting the server with the 1.
 command. It is mainly propagation of SQL

statements.
Row based logging: Use on server startup to enable row2.
based logging. This format indicates how rows are affected. This is the default
option.

MySQL 8 Database Management Chapter 5

[182]

Mixed logging: Start MySQL 8 with the option to3.
enabled mixed logging. In this mode statement based logging is available by
default and MySQL 8 will automatically switch into row based logging in some
of the cases.

MySQL 8 allows users to change format at runtime with global and session scope. Global
format is set for all the clients while session is use for the individual client. The following
sets the format at runtime with the global and session scope respectively:

mysql> SET GLOBAL binlog_format = 'STATEMENT';
mysql> SET SESSION binlog_format = 'STATEMENT';

 There are two exceptional cases where we cannot change format:

Within a stored procedure or function
In cases where the row based format is set and temporary table is open

MySQL 8 has the variable to control the size of the
binary log file in terms of bytes. Assign as a value to this variable a multiple of 256; the
default value of this option is 8192. Individual storage engines of MySQL 8 have their own
capabilities for logging. If a storage engine supports row based logging, then it is known
as row-logging capable, and if a storage engine supports statement based logging then it is
known as statement-logging capable. Refer to the below table for more information on
storage engine logging capabilities.

Storage engine Row logging
supported Statement logging supported

Yes Yes

Yes Yes

Yes Yes

Yes No

Yes Yes

Yes Yes

Yes
Yes when the transaction isolation level
is , , or ; No
otherwise.

Yes Yes

MySQL 8 Database Management Chapter 5

[183]

Yes Yes

Yes No

As describe in this section the binary log will work based on types of statement like safe,
unsafe, or binary injected, on the logging format such as , , or , and
with the logging capabilities of storage engines like row capable, statement capable, both, or
neither. To understand all the possible cases of binary logging refer to the table given in this
link: .

The slow query log
Slow query logs are used to record SQL statements that takes long time to execute. MySQL
8 has defined the following two system variables for time configuration of slow query:

: This is used to define the ideal time for query execution. If a
SQL statement takes longer than this time, then it is considered a slow query and
a statement is recorded into the log file. The default value is 10 seconds.

: This is the minimum time required for the
execution of each query. The default value is 0 seconds.

MySQL 8 will not consider the initial time of acquiring a lock into execution time and will
return slow query logs into a file once all locks are released and query execution is
completed. When MySQL 8 is started, slow query logging is disabled by default; to start this
log use the command, where indicates slow query log is
disabled and 1 or without argument is used to enabled it. To log administrative statements
and queries without indexing, use
the and variables.
Here, administrative statements include , ,

, , , , and . MySQL 8
allows users to specify the name of the log file using

 command. If no file name is specified, then MySQL 8
will create a file with the naming convention in the data directory.
To write minimal information into this log file use the option.

MySQL 8 Database Management Chapter 5

[184]

All the above described parameters are controlled by MySQL 8 in the following sequence:

The query must either not be an administrative statement,1.
or must be enabled
The query must have taken at least ,2.
or must be enabled and the query must
have used no indexes for row lookups
The query must have examined at least 3.
The query must not be suppressed according to4.
the setting

The option is also available for this log file, and has the
same implementation and effect as the general purpose log.

The DDL log
As name implies, this log file is used to record all the DDL statement execution related
details. MySQL 8 uses this log file to recover from crashes that occur during the metadata
operation execution. Let's take one example to understand the scenarios:

Drop table t1, t2: We must be sure that both the t1 and t2 tables are dropped

When we execute any DDL statement, a record of these operations is written into
the file under the MySQL 8 data directory. This file is a binary file and not in
human readable format. The user is not allowed to update the contents of this log file.
Metadata statements recording is not required in normal execution of MySQL server; enable
it only if it is required.

Server log maintenance
To maintain log files, we must clean up on a regular basis to manage disk space. For RPM
based Linux systems the script is available automatically. For other
systems no such script is available, so we must install a short script by ourselves to manage
log files. MySQL 8 provides the system variable which is used to
manage binary log files. Using this variable log Binary log files are automatically removed
after a specified period.

MySQL 8 Database Management Chapter 5

[185]

The default value of this variable is 30 days; you can change its value by configuration
change. Binary log files are remove on server startup or when the log is flushed. In case of
replication, you can also use the system variable to
manage logs for masters and slaves. Log flushing performs the following tasks:

If general query logging or slow query logging to a log file is enabled, the server
closes and reopens the query log file
If binary logging is enabled, the server closes the current binary log file and
opens a new log file with the next sequence number
If the server was started with the option to cause the error log to be
written to a file, the server closes and reopens the log file

To take backup or rename the old log files before generating a new log file, use the
(move) command for Unix system, and the function in Windows. In case of general
query and slow query log files, you can rename a file by disabling the log using the
following command:

SET GLOBAL general_log = 'OFF';

After renaming log files, enable logs using the following command:

SET GLOBAL general_log = 'ON';

Summary
This was an interesting chapter for any MySQL 8 user, wasn't it? In this chapter we
understood how MySQL 8 manages different log files and which log file to use at what
time. At the same time we also covered many of the administrative features, such as
globalization, system data database, and component and plugin configuration, and
explained how to run multiple instances on a single machine. The later part of the chapter
covered log maintenance.

Moving on to the next chapter, we will provide you with information about storage
engines, such as what the different types of storage engine are, which one to use for your
application, and how to create our own custom storage engine for MySQL 8.

66
MySQL 8 Storage Engines

 In the previous chapter, we learned about setting up a new system, data dictionary, and
system database. Detailed information was provided on caching techniques, globalization,
different types of components, and plugin configuration, along with several types of log
files which are very important for administration.

This chapter gives detailed information on MySQL 8 storage engines. It explains the
storage engine and its features in detail and also provides a practical guideline on custom
storage engine creation and how to make it pluggable so that it can be installed in MySQL 8.
The topics that we will be covering in this chapter are as follows:

Overview of storage engines
Several types of storage engines
The storage engine
Creating a custom storage engine

Overview of storage engines
Storage engines are MySQL components for handling the SQL operations used in different
types of tables. MySQL storage engines are designed to manage different types of tasks in
different types of environments. It is very important to know and choose which storage
engine is best suited for the system or application requirements. In following sections, we
will get to know in detail about the types of storage engines, the default storage engine, and
the creation of custom storage engines.

MySQL 8 Storage Engines Chapter 6

[187]

Let us go through and see why the storage engine is a very important component in
databases, including MySQL 8. Storage engines work with database engines to perform
various types of tasks in different environments. They execute create, read, update, and
delete operations in the form of statements on data from the database. It looks quite simple
when you provide the parameter with the create table statement but there is
configuration for plenty of operations to be done on the data for each of the requests sent
via SQL statements. It is much more than just persisting data - the engine takes care of
features such as storage limits, transactions, locking granularity/level, multi-version
concurrency control, geospatial data types, geospatial indexing, B-tree indexes, T-tree
indexes, indexes, full-text search indexes, clustered indexes, data caches, index caches,
compressed data, encrypted data, cluster databases, replication, foreign keys, back up,
query caches, and updating statistics for the data dictionary.

MySQL storage engine architecture
The MySQL storage engine's pluggable architecture allows a database professional to select
any storage engine for the specialization required in any particular application. The MySQL
Storage engine architecture provides an easy application model and API with the
consistency that isolates the database administrator and the application programmer from
all the low-level implementation details underlying at the storage level. Thus, the
application always works above different storage engines' different capabilities. It provides
standard management and support services that are common for all underlying storage
engines.

Storage engines perform activities on the data that is persisted at the physical server level.
Such modular and efficient architecture provides solutions to specific needs of any
particular application, such as transaction processing, high availability situations, or data
warehousing, and at the same time has the advantage of independent interfaces and
services from the underlying storage engines.

The database administrator and the application programmer interact with the MySQL
database by Connector APIs and services on top of the storage engines. The application is
shielded by the MySQL server architecture from the detailed level complexity of the storage
engines by providing easy to use APIs that are consistent and applicable on all the storage
engines. If the application requires changes in the underlying storage engine, or if one or
more storage engines are added to support the needs of the application, no major coding or
process changes are required to get things working.

MySQL 8 Storage Engines Chapter 6

[188]

Several types of storage engine
Now we know the importance of storage engines and critical decisions to identify which
storage engines to use from plenty of storage engines available for MySQL 8. Let us take a
look at what is available and with which specifications. InnoDB is the name that first
entered your thoughts when you started thinking of storage engines, right?

InnoDB is the default and most general-purpose storage engine in MySQL 8 and it is
recommended by Oracle to use for tables as well as for special use cases. The MySQL server
has a pluggable storage engine architecture that enables storage engine loading as well as
unloading from the already running MySQL server.

To identify which storage engines your server supports is made very easy in MySQL 8. We
only have to go to the MySQL shell or prompt and use the statement. Hit
the statement when prompted and result will be the list of engines with a few columns,
such as Engine, Support, Transactions, Savepoints, and Comment.

Values in Support column, DEFAULT, YES, and NO, indicate that a storage engine is
available and currently set as the default storage.

Overview of the InnoDB storage engine
 is the default and most general-purpose storage engine in MySQL 8, providing high

reliability and high performance.

If you have not configured a different default storage engine, then issuing the SQL
statement without the creates a table with the storage
engine as the default engine in MySQL 8.

The features and advantages offered by the storage engine are explained later in
the The InnoDB storage engine section.

Custom storage engine
 storage engine architecture in MySQL 5.1 and all the later versions and MySQL 8 have
taken advantage of the flexible storage engine architecture.

MySQL 8 Storage Engines Chapter 6

[189]

The storage engine pluggable architecture provides the capability to create and add new
storage engines without recompilation of the server, adding directly to a running MySQL
server. The architecture makes it very easy to develop and deploy new storage engines to
MySQL 8.

We will develop a new storage engine by using the pluggable feature of the MySQL storage
engine architecture in the upcoming Creating a custom storage engine section.

Several types of storage engines
In this section, we will take a closer look at the widely used storage engines that are
supported by MySQL 8. But before checking on them, let us see how the storage engine
architecture has made it pluggable and provided flexibility to enable using multiple storage
engines in the same schema or server.

The following is the list of storage engines supported in MySQL 8:

: The default storage engine for MySQL 8. It is an compliant
(transaction-safe) storage engine that has commit, roll back, and crash-recovery
for protecting the user data and constraints to
maintain data integrity, and much more.

: The storage engine with tables having a small footprint. It has table-level
locking and so is mostly used in read-only or read-mostly data workloads, such
as in data warehousing and web configurations.

: The storage engine previously known as the engine. It keeps data
in RAM, which provides faster data access, mostly used in quick lookups of non-
critical data environments.

: The storage engine with tables as comma-separated values in text files and
tables. They are not indexed and are mostly used for importing and dumping
data in format.

: The storage engine comprises compact, unindexed tables, intended to
store and retrieve a huge amount of historical, archived, or security audit data.

: The storage engine with tables that can be used for replication
configuration. A query always returns an empty set. SQL statements are sent
to slave servers. It accepts data but data is not stored, such as in a
Unix device use.

MySQL 8 Storage Engines Chapter 6

[190]

: The storage engine provides the capability to logically group a series of
similar tables and refer to them as one object instead of separate table.

: The storage engine that can link many separate physical MySQL
servers into one logical database. It is ideal for data marts or distributed
environments.

: The storage engine that does nothing but works as a . It is
primarily used by the developers who illustrate how to begin writing new
storage engines in the MySQL source code.

MySQL does not restrict using the same storage engine for an entire server
or schema; instead, specifying the engine at table level makes it flexible
based on the type of data and the use case of the application.

Pluggable storage engine architecture
The MySQL server uses the pluggable storage engine architecture, which enables storage
engine loading as well as unloading from already running MySQL servers:

Plugging in a storage engine: Before a storage engine can be used in the server,
the storage engine plugin shared library has to be loaded into MySQL with
the SQL statement. If you create a engine plugin
that is named and the shared library is named , then
you need to load them with the following statement:

 mysql> INSTALL PLUGIN MyExample SONAME 'MyExample.so';

For installing a storage engine, the user issuing the preceding statement must
have the privilege for the table and the plugin file must be
present in the MySQL plugin directory. The shared library also must be present in
the MySQL server plugin directory given in the variable.

Unplugging a storage engine: Before unplugging a storage engine, make sure
that no tables are using the storage engine. If a storage engine is unplugged and
is needed by any existing tables, the tables become inaccessible and will only be
present on disk as applicable. If you unplug the engine plugin
named then execute the following statement for unplugging the
storage engine:

 mysql> UNINSTALL PLUGIN MyExample ;

MySQL 8 Storage Engines Chapter 6

[191]

The common database server layer
The MySQL pluggable storage engine is responsible for executing I/O operations on the
actual data and also to cater to the specific application needs that includes enabling and
enforcing the required features whenever required. Using a specific or single storage engine
will more likely result in more efficiency and higher database performance because the
engine enables the features only needed for a particular application, and resulting in less
system overhead on the database.

A storage engine supports the following unique infrastructure components or keys:

Concurrency: Some applications have granular lock levels (such as row-level
locks) requirements more than others. Overall performance and overhead due to
locking can be affected by choosing the right/wrong locking strategy and this also
includes multi-version concurrency control or snapshot read capabilities.
Transaction support: Very well-defined requirements exist, such as
compliance and more if the application needs transactions.
Referential integrity: The server can enforce relational database referential
integrity using -defined foreign keys if required..
Physical storage: This includes everything from the page size of tables and
indexes and also includes the format used for storing data on a physical disk as
well.
Index support: This includes indexing strategies based on the application needs,
as each of the storage engines have their own indexing methods.
Memory caches: The caching strategies based on the application needs, as each of
the storage engines have their own caching methods along with common
memory caches across all the storage engines.
Performance aids: This involves bulk insert handing, database check pointing,
multiple I/O threads for parallel operations, thread concurrency, and more.
Miscellaneous target features: This may includes support for security restrictions
on certain data manipulation operations, geospatial operations, and other similar
features.

Each of the preceding infrastructure components are designed to support a specific set of
features for a particular application's needs and so it is very important to understand the
application requirement very carefully and select the right storage engine, as it may impact
on the overall system efficiency and performance.

MySQL 8 Storage Engines Chapter 6

[192]

Setting the storage engine
When you create new table using the statement, you can specify which
engine to be used for the table with the table option. If you do not specify
the table option then the default storage engine will be used instead. is the
default engine for MySQL 8.0. You can also convert a table from one storage engine to
another storage engine by using the statement, as shown in the following
example:

CREATE TABLE table1 (i1 INT) ENGINE = INNODB;
CREATE TABLE table3 (i3 INT) ENGINE = MEMORY;
ALTER TABLE table3 ENGINE = InnoDB;

The default storage engine can be set for the current session by setting the
 variable, as shown in the following example:

SET default_storage_engine=MEMORY;

The default storage engine for tables using can be
set separately by setting the variable at either startup or
runtime.

The MyISAM storage engine
The storage engine uses tables having a small footprint. It has table-level locking
implemented and so is mostly used where there are read-only or read-mostly data
workloads, such as in data warehousing and web configurations. Each of the tables
are stored with two files on disk. The filename begins with the table name and its extension
type, one with the extension for the data file and another with the extension for
the index file.

For the engine, there are several startup options specified with that can
change the behavior of tables; for example:

--myisam-recover-options=mode

This option will set the mode in the automatic recovery of crashed tables in .

MySQL 8 Storage Engines Chapter 6

[193]

Spaces needed for keys in , indexes are used by tables and space
compression is used in indexes. If a string is the first part of the index then prefix
compression is also done, which overall makes the index file size smaller. The prefix
compression helps if many strings have a similar prefix. By using the table option

 in tables, prefix compression can also be applied on the numbers if
there are many numbers with a similar prefix.

Partitioning is not supported for tables in MySQL 8.0.

Some of the important tables characteristics for tables are as follows:

All data values stored have the low byte first order, which makes the data
independent of machine and operating systems
All numeric key values are stored with high byte first order, which permits better
index compression

 table is limited with (232)2(1.844E+19) rows
 table is limited to a maximum number of 64 indexes per table
 table columns is limited to a maximum number of 16 columns per index

Concurrent inserts are supported in , if a table does not have any free
blocks in the middle of the data files

 and type columns can also be indexed in
In indexed columns, values are permitted
Each of the columns can have a different character set
It also support for a true type column with a starting length stored of 1
or 2 byte, tables with columns with a fixed or dynamic row length,
and constraints with an arbitrary length

 table storage formats: The following three different types of storage
formats listed are supported in :

 table: The default format for the tables in the
storage engine, with fixed-sized columns

 table: As the name suggests, the format that contains
variable sized columns, including , , or

 table: The table format for keeping read-only
data and compressed formats in storage engine tables

MySQL 8 Storage Engines Chapter 6

[194]

The first two formats, fixed and dynamic, are chosen automatically based on the column
type used. The compressed format can be created by using the utility.

 table problems: The file format has been extensively tested but some
circumstances arise that result in corrupted database tables. Let us look at such
circumstances and the way to recover those tables.

We could get corrupted tables in the event of any of the following events :

If the process is killed in the middle of a write
If there is an unexpected computer shutdown
If there is any hardware failure
If a table is being modified at the same time by the MySQL server and an external
program, such as
The MySQL or code has a software bug

Check the health of the table with the statement and attempt to repair any
corrupted table by using the statement.

There is also possible issue you get with tables and that is tables are not being
closed properly. In order to identify if the table is closed properly or not, each index
file keeps a counter in the header. The counter can be incorrect under the following
circumstances:

If a table is copied without issuing and
MySQL crashed before the final close during an update

 is using the table and at the same time it is modified by another
program: or

The MEMORY storage engine
The storage engine, also previously known as the engine, keeps data in ,
which provides faster data access. It is mostly used in quick lookups of non-critical data
environments. It creates special-purpose tables with contents stored in memory but the data
is vulnerable to crashes, power outages, and hardware issues. Therefore, these tables are
used in temporary work areas or possibly using read only data that is cached after the data
is pulled from other tables.

MySQL 8 Storage Engines Chapter 6

[195]

You should choose whether use or You should check if the
application is required for important, highly available, or frequently updated data and
consider whether is the better choice or not. provides the same
features as the engine, but with higher performance levels and additional features
not provided by engine. These include:

Low contention between clients by multiple thread operations and row-level
locking
Scalability with statements mixes, including writes
Data durability; it supports optional disk-backed operations
Shared-nothing architecture, providing multiple-host operations without a single
point of failure, enabling 99.999% availability for the application
Automatic data distributions across nodes
Support for variable length data types, including and

Partitioning is not supported in tables.

Performance depends on how busy the server is and the effect of single thread execution
with table lock overhead during updates processing. The table locking during updates
processing causes a slowdown of concurrent usage from multiple sessions on
tables.

MEMORY tables characteristics: Table definitions are stored on the MySQL data dictionary
and do not create any files on the disk. The following are the table feature highlights:

100% dynamic hashing for inserts and space is allocated in small blocks.
No extra key space or overflow area or extra space for free lists is required. Reuse
of deleted rows when new records inserted by putting rows in linked lists.
Fixed length row-storage format, , is stored with fixed length. Cannot
store or columns.

 columns are supported.

Indexing in and types are supported by the storage engine.
tables have a maximum of 64 indexes per table, a maximum of 16 columns per index and a
maximum key length of 3,072 bytes. tables also can have keys.

MySQL 8 Storage Engines Chapter 6

[196]

User created and temporary tables: Internal temporary tables are created by the server on
the fly while processing queries. Two types of tables differ in storage conversion, where the

 tables are not subject to conversion:

When an internal temporary table becomes too large, it is converted to on-disk
storage by the server automatically
User created tables are never converted by the server

Data loading can be performed using the option, using
 or statements from any persistence data source if required.

The CSV storage engine
This storage engine stores data in the form of comma-separated values in text files. The
engine is always compiled into the MySQL server and the source can be examined from the

 directory of your MySQL distribution.

The data file created by the server begins with the given table and the extension of .
The data file is a plain text file containing data in the comma-separate values format.

The MySQL server creates a corresponding metafile along with a table that stores
information about the state of the table and the count for the rows that exists in the table.
The metafile is also stored with the table name at the beginning with the extension.

Repairing and checking tables: The storage engine supports and
 statements to verify and possibly repair a damaged table. You can

use the statement to verify or validate the table and use
the statement to repair a table that copies valid rows from an
existing data file and replaces an existing file with newly copied/recovered
rows.

During repair, only rows from the data file to the first damaged row
gets copied to the new table or copied data file. The rest of the rows after
the damaged row gets removed from the table, including valid rows, so I
suggest that you take enough back up of the data file prior to proceeding
with the repair.

Indexing or partitioning is not supported in the storage engine and all the tables
created with the storage engine must have the attribute on all the columns.

MySQL 8 Storage Engines Chapter 6

[197]

The ARCHIVE storage engine
The storage engine creates special-purpose tables that are used for storing huge
amounts of unindexed data with a very small footprint.

When the table is created, it begins with the table name and ends with the
extension. During optimization operations, a file with an extension may appear.

 column attribute is supported by the engine. It also supports
, , , and columns (all but spatial data types) but it does not

support , , or operations.

Partitioning is not supported by the storage engine:

Storage: The engine uses lossless data compression with and the rows get
compressed as inserted. It supports the operation. Several types of
insertion are used in the engine:

 statement sends rows into a compression buffer, and the
buffer gets flushed as necessary. Insertion in the compression
buffer is protected by the lock and flush will only occur if
is requested.
Once completed a bulk buffer can be seen. It can only be seen if any
other inserts occur at the same time. Here flush will not occur upon

, unless while loading any normal insert.
Retrieval: After retrieval, rows gets uncompressed as requested and it does not
use any row cache. A complete table scan is performed for the operation:

 checks how many rows are available currently and reads
only that number of rows. It is performed as a consistent read
operation.
The number of rows reported by is always
accurate for the tables.
Use or operations to achieve
better compression.

MySQL 8 Storage Engines Chapter 6

[198]

The BLACKHOLE storage engine
The storage engine acts as a black hole. It accepts data but does not store it and
a query always returns an empty result.

The server only adds the table definition in the global data dictionary when you create
a table and no files are associated with the table.

All kinds of indexing is supported in the storage engine and so the same can be
included in the table definition.

Partitioning is not supported in the storage engine.

Insertion to the table does not store any data but if binary logging is enabled for statements,
then the statements are logged and replicated to the slave servers. Such a mechanism is
useful as a filter or repeater.

The storage engine has the following possible uses:

Dump file syntax verification
Overhead measurement using binary logging enabled or disabled with
a performance comparison
It can also be used for finding any performance bottlenecks, except for the storage
engine itself

Auto increment columns: As the engine is a no-op engine, it will not increment any field
values but it has implications in the replication, which can be very important. Consider a
scenario that has the following conditions:

The master server has a table with an auto increment field with a1.
primary key
The same table exists on the slave server but uses the engine2.
Insertion is performed into the master server's table without setting any auto3.
increment value in the statement or using the statement

In the preceding scenario, the replication will fail on the primary key column with a
duplicate entry.

MySQL 8 Storage Engines Chapter 6

[199]

The MERGE storage engine
The storage engine, known also as the engine, is collection of similar
tables that can be used as one table instead. Here, "similar" means that all the tables have
similar column data types and indexing information. It is not possible to merge tables with
the columns listed in a different order or to have the same data types in respective columns
or have indexing in a different order.

The following is the list of differences in tables that will not restrict a merge:

Names of respective columns and indexes can be different.
Comments in between tables, columns, and indexes can be different.

, , or table options can be different.

When a table is created, MySQL also creates a file on the disk with the names
of underlying tables being used as one. The format of the table is stored in the
MySQL data dictionary and the underlying tables do not require to be in the same database
as the table.

Having privileges are a must for , , and on the tables that
are being mapped with the table and so , , , and
statements on the table can be used.

Executing the statement on the table will drop only the specification for
the and nothing is impacted on the underlying tables.

Using tables has the following security issues. If the user has access
to the table , then the user can create the table that
can access . Now, if the user's privileges on the table are revoked, the
user can still continue accessing table by using table .

The FEDERATED storage engine
The storage engine can link many separate physical MySQL servers into one
logical database and so it can let you access data from a remote MySQL server without
using either replication or cluster technology.

When we query to the local table, that automatically pulls the data from the
remote federated tables and the data is not required to be stored on local tables.

MySQL 8 Storage Engines Chapter 6

[200]

The storage engine is not supported by default in the MySQL server but
starting the server with the option will enable the engine option.

When the table is created the table definition is the same as other tables, but the
physical storage of the associated data is handled on the remote server instead. The

 table consists of the following two elements:

A remote server with a database table consisting of a table definition and the
associated table data. This type of table can be any supported by the remote
server that includes or as well.
A local server with a database table consisting of a table definition the same as
the respective table on the remote server. The table definition is stored in the data
dictionary and no associated data file on the local server is stored. Instead, in
addition to the table definition, it keeps a connection string that is pointing to the
remote table itself.

The following is the flow of information between the local and remote server when a SQL
statement is executed on the table:

The engine checks each of the columns the table has and builds an appropriate1.
SQL statement that refers to the remote table.
The MySQL client API is used for sending the SQL statement to the remote2.
server.
The statement is processed by the remote server and the respective result is3.
retrieved by the local server.

The EXAMPLE storage engine
The storage engine is only a stub engine and the purpose of the engine is to
provide examples in the MySQL source code, which helps developers to write new storage
engines.

To work with the engine source code, look at the directory of
the MySQL source code distribution download.

No files are created if the table is created with the engine. Data cannot be stored in
the engine and it returns empty results.

Indexing and partitioning is not supported in the storage engine.

MySQL 8 Storage Engines Chapter 6

[201]

The InnoDB storage engine
 is the most general-purpose storage engine and is the default engine in MySQL 8,

providing high reliability and high performance .

The following are the key advantages offered by the storage engine:

Its operations follows the model and transactions have commit,
rollback, and crash-recovery features to protect user data

 gives consistent reads and row level locking increases the
performance of multi-user concurrency
Each table has a primary key index, known as the clustered index, that
arranges data on the disk in order to optimize queries based on primary key and
minimizes I/O during primary key lookups
By supporting foreign keys, inserts, deletes, and updates are checked, ensuring
consistency across different tables in order to maintain data integrity

The following are the key benefits of using tables:

 If the server crashes due to any hardware or software issue, regardless of what
changes were being processed in the server at that time, you're not required to do
anything special after restarting the server. It has a crash recovery system that
takes care of changes that were committed during the crash of the server. It will
go to those changes and start where the processing was left off.
The engine has it's own buffer pool used for caching table and indexing data to
memory based on data accessed. Frequently used data is fetched directly from
the cache memory and so it speeds up processing. In dedicated servers, it takes
up to 80% of physical memory assigned to be used in the buffer pool.
Splitting related data to tables using foreign key setup enforces referential
integrity which prevents inserting any unrelated data to a secondary table
without the respective data in the primary table.
In case of corrupt data in the memory or disk, the checksum mechanism gives an
alert about the corrupt data before we get to use it.
Change buffering automatically optimizes , , and .
also allows concurrent read and write access to the same table and caching data
changes to streamline the disk I/O.

MySQL 8 Storage Engines Chapter 6

[202]

When the same data rows are accessed from the table repeatedly, the Adaptive
Hash Index feature makes the lookups faster and gives performance benefits.
Compression is allowed on tables and associated indexes.
Monitoring on internal workings and performance details of the storage engine is
easy by querying or tables.

Now let us look at each of the areas of the storage engine where is enhanced or
optimized to provide very efficient and enhanced performance.

ACID model
The model is a group of database design principles with an emphasis on reliability,
which is most important for mission critical applications and business data.

MySQL has components such as the storage engine that closely adhere to the
model. Therefore, data is safe and not corrupted, even in exceptional cases of hardware
malfunctions or software crashes.

With MySQL 8, supports atomic , ensuring that the operations are fully
committed or rolled back, even if the server is halted while performing the operation. Now

 logs can be written to the configuration for the data
dictionary tables, enabling the configuration option to print
recovery logs to .

Multiversioning
InnoDB is a multiversioned storage engine. That means it has the capability to keep old
versions of changed row data information and support transnational features, such as
concurrency and roll back. The information is stored in the tablespace, data structure, and
named rollback segment.

Internally, for each of the rows getting stored in the database, creates three fields: 6-
byte , 7-byte (called a roll pointer) and 6-byte . With
these fields, creates clustered indexes to keep the information of changed row data
in the database.

MySQL 8 Storage Engines Chapter 6

[203]

Architecture
In this section, we will give a brief introduction to the major components of the
architecture:

Buffer pool: Area of main memory where tables and indexing data are cached to
speed up processing
Change buffer: Special data structure where changes to secondary index pages
are cached
Adaptive Hash Index: Enables in-memory database, such as lookups, operations
on systems with balanced and appropriate combinations of the buffer pool's
memory and workload
Redo log buffer: Memory area where data is held to be written on the redo log
System tablespace: Storage area where the buffer, undo logs, and
the change buffer, prior to the MySQL 8 data dictionary information, are stored
Doublewrite buffer: Storage area in the system tablespace where pages are
written that are flushed from the buffer pool
Undo logs: Collection of undo log records which are associated with any single
transaction
File-per-table tablespaces: Single-table tablespace added to its own data file
General tablespaces: Shared tablespace created by the
syntax
Undo tablespace: One or more files with undo logs
Temporary tablespace: Utilized for non-compressed temporary tables and their
related objects
Redo log: Disk-based data structure used for correcting incomplete transaction
data during crash recovery

With MySQL 8, the storage engine utilizes the global MySQL data dictionary and
not its own storage engine-specific data dictionary.

MySQL 8 Storage Engines Chapter 6

[204]

Locking and transaction model
This section gives brief information on locking used by and the transaction model
implemented by . uses the following different lock types:

Shared and exclusive locks: Two types of standard row-level locking are
implemented. A shared lock allows you to read a row to different transactions; an
exclusive lock holds to update or delete a row and does not allow you to even
read the row to any different transaction.
Intention locks: Table level locks to support multiple granularity locking by
which practically maintains the coexistence of row-level locks and entire
table-level locks.
Record locks: Index record lock that prevents any other transaction to insert,
update, or delete the record.
Gap locks: Lock applies on a gap (range) between index records.
Next-key locks: Combination of index record lock plus gap lock on the gap for
the preceding index record.
Insert intention locks: Type of gap lock which is set by operation just
before the row insertion.
AUTO-INC locks: Special table-level lock for inserting records with
the column.
Predicate locks for spatial indexes: Lock on spatial index, enabling support for
isolation levels in tables with spatial indexes.

The goal of following the transaction model is to unite traditional two-phase locking with
the best of the multiversioning database properties. Row-level locking is performed and
queries are run with nonlocking consistent reads. takes care of transaction isolation
levels, autocommit, rollback and commit, and locking reads. It allows nonlocking consistent
reads as applicable. also uses a mechanism to avoid phantom rows and a
configuration to support automatic deadlock detection.

MySQL 8 Storage Engines Chapter 6

[205]

Configuration
This section provides brief information about the configuration and procedures used in
the initialization startup for different components:

 startup configuration: This involves specifying startup options, log file
configuration, storage considerations, system tablespace data files, undo
tablespaces, temporary tablespaces, page sizes, and memory configurations

 for read-only operation: This enables a MySQL instance for read-only
operation, using the option, which is very helpful
when using read-only media such as or

 buffer pool configuration: Configures the buffer pool size, multiple
instances, flushing, and monitoring

 change buffering: Configures the change buffer options for secondary
index caching
Thread concurrency for : Concurrent thread count limit configuration
The number of background I/O threads: Configures the number of
background threads servicing I/O read/write operations on data pages
Using asynchronous I/O on Linux: A configuration to use native asynchronous
I/O subsytems on Linux
The master thread I/O rate: Configures overall I/O capacity for a master
thread working in the background, responsible for multiple tasks
Spin lock polling: Configures a spin wait delay period to control the maximum
delay for frequent polling between multiple threads requesting to acquire

 or
 purge scheduling: Configures purge threads for applicable scalability

Optimizer statistics for : Configures persistent and non-persistent
optimizer statistics parameters
The merge threshold for index pages: Configures to reduce
merge-split behavior
Enabling automatic configuration for a dedicated MySQL Server: Configures
the dedicated server option , which makes
automatic configuration for the buffer pool size and log file size

MySQL 8 Storage Engines Chapter 6

[206]

Tablespaces
This section provides brief information on tablespaces and operations related to tablespaces
performed in :

Resizing the system tablespace: Increasing and decreasing the size of
the system tablespace with configuration while starting/restarting the MySQL
server.
Changing the number or size of redo log files:
Configures and values
respectively in prior to starting/restarting the MySQL server.
Using raw disk partitions for the system tablespace: Configures the raw disk
partitions to be used as data files in the system tablespace.

 File-Per-Table tablespaces: The feature
enabled by default which ensures that each of the tables and associated indexes
are stored in a separate data file.
Configuring undo tablespaces: A configuration to set the number of undo
tablespaces where an undo log resides.
Truncating undo tablespaces: Configures to
enable truncating undo tablespace files exceeding the maximum limit defined in

.
 general tablespaces: A shared tablespace created using the

 statement. It is similar to a system tablespace.
 tablespace encryption: Support for data encryption in tables stored as

file-per-table tablespaces which use the block-based encryption algorithm.

Tables and indexes
This section provides brief information on tables and indexes and their related
operations:

Creating tables: Creates tables using the statement.
The physical row structure of an table: Depends on the specified row
format during the table creation. If not specified, uses the default, .
Moving or copying tables: Different techniques for moving or copying
some or all tables to a different instance or server.

MySQL 8 Storage Engines Chapter 6

[207]

Converting tables from to : Considers guidelines and tips while
converting tables to tables, except a partitioned table, which is
not supported with MySQL 8.

 handling in : Configures the mode for
 with the parameter as 0,1, and

2 for traditional, consecutive, or interleaved, respectively, where interleaved is
the default mode from MySQL 8.
Limits on tables: A table can contain a maximum of 1,017 columns, a
maximum of 64 secondary indexes, and several other limits defined based on the
page size, table size, and data-row formats.
Clustered and secondary indexes: uses a special index called a clustered
index. The rest of the indexes are called secondary indexes.
The physical structure of index: For spatial indexes, uses the

 data structure, a specialized data structure. For rest of the indexes, the
 data structure is used.

Sorted index builds: Bulk load when creating or rebuilding indexes for inserts.
They are known as sorted index builds, and are not supported in spatial indexes.

 indexes: Created for text-based columns - , , or
 type. They help to speed up queries and searching operations.

INFORMATION_SCHEMA tables
This section provides usage examples for tables and related
information.
It provides metadata, statistics, and status information about the different aspects of the

 storage engine.

The list of tables can be retrieved by executing the
 statement on the database:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'INNODB%';

Tables about compression: The number of compression operations and the
amount of time spent for compression-related information provided in
the and tables. Memory allocation during
compression is provided in the and
tables.

MySQL 8 Storage Engines Chapter 6

[208]

Transaction and locking information: has information on
transactions currently executing and the and
tables from the table give information about the locks.
Schema object tables: This provides metadata information about the
schema objects.

 index tables: This provides metadata information about
indexes.
Buffer pool tables: This provides status information and metadata about the
pages in the buffer pool.
Metrics table: This provides performance and resource related information.
Temporary table information table: This provides metadata information about
all users and system-created temporary tables currently active in an
instance.
Retrieving tablespace metadata: This provides metadata information
about all the types of tablespaces in an instance.

A new view, , has been added to provide the name, path,
flag, space, and space type data.

A new table, , has been added to provide the number of index
pages cached in the buffer pool for each index.

Memcached plugin
MySQL 8 provides you with the memcached plugin named ,
which can help us in managing data easily. It will automatically store and retrieve data
from tables and provide , , and operations that remove performance
overhead by skipping SQL parsing, which speeds up data operations. The
plugin uses the integrated daemon that automatically retrieves and stores data
from and to the table, enabling the MySQL server to send data quickly to the

 store.

The following are the major benefits of using the plugin:

Accesses the storage engine directly, reducing parsing and planning SQL
overhead

 uses the same process space as the MySQL server, reducing network
overhead

MySQL 8 Storage Engines Chapter 6

[209]

Data written or requested in the protocol is transparently written or
queried from tables, reducing having to go through SQL layer overhead
Simplifies application logic by automatically transfering between disk and
memory
The MySQL database stores data so that it is protected against corruption,
crashes, or outages
Ensures high availability using the plugin on the master
server and MySQL replication in combination
Repeated data requests are cached using the buffer pool, providing high
speed processing
As the data is stored in the tables, the data consistency is enforced
automatically

The plugin supports multiple get operations (fetching multiple
key/value pairs in a single query) and range queries.

Creating a custom storage engine
MySQL AB introduced pluggable storage engine architecture in MySQL 5.1 and all later
versions, including MySQL 8, have taken advantage of the flexible storage engine
architecture.

The storage engine pluggable architecture provides the capability to create and add new
storage engines without recompiling the server, adding directly to a running MySQL
server. The architecture makes it very easy to develop and deploy new storage engines to
MySQL 8.

When developing new storage engine, it is required to take care of all the components that
work for and with storage engines. These include installation handlers, operations on table
such as creating, opening, and closing, , indexing, and so on.

In this section, we will cover how you can start developing a new storage engine on a high-
level basis with reference to the MySQL documentation provided in the development
community. The creation of a custom storage engine requires a working knowledge of
development with and , and compilation with and .

MySQL 8 Storage Engines Chapter 6

[210]

Creating storage engine source files
The easiest way to implement a new storage engine is to begin by copying and modifying
the storage engine. The files and can be found in
the directory of the MySQL source distribution.

When copying the files, change the names from and to
something appropriate to your storage engine, such as and .

After you have copied and renamed the files, you must replace all instances of
and with the name of your storage engine.

Adding engine-specific variables and parameters
A plugin can implement status and system variables and in this section we have covered
the changes to variables and parameters with appropriate values and data types.

The server plugin interface enables plugins to expose status and system variables using the
 and members of the general plugin descriptor.

 is a member of the general plugin descriptor. If the value is not 0, then it
points to an array of the structure where each of them describe one
status variable followed by a structure with all the members set to 0. The definition for the

 structure is as follows:

struct st_mysql_show_var {
 const char *name;
 char *value;
 enum enum_mysql_show_type type;
};

When the plugin is installed, the plugin name and the name value are joined with an
underscore to form the name displayed by the statement.

The following list shows the permissible status variable type values and what the
corresponding variable should be:

: This is a pointer to the variable
: This is a pointer to the variable

: This is a pointer to the long variable
: This is a pointer to the variable

MySQL 8 Storage Engines Chapter 6

[211]

: This is a index
: This is a pointer to indexes

: This is a pointer to another
: This is a pointer to a function

: This is a pointer to a

All session and global system variables have to be published to before they are
used. This is precisely done by constructing a terminated array of the variables and
linking to it in the plugin public interface.

All mutable and plugin system variables are stored internally in the structure.

The display of the server command-line help text is generated by compiling
 of all the relevant variables, sorting and iterating through them to display

each option.

During the plugin installation process, the server processes command-line options,
immediately after the plugin has been successfully loaded but the plugin initialization
function is yet to be called.

Plugins loaded at do not benefit from any configuration options and must have
usable defaults. Once they are installed, they are loaded at initialization time and
configuration options can be set at the command line or within .

The parameter should be considered as read-only in plugins.

Creating the handlerton
The handlerton (the short form of handler singleton) defines the storage engine. It contains
method pointers to methods applied to the storage engine as a whole, instead of methods
that work on a per-table basis. Examples of such methods include transaction methods
which handle commits and rollbacks operations.

An example from the storage engine is as follows:

handlerton example_hton= {
 "EXAMPLE", /* Name of the storage engine */
 SHOW_OPTION_YES, /* It should be displayed in options or not */
 "Example storage engine", /* Description of the storage engine */
 DB_TYPE_EXAMPLE_DB, /* Type of storage engine it should refer to */
 NULL, /* Initialize handlerton */

MySQL 8 Storage Engines Chapter 6

[212]

 0, /* slot available */
 0, /* define savepoint size. */
 NULL, /* handle close_connection */
 NULL, /* handle savepoint */
 NULL, /* handle rollback to savepoint */
 NULL, /* handle release savepoint */
 NULL, /* handle commit */
 NULL, /* handle rollback */
 NULL, /* handle prepare */
 NULL, /* handle recover */
 NULL, /* handle commit_by_xid */
 NULL, /* handle rollback_by_xid */
 NULL, /* handle create_cursor_read_view */
 NULL, /* handle set_cursor_read_view */
 NULL, /* handle close_cursor_read_view */
 example_create_handler, /* Create a new handler instance */
 NULL, /* handle drop database */
 NULL, /* handle panic call */
 NULL, /* handle release temporary latches */
 NULL, /* Update relevant Statistics */
 NULL, /* Start Consistent Snapshot for reference */
 NULL, /* handle flush logs */
 NULL, /* handle show status */
 NULL, /* handle replication Report Sent to Binlog */
 HTON_CAN_RECREATE
};

There are 30 elements, only few of which are mandatory.

Handling handler installation
This is the first method call in your storage engine required for creating a new handler
instance.

Before the is defined in the source file, there must be the instantiation method
defined in method header. The following is an example from the engine displaying the
instantiation method:

static handler* tina_create_handler(TABLE *table);

MySQL 8 Storage Engines Chapter 6

[213]

As you can see in the preceding example, the method accepts a pointer to the table. The
handler is responsible for managing and returning the handler object. After the method
header definition, the method is named with the method pointer in the

 element. This identifies the method as being responsible for generating new
handler instances when requested.

The instantiation method for the storage engine is shown in the following example:

static handler *myisam_create_handler(TABLE *table)
 {
 return new ha_myisam(table);
 }

Defining filename extensions
Storage engines must provide a list of extensions used by the storage engine associated to a
given table, its data, and indexes to the MySQL server.

Extensions should be given in the form of a null-terminated string array and the same is
returned when the [

] method is called, as shown in the following block:

const char **ha_tina::bas_ext() const
{
 return ha_tina_exts;
}

By providing extension information, you can also skip implementing
 functionality, as the MySQL server will implement the same by closing the table and

deleting all files with the extensions specified.

Creating tables
After handler instantiation, the creation of the table method should be followed.
The storage engine must implement the [

] method, as shown in the following block:

virtual int create(const char *name, TABLE *form, HA_CREATE_INFO *info)=0;

MySQL 8 Storage Engines Chapter 6

[214]

The preceding displayed method should create all the necessary files but it does not open
the table. The MySQL server will call separately for the table to be opened.

The parameter is for passing the name of the table and the parameter is for
passing the structure. The table structure defines the table and matches the contents
of . Storage engines must not modify the file as that will
result in errors or unpredictable issues.

The parameter is structure with information on the statement. It is
used to create the table and the structure is defined in the file. The following is
the structure for reference:

typedef struct st_ha_create_information
{
 CHARSET_INFO *table_charset, *default_table_charset; /* charset in
table */
 LEX_STRING connect_string; /* connection string */
 const char *comment,*password; /* storing comments and password values
*/
 const char *data_file_name, *index_file_name; /* data and index file
names */
 const char *alias; /* value pointer for alias */
 ulonglong max_rows,min_rows;
 ulonglong auto_increment_value;
 ulong table_options;
 ulong avg_row_length;
 ulong raid_chunksize;
 ulong used_fields;
 SQL_LIST merge_list;
 enum db_type db_type; /* value for db_type */
 enum row_type row_type; /* value for row_type */
 uint null_bits; /* NULL bits specified at start of record */
 uint options; /* OR of HA_CREATE_ options specification */
 uint raid_type,raid_chunks; /* raid type and chunks info */
 uint merge_insert_method;
 uint extra_size; /* length of extra data segments */
 bool table_existed; /* 1 in create if table existed */
 bool frm_only; /* 1 if no ha_create_table() */
 bool varchar; /* 1 if table has a VARCHAR */
} HA_CREATE_INFO;

Storage engines can ignore the contents of and because the creation and the
initialization of the data files is only really required when used by the storage engine.

MySQL 8 Storage Engines Chapter 6

[215]

Opening a table
Prior to any read or write operations performed on any table, the MySQL server calls the
[]
method to open the table index and data files:

int open(const char *name, int mode, int test_if_locked);

The first parameter is for the name of the table being opened. The second parameter is for
the file operation to take. The values are defined in :

, .

The final option dictates if the handler should check for a lock on the table before opening.
The following options are available to choose from:

#define HA_OPEN_ABORT_IF_LOCKED 0 /* default */
#define HA_OPEN_WAIT_IF_LOCKED 1 /* wait if table is locked */
#define HA_OPEN_IGNORE_IF_LOCKED 2 /* ignore if locked */
#define HA_OPEN_TMP_TABLE 4 /* Table is a temp table */
#define HA_OPEN_DELAY_KEY_WRITE 8 /* Don't update index */
#define HA_OPEN_ABORT_IF_CRASHED 16
#define HA_OPEN_FOR_REPAIR 32 /* open even if crashed with repair */

The typical storage engine will implement some form of shared access control in order to
prevent file corruption in a multi-threaded environment. For example, see the

 and methods of
 for implementing file locking.

Implementing basic table scanning
The most basic storage engines implement a read-only level of table scanning and they
might be used to support SQL queries for requesting information from the logs and other
data files that are populated outside of MySQL.

The implementation of the methods is the first step towards the creation of advanced
storage engines. The following shows the method calls made during a nine-row table scan
of the engine:

ha_tina::store_lock
ha_tina::external_lock
ha_tina::info
ha_tina::rnd_init
ha_tina::extra - ENUM HA_EXTRA_CACHE Cache record in HA_rrnd()

MySQL 8 Storage Engines Chapter 6

[216]

ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::rnd_next
ha_tina::extra - ENUM HA_EXTRA_NO_CACHE End caching of records (def)
ha_tina::external_lock
ha_tina::extra - ENUM HA_EXTRA_RESET Reset database to after open

The following methods can be implemented to take care of specific operations:

Implementing the : This method can modify the lock level,
ignoring or adding locks for many tables
Implementing the : This method is called when the

 statement is issued
Implementing the : This method is used in table scanning for
resetting counters and pointers at the start of a table
Implementing the : This method is used to provide extra
table information to the optimizer
Implementing the : This method is used to provide extra hints
information to the storage engine
Implementing the : This method is called on each row of scanning
until is reached or the search condition is satisfied

Closing a table
When the MySQL server has completed all the requested operations with the table, it will
call the

 method. It will close the file pointers and release all the related resources.

Storage engines using the shared access methods are seen in the engine. Other example
engines must remove the same from the shared structure, as displayed here:

int ha_tina::close(void)
 {
 DBUG_ENTER("ha_tina::close");
 DBUG_RETURN(free_share(share));
 }

MySQL 8 Storage Engines Chapter 6

[217]

Storage engines use their own share management systems. They should use the required
methods in order to remove the handler instance from the share for the respective table
opened in their handler.

If your storage engine is compiled as a shared object, during loading if you
get an error such as , then make
sure you compile and link your extension using the same flags as the
server uses. The usual reason for this error is that LDFLAGS are missing
the -fno-rtti option.

Reference for advanced custom storage engine
We have gone through the preceding sections in detail, giving high-level information for
custom storage engine components and the required changes. For implementing ,

, , indexing, and so on, in a custom storage engine, requires a working
knowledge of development with and compilation with and .
For advanced development for the custom storage engines, please refer to the detailed
information given at

Summary
By now, you have learned the different database engines available in MySQL 8 and we
learned why we should care about storage engines and available storage engine options in
MySQL 8. We covered in detail the storage engine and related important features
already provided within the storage engine. Now you are practically able to create
a custom storage engine as per the system requirement and make it pluggable in MySQL 8.
An important aspect was to choose a suitable storage engine for your system, which is
covered detail.

In the next chapter, you will learn about how indexing works in MySQL 8, the new features
introduced related to indexing, the different types of indexing, and how to use indexing on
your tables. Along with that, a comparison will also be provided along with in-depth
knowledge of various ways of index implementation.

77
Indexing in MySQL 8

In the previous chapter, we learned about storage engines. Now we are aware what types of
storage engines are available and which ones to use for our requirements. The previous
chapter also covered the storage engine in detail, along with other storage engine
information. It also described how to define a custom storage engine for use, with a
practical example. Now it's time to understand one more important functionality of MySQL
8 and that is, indexing. We will cover different types of indexes with their functionalities,
which will encourage you to use indexes and provided you with guidance on how to use
them. So, your journey into indexes has started! Let's go.

We will cover the following topics in this chapter:

An overview on indexing
Column-level indexing
B-Tree indexes
Hash indexes
Index extensions
Using an optimizer for indexes
Invisible and descending indexes

Indexing in MySQL 8 Chapter 7

[219]

An overview on indexing
To define an index on a table is the best way to improve the performance of the
operation. An index acts like a pointer for the table rows and permits queries to quickly
point to matching rows based on the condition. MySQL 8 allows you to create
indexes on all the data types. Although indexing provides good performance on queries, it
is recommend to define it in the proper way, because unnecessary indexes waste space and
time (for MySQL 8 to find which index is best to use). In addition to that, indexes also add
costs to , , and operations, because during these operations, MySQL
8 will update each index.

As we described previously, an index is a data structure that improves the speed of
operations. Based on the structure, an index is bifurcated into two major forms a clustered
index and a non-clustered index:

Clustered index: A clustered index defines the order in which data is physically
stored in a table. Therefore, only one clustered index is allowed per table. It
greatly increases the speed of retrieval when data is retrieved in a sequential
manner, either in the same order or in reverse order. A clustered index also
provides better performance when a range of items are selected. A primary key is
defined as a clustered index.
Non-clustered index: A non-clustered index doesn't define the order in which
data is physically stored. This means a non-clustered index is stored in one place,
and data is stored in another place. Therefore, more than one non-clustered index
is allowed per table. It refers to non-primary keys.

As we know, the primary key represents the column, or set of columns, which is most
widely used for fetching records from the table. The primary key has an index associated
with it and is used for fast query performance. It provides comparatively faster
performance because a primary key does not allow a value, so no check is required on

 values. It is recommended that if your table does not have a column or set of columns
to define as a primary key, then you define one auto increment field as the primary key for
better performance. On the other hand, if your table contains many columns and there is a
need to execute a query with a combination of multiple columns, then it is advisable to the
less frequently used data and transfer in onto a separate table. Relate all the separate tables
with primary and foreign key references, which will help you in managing data, and query
retrieval provides you good performance.

Indexing in MySQL 8 Chapter 7

[220]

Uses of indexes in MySQL 8
Indexes are mainly used to find a row of specific values without iterating a complete table.
If an index is not define,d then MySQL 8 will start searching from the first row and then
read the entire table, which makes for a costly operation. MySQL 8 uses indexes for the
following operations:

To sort or group tables when it is done on the left-most prefix of an index. This
means that if all keys are defined for the clause, then the keys will be
considered in reverse order, and if all keys are followed by , then the keys
will be considered in forward order.
To find rows whose values match with the clause.
In the case of multiple column indexes, any left-most prefix of the index can be
used to find the row. This topic is covered in the later part of this chapter with a
detailed example.
If there is a case where MySQL has to choose one index from multiple options,
then it will choose the index which has the smallest set of rows.
Sometimes, the query is optimized to get the values without referring to rows.
For example, if the query uses only columns that are included in indexes, MySQL
8 will get the selected value from the index tree:

 SELECT key_part3 FROM table_name WHERE key_part1=10;

At the time of performing the join, MySQL 8 will use the index in a more efficient
way, if columns are declared with the same type and size. For example,

 and will be considered as the same,
but and will not be considered as the same.
In the case of and functions, if you have used part of the index
columns, then the optimizer will check whether all the other parts of the index
columns are available in the condition. If they are mentioned, then MySQL
8 will perform a single lookup for the and functions and replace
them with constants. For example:

 SELECT MIN(key_part2), MAX(key_part2) FROM tble_name WHERE
 key_part1=10;

Indexing in MySQL 8 Chapter 7

[221]

SQL commands related to indexes
MySQL 8 provides two main commands related to indexes. We will discuss these
commands in the following sections.

Creating an INDEX command
The following command enables the user to add indexes into an existing table. This
command is also used with and to create indexes:

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
 [index_type]
 ON tbl_name (index_col_name,...)
 [index_option]
 [algorithm_option | lock_option] ...
index_col_name:
 col_name [(length)] [ASC | DESC]
index_option:
 KEY_BLOCK_SIZE [=] value
 | index_type
 | WITH PARSER parser_name
 | COMMENT 'string'
 | {VISIBLE | INVISIBLE}
index_type:
 USING {BTREE | HASH}
algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}
lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

Using syntax, the user is able to specify an index prefix length, which
will consider only a specified number of characters from the string value. At the time of
defining, the prefix considers the following points:

The prefix is optional for , , , and column
indexes
The prefix must be specified in the case of and column indexes
MySQL 8 will consider prefixes as a number of characters for non-binary string
types (, ,) and a number of bytes for binary types
(, ,)
The prefix is not allowed for the spatial columns

Indexing in MySQL 8 Chapter 7

[222]

A detailed example of the prefix option is described later in this chapter, under the Column
indexes section. A index is a constraint which indicates that all the values in the
index will be unique. If you try to add values which already exist, then MySQL 8 displays
an error. All types of storage engines with a index permit multiple null values. In
the case of prefixes when you use values, make sure column values are unique within
the prefixes. If an index prefix exceeds its size, then MySQL 8 will handle the index as
follows:

For a non-unique index: If the strict SQL mode is enabled, then MySQL 8 will
throw an error, and if the strict mode is disabled, then the index length is reduced
to the maximum column data type size and will produce a warning.
For a unique index: In this case, MySQL 8 produces an error regardless of the
SQL mode, because it might break the uniqueness of the column. This means you
have defined a column with 25 length and tried to define an index on the same
column with a prefix length 27; then MySQL 8 throws an error.

MySQL 8 follows the following rules for spatial index characteristics:

It is only available for and storage engines; if you try to use it for
other storage engines, then MySQL 8 gives an error.
A value is not allowed for indexed columns.
A prefix attribute is not allowed for this column. Full width will be considered for
the index.

MySQL 8 follows the following rules for non-spatial index characteristics:

A value is allowed for an indexed column in the case of , ,
and storage engines.
The column prefix length must be specified in the case of each spatial column, if it
exists under a non-spatial index. The prefix length will be considered in terms of
bytes.
Except for , it is supported for all the storage engines which support
spatial columns.

Indexing in MySQL 8 Chapter 7

[223]

A value is allowed for this index, unless it is defined as a key.
For an table, run the statement after creating an index
on that table, if the setting is enabled.
The index type will depend on the storage engine; currently, B-Tree is used.
A non-spatial index is allowed on a or column only if it is defined
using and tables.

 The default value of the attribute is in ascending order, and neither
an nor value is permitted for indexes with this attribute. MySQL 8 provides
any of the following values with the :

 value: This parameter defines the size of the index key
block in bytes. It is an optional parameter and its value is treated as a hint.
MySQL 8 may use a different size if it is required. If this parameter is defined at
the individual index level, then it overrides the table-level

 value. The engine doesn't support this parameter at
the index level; it allows it at the table level only.

: MySQL 8 permits the user to define the index type at the time of
index creation. For example:

 create table employee (id int(11) not null,name varchar(50));
 CREATE INDEX emp_name_index ON employee (name) USING BTREE;

Refer to the following table to find the permissible index types related to the
storage engine. Consider the first index type as the default type in cases where
multiple types are defined. If any storage engine is not mentioned in this table, it
means that the index type is not supported by that engine:

Storage Engine Permissible Index Types

/ ,

,

Indexing in MySQL 8 Chapter 7

[224]

If you try to define an index type which is not supported by the storage engine,
then MySQL 8 will consider it as a supported index type, without affecting the
query result. Refer to the following table to learn more about the characteristics of
indexes, based on storage types:

Storage
Engine Index Type Index Class

Stores
NULL
Values

Permits
Multiple
NULL Values

IS NULL
Scan Type

IS NOT
NULL Scan
Type

Primary key No No N/A N/A

Unique Yes Yes Index Index

Key Yes Yes Index Index

Inapplicable Yes Yes Table Table

Inapplicable SPATIAL No No N/A N/A

Primary key No No N/A N/A

Unique Yes Yes Index Index

Key Yes Yes Index Index

Inapplicable Yes Yes Table Table

Inapplicable SPATIAL No No N/A N/A

Primary key No No N/A N/A

Unique Yes Yes Index Index

Key Yes Yes Index Index

Primary No No N/A N/A

Unique Yes Yes Index Index

Key Yes Yes Index Index

: This option is valid only for a index
which was supported by a and storage engine. If
index and searching operations require special handling, then MySQL 8 will use
a parser plugin with the index.

Indexing in MySQL 8 Chapter 7

[225]

: This attribute is optional and allows up to 1024 characters
in comments. This option also supports the parameter whose
default value is 50. Consider the following command to define
the :

 CREATE INDEX name_index ON employee(name) COMMENT
 'MERGE_THRESHOLD=40';

If the page-full percentage for an index is less than the value,
then the storage engine will merge the index page with a neighboring
index page.

, : This parameter defines the index visibility. By default, all
indexes are visible. The optimizer will not use an invisible index during the
optimization process.

The and attributes will have an impact when you try to use the table for
reading or writing, and while simultaneously modifying its indexing.

Drop index command
The following command drops the index from the table. We can also map this statement
with to drop the index from the table:

DROP INDEX index_name ON tbl_name
 [algorithm_option | lock_option]...
algorithm_option:
 ALGORITHM [=] {DEFAULT|INPLACE|COPY}
lock_option:
 LOCK [=] {DEFAULT|NONE|SHARED|EXCLUSIVE}

In this command, only two options are available: the algorithm and the lock. Both of these
options are useful in the case of concurrent access of index and work, similar to the

 command. For example, to drop the index of an employee table, execute the
following command:

DROP INDEX name_index ON employee;

Indexing in MySQL 8 Chapter 7

[226]

SPATIAL index creation and optimization
MySQL 8 allows you to create a spatial index on a and storage engine using
the same syntax mentioned in the preceding topic. The only change in the standard
command is to use the keyword spatial at the time of creating the index. When you define a
spatial index, make sure that the column is declared as . The following code
demonstrates the method to create a spatial index on table:

CREATE TABLE geom_data (data GEOMETRY NOT NULL, SPATIAL INDEX(data));

The spatial index, by default, creates an R-Tree index. From MySQL 8.0.3 onwards, the
optimizer checks the spatial reference identifier (SRID) attribute of the indexed column to
find the Spatial Reference System (SRS) for comparisons and performs calculations
according to SRS. For comparison, each column in a spatial index must be SRID-restricted.
This means that each column definition must contain an SRID attribute, and all the column
values must have the same SRID. The spatial index performs the following two actions
based on the SRID:

If the column is restricted to a Cartesian SRID, then it enables Cartesian
bounding box computation
If the column is restricted to a Geographic SRID, then it enables geographic
bounding box computation

As mentioned above, MySQL 8 will ignore a on a column which does not
have an SRID attribute, but MySQL still manages these indexes as follows:

These types of indexes are updated when the table is modified with the ,
, or command.

These indexes are considered in dump backups and are restored with backward
compatibility. As mentioned in the previous point, spatial indexes with no SRID
restricted columns are not used by the optimizer, so in that case, all these
columns must be modified. To modify them, perform the following steps:

Check all the values of the column that have the same with1.
the following command:

SELECT DISTINCT ST_SRID(column_name) FROM table_name;1.

If the query returns multiple rows, then it indicates that the column
contains mixed SRIDs. If so, change the contents of the column for the
same SRID value.

Indexing in MySQL 8 Chapter 7

[227]

Define an explicit SRID for the column.2.
Recreate the .3.

InnoDB and MyISAM index statistics collection
MySQL 8 will consider table statistics based on the value group, which is nothing but a set
of rows with the same prefix values. The storage engine collects statistics related to the
table, which are used by the optimizer. From the optimization perspective, average value
group size is an important statistic. If the average value of the group size increases, then the
index is not meaningful. So, it's better to target a small number of rows for each index. This
can be achieved by table cardinality, which is nothing but a number of value group. For

 and tables, MySQL 8 provides control on statistics by the
 and the system variables. The following

are the possible values for these variables:

: It indicates that values are ignored
: It indicates all values are identical

: It indicates all values are not identical

The system variable has a global value, while
the system variable has both global and session values. When we
set a global value of a variable, it will affect statistics collection for tables from the
corresponding storage engine. In the case of session value statistics, collection is available
only for the current client connection. This means that you have to regenerate a table's
statistics for the other client on the same table without affecting other clients, and need to
set it in a session value. To regenerate statistics, use either of these methods:

Execute the
command
Make changes to the table to make its statistics out of date, and then set

 and issue an statement

There are some points that must be considered before using these two variables:

 These variables are available only for and tables. For other
storage engines, only one method is available to collect table statistics, and it is
very near to the method.

Indexing in MySQL 8 Chapter 7

[228]

 MySQL 8 provides a way to generate statistics for a table explicitly, but this is
not always the case. Sometimes, MySQL 8 may also generate statistics
automatically, if it is required. For example, in the case of any operations, if some
of the SQL statements modified table data, then MySQL 8 will automatically
collect statistics. Consider bulk insert or delete operations.
We cannot say which method was used to generate statistics for a table.

Column-level indexing
MySQL 8 allows you to create an index on a single column, as well as on multiple columns.
The maximum number of indexes per table and maximum index length depend on the
storage engine. Mostly, all the storage engines allow at least 16 indexes per table and total
index lengths of at least 256 bytes, but most of the storage engines permit higher limits.

Column indexes
This is the most common way to define an index where only a single column is involved.
MySQL 8 stores a copy of column values in a data structure so that rows can be accessed
quickly. MySQL 8 uses a B-Tree data structure to enable values to be accessed quickly. The
B-Tree execution will work based on operators, such as , , , , , and many
more, which were defined in the condition. You can get details on the B-Tree data
structure and its execution in the next topic. We will discuss the characters of column
indexes in the coming sections.

Index prefixes
This option allows the user to specify the number of characters for indexing in the case of a
string. MySQL 8 has provided the option , in index creation to specify a
number of characters. Indexing prefers only specified characters, which will make the index
file smaller. So, at the time of the and column, you must specify the prefix length
for better performance. Consider the following example to create indexes with prefix
lengths on the type:

CREATE TABLE person (personal_data TEXT, INDEX(personal_data (8)));

Indexing in MySQL 8 Chapter 7

[229]

This command creates an index on the column by considering the first
eight characters. The prefix length varies, based on the storage engine. The storage
engine allows up to a 767 byte prefix length for or row formats, while
in the case of or row formats, it allows up to 3072 bytes. In the case
of the storage engine, the prefix can be defined for up to 1,000 bytes.

Prefix length will be measured in bytes for binary string types, such
as , , and , while in the case of non-binary string
types, it will be considered as a number of characters.

FULLTEXT indexes
As the name implies, indexes allow , , and columns only.
This index is supported by and storage engines. In this type, indexing will
take place on an entire column, rather than a prefix length. MySQL 8 evaluates the full text
expression during the optimization phase of the query execution. Before making
estimations, optimization evaluates the full text expression in the process of developing an
execution plan. As a result, the query of full text is slower than non-full text
queries. Full text queries are useful in the following scenarios:

When a query returns either a document ID or a document ID and
search rank
When a query sorts the matching rows by descending order and uses
a clause to fetch N number of rows, apply only a single clause
in descending order, and don't use a clause in it for optimization
When a query fetches a value from the rows without any
additional clauses, apply the clause as

, without any 0 comparison operator

Spatial Indexes
MySQL 8 allows you to create indexes on spatial data types. The and
storage engines support R-Tree for spatial data, while other storage engines use B-Tree.
Since MySQL 5.7, spatial indexes are supported in and database engines.

Indexing in MySQL 8 Chapter 7

[230]

Indexes in the MEMORY storage engine
Memory storage engines support both indexes and B-Tree indexes, but indexes
are, by default, set for the storage engine.

Multiple-column indexes
MySQL 8 allows you to use multiple columns in a single index creation, which is also
known as a composite index. It permits up to 16 columns in a composite index. At the time
of composite index use, make sure you follow the same order of columns which was
mentioned during index creation. A multiple-column index contains values generated by
concatenating the values of indexed columns. Consider the following example in order to
understand multiple-column indexes:

CREATE TABLE Employee (
id INT NOT NULL,
lastname varchar(50) not null,
firstname varchar(50) not null,
PRIMARY KEY (id),
INDEX name (lastname, firstname)
);

As described above, we have defined composite indexes using two columns, and
. The following queries use the name index:

SELECT * FROM Employee WHERE lastname='Shah';
SELECT * FROM Employee WHERE lastname ='Shah' AND firstname ='Mona';
SELECT * FROM Employee WHERE lastname ='Shah' AND (firstname ='Michael' OR
firstname ='Mona');
SELECT * FROM Employee WHERE lastname ='Shah' AND firstname >='M' AND
firstname < 'N';

In all the preceding queries, we can see that the orders of columns are maintained in the
 condition, similar to that of index declaration. Indexes can also work when we define

only the column in the clause, because it is the left-most column defined
in the index. Now, there are some queries in which composite indexes will not work:

SELECT * FROM Employee WHERE firstname='Mona';
SELECT * FROM Employee WHERE lastname='Shah' OR firstname='Mona';

Indexing in MySQL 8 Chapter 7

[231]

Remember, in the case of a multiple-column index, any left-most prefix of the index can be
used by the optimizer for searching rows. For example, if the index was defined on three
columns in sequence, , , and , then you can use indexed
capabilities on (, ,), (), (,), by defining
it in the clause.

B-Tree index
The main purpose of the B-Tree index is to reduce the number of physical read operations.
A B-Tree index is created by sorting the data on the search key and maintaining a
hierarchical search data structure, which helps to search for the correct page of data entries.

 and storage engines, by default, use the B-Tree index. B-Tree manages to
keep an equal distance from all the leaf nodes to the root node. This index speeds up data
access because there is no need to scan the whole data to get the desired output. Instead, it
starts with the root node. The root node holds a pointer of child nodes, and the storage
engine follows these pointers to find the next path. It finds the right path by considering
values in the node page. The node page defines the upper and lower bounds of values in
the child nodes. At the end of the search process, the storage engine either successfully
reaches a leaf page, or concludes that there is no value associated with the search.
Remember, the leaf pages point to the indexed data, and not to other pages. Now, let's refer
to one diagram to understand B-Tree indexes in more detail:

Indexing in MySQL 8 Chapter 7

[232]

As discussed previously, when the query is executed against an index column, the MySQL
8 query engine starts from the root node, and through the intermediate nodes, it will reach a
leaf node. Let's take an example where you want to find the value 89 in an indexed column.
In this case, the query engine refers to the root node to get the intermediate page reference.
So, it will point to 1-100. After that, it determines the next intermediate level, and points to
the values 51-100. Then the query engine goes to the third page, which is the next
intermediate level, 76-100. From there, it will find the leaf node for the value 89. The leaf
node contains either an entire row or a pointer to that row, depending on whether the index
is clustered or non-clustered. Now, let's understand how a B-Tree index works on a select
query by considering the following table:

CREATE TABLE Employee (
 lastname varchar(50) not null,
 firstname varchar(50) not null,
 dob date not null,
 gender char(1) not null,
 key(lastname, firstname, dob)
);

As per the table definition index will contains values in combination of three columns
, , and . It will sort values as per the order given previously; this

means that if some employees have similar names, then they will be sorted by their birth
dates. Consider the following types of queries which will benefit from the B-Tree index:

Match the range of values: Finds the employees whose last names are Patel and
Gupta.
Match the full values: Finds employee whose name is Mohan Patel and was born
on 28/11/1981.
Match leftmost prefix: Finds all employee with a last name. These use only the
first column in the index.
Match with column prefix: Finds the employees whose last names begin with M.
It uses only the first column in the index.
Match one part exactly and with range of another column: Finds the employee
whose last name is Patel and whose first name starts with A.

The following are queries where B-Tree is not useful:

Don't use any condition after a range condition: For example, you have put the
 condition and like and

. Here, only the first two columns are considered for the index,
because is a range condition.

Indexing in MySQL 8 Chapter 7

[233]

Don't skip any of the columns defined in the index: This means you are not
allowed to use and to find an employee where is
missing in the condition.
Lookup doesn't start with left-most side of indexed columns: For example, the
index will not work if you find the employee whose is and
whose is on a certain date. In this query, defined columns are not left-most in
the index. In the same way, the index does not work in the case where you find
the employee whose ends with something.

Hash index
It is very difficult to find a single value from a large database by following complete tree
traversals with multiple levels. To overcome this problem, MySQL has provided another
index type, which is known as a hash index. This index creates a hash table rather than a
tree, which is very flat in structure compared to a B-Tree index. Hashing mainly uses hash
functions to generate the addresses of data. Two important terms related to hashing are:

Hash function: The mapping function which will be useful to map search-keys
with the address where actual records are stored.
Bucket: A bucket is a unit of storage where a hash index stores the data. A bucket
indicates a complete disk block, which will store one or more records.

Along with the hashing mechanism, a hash index has some special characteristics, described
as follows:

The whole key is used to search the row. While in the case of a B-Tree, only the
left-most prefix of the key is used to find rows.
The optimizer will not use a hash index to speed up operations. In
other words, this index is never used to find the next entry.
Hash indexes are used for equality comparison by using or operators. It
will never use comparison operators which will return a range of values. For
example, the (less than) operator.
The range optimizer cannot actually gauge how many rows are available between
the two values. And, if we use a hash-indexed table instead of or

, then it may affect the queries as well.

Indexing in MySQL 8 Chapter 7

[234]

Index extension
Index extension is the feature by which MySQL 8 extends a secondary index by appending
the primary key. The engine automatically extends a secondary index if it is
required. To control the behavior of index extensions, MySQL 8 has defined
a flag in the system variable. By default, this
option is enabled, but the user is allowed to change it at runtime by using the following
command:

SET optimizer_switch = 'use_index_extensions=off';

Let's look at one example to understand the index extension in detail. Let's create a table
and insert the following values:

CREATE TABLE table1 (
 c1 INT NOT NULL DEFAULT 0,
 c2 INT NOT NULL DEFAULT 0,
 d1 DATE DEFAULT NULL,
 PRIMARY KEY (c1, c2),
 INDEX key1 (d1)
) ENGINE = InnoDB;

--Insert values into table
INSERT INTO table1 VALUES
(1, 1, '1990-01-01'), (1, 2, '1991-01-01'),
(1, 3, '1992-01-01'), (1, 4, '1993-01-01'),
(1, 5, '1994-01-01'), (2, 1, '1990-01-01'),
(2, 2, '1991-01-01'), (2, 3, '1992-01-01'),
(2, 4, '1993-01-01'), (2, 5, '1994-01-01'),
(3, 1, '1990-01-01'), (3, 2, '1991-01-01'),
(3, 3, '1992-01-01'), (3, 4, '1993-01-01'),
(3, 5, '1994-01-01'), (4, 1, '1990-01-01'),
(4, 2, '1991-01-01'), (4, 3, '1992-01-01'),
(4, 4, '1993-01-01'), (4, 5, '1994-01-01'),
(5, 1, '1990-01-01'), (5, 2, '1991-01-01'),
(5, 3, '1992-01-01'), (5, 4, '1993-01-01'),
(5, 5, '1994-01-01');

Indexing in MySQL 8 Chapter 7

[235]

This table has a primary key on columns , and a secondary index on column
. Now, to understand the extension effect, first make it off and then execute following

select query with explain command:

--Index extension is set as off
SET optimizer_switch = 'use_index_extensions=off';

--Execute select query with explain
EXPLAIN SELECT COUNT(*) FROM table1 WHERE c1 = 3 AND d1 = '1992-01-01';

--Output of explain query
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: table1
 type: ref
possible_keys: PRIMARY,key1
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 5
 Extra: Using where

In the same way, we will now turn the extension on and execute the explain plan query
again to check the effect, using the following code:

--Index extension is set as on
SET optimizer_switch = 'use_index_extensions=on';

--Execute select query with explain
EXPLAIN SELECT COUNT(*) FROM table1 WHERE c1 = 3 AND d1 = '1992-01-01';

--Output of explain query
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: table1
 type: ref
possible_keys: PRIMARY,key1
 key: key1
 key_len: 8
 ref: const,const
 rows: 1
 Extra: Using index

Indexing in MySQL 8 Chapter 7

[236]

Now, we will check the difference between these two approaches:

The value changes from 4 bytes to 8 bytes, which indicates that key
lookups use both the columns d1 and c1, not only d1.
The value changes from to which indicates key
lookup uses two key parts instead of one.
The count changes from 5 to 1, which indicates that requires fewer
rows than the first approach to produce the result.
The value changes from Using where to Using index. It indicates that the
rows can be read by using only the index, without consulting any other columns
in the data row.

Using an optimizer for indexes
MySQL 8 allows you to create indexes on generated columns. Generated columns are the
columns whose values are computed from an expression included in a column definition.
Consider the following example where we have defined one generated column, , and
created an index on that column:

CREATE TABLE t1 (c1 INT, c2 INT AS (c1 + 1) STORED, INDEX (c2));

Based on the previous definition of a table, an optimizer will consider an index of a
generated column in the execution plan. In addition to that, if we specify the same
expression in the query using the , , or clauses, then the
optimizer will use the index of the generated column. For example, if we execute the
following query, then the optimizer will use the index defined on the generated column:

SELECT * FROM t1 WHERE c1 + 1 > 100;

Here, the optimizer will identify that the expression is the same as the definition of column
. We can check it using the command, as follows:

mysql> explain SELECT * FROM t1 WHERE c1 + 1 > 100;
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
 possible_keys: c2
 key: c2
 key_len: 5

Indexing in MySQL 8 Chapter 7

[237]

 ref: NULL
 rows: 1
 filtered: 100.00
 Extra: Using index condition

There are some limitations on generated column indexes:

The query expression must be exactly matched with the generated column
definition. For example, if we have defined the expression as in a column
definition, then use the same in query, instead of applying .
In the case of JSON string use in a generated column definition, use

 to remove extra quotes from the values. For example, don't use
the following column definition:

 name TEXTAS(JSON_EXTRACT(emp,'$.name'))STORED

Instead of the preceding code, we will use the following:

 name TEXTAS(JSON_UNQUOTE(JSON_EXTRACT(emp,'$.name')))STORED

The optimization applies to these operators: , , , , , , and .
Don't use only references of other columns in generated column expressions.
That is, don't use the following code:

 c2 INT AS (c1) STORED in column definition.

Use a index hint if the optimizer tries to use the wrong index, which will disabled
it and force the optimizer to use a different choice

Invisible and descending indexes
The invisible index is a special feature which will mark an index as unavailable for the
optimizer. MySQL 8 will maintain invisible indexes and keep them up-to-date when data is
modified. This will apply on indexes other than primary key. As we know, indexes are
visible by default; we have to make them invisible explicitly at the time of creation, or by
using the command. MySQL 8 provides the and keywords to
maintain index visibility. A descending index is the method of storing key values in
descending order. A descending index is more efficient, as it can be scanned in the forward
order. Let's see these indexes in detail, with examples.

Indexing in MySQL 8 Chapter 7

[238]

Invisible index
As mention previously, an invisible index is not used by the optimizer. Then what is the use
of this index? This question comes into our mind, right? We will explain to you some of the
use cases for invisible indexes:

When many indexes are defined, but you are not sure which index is not in use.
In this case, you can make an index invisible and check the performance impact.
If it has an impact, then you can make that index visible on an immediate basis.
Special cases where only one query is using an index. In this case, an invisible
index is a good solution.

In the following example, we will create an invisible index using ,
, or commands:

CREATE TABLE `employee` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `department_id` int(11),
 `salary` int(11),
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

CREATE INDEX idx1 ON employee (department_id) INVISIBLE;
ALTER TABLE employee ADD INDEX idx2 (salary) INVISIBLE;

To change the visibility of the indexes, use the following commands:

 ALTER TABLE employee ALTER INDEX idx1 VISIBLE;
 ALTER TABLE employee ALTER INDEX idx1 INVISIBLE;

To get information about an index, execute or
 commands in the following ways:

mysql>SELECT * FROM information_schema.statistics WHERE is_visible='NO';
*************************** 1. row ***************************
TABLE_CATALOG: def
TABLE_SCHEMA: db1
TABLE_NAME: employee
NON_UNIQUE: 1
INDEX_SCHEMA: db1
INDEX_NAME: idx1
SEQ_IN_INDEX: 1
COLUMN_NAME: department_id
COLLATION: A
CARDINALITY: 0
SUB_PART: NULL

Indexing in MySQL 8 Chapter 7

[239]

PACKED: NULL
NULLABLE: YES
INDEX_TYPE: BTREE
COMMENT:
INDEX_COMMENT:
IS_VISIBLE: NO

mysql>SELECT INDEX_NAME, IS_VISIBLE FROM INFORMATION_SCHEMA.STATISTICS
 -> WHERE TABLE_SCHEMA = 'db1' AND TABLE_NAME = 'employee';
+------------+------------+
| INDEX_NAME | IS_VISIBLE |
+------------+------------+
idx1	NO
idx2	NO
PRIMARY	YES
+------------+------------+

mysql> SHOW INDEXES FROM employee;
*************************** 1. row ***************************
Table:employee
Non_unique:1
Key_name:idx1
Seq_in_index:1
Column_name: department_id
Collation:A
Cardinality:0
Sub_part: NULL
Packed: NULL
Null:YES
Index_type: BTREE
Comment:
Index_comment:
Visible: NO

MySQL 8 provides a flag in the system
variable to control invisible indexes used by the query optimizer. If this flag is on, then the
optimizer uses invisible indexes in execution plan construction, while if the flag is off, the
optimizer ignores invisible indexes. MySQL 8 provides a facility to use an implicit primary
key if you have defined a index on a column. Once you define the index
on this field, MySQL 8 does not allow you to make it invisible. In order to understand this
scenario, let's take one example with the following table. Let's try to execute the following
command to make the index invisible:

CREATE TABLE table2 (
 field1 INT NOT NULL,
 field2 INT NOT NULL,

Indexing in MySQL 8 Chapter 7

[240]

 UNIQUE idx1 (field1)
) ENGINE = InnoDB;

The server will now give an error, as shown in the following commands:

mysql> ALTER TABLE table2 ALTER INDEX idx1 INVISIBLE;
ERROR 3522 (HY000): A primary key index cannot be invisible

Now let's add the primary key into the table, using the following command:

ALTER TABLE table2 ADD PRIMARY KEY (field2);

Now, we will try to make the invisible. This time, the server allows it, as shown in
the following commands:

mysql> ALTER TABLE table2 ALTER INDEX idx1 INVISIBLE;
Query OK, 0 rows affected (0.06 sec)
Records: 0 Duplicates: 0 Warnings: 0

Descending index
A descending index is an index which stores key values in descending order. This index is
scanned in the forward order, which gives better performance compared to other indexes.
Descending indexes allow a user to define multi-column indexes in a combination of
ascending and descending orders. Practical knowledge is always easier to understand than
theoretical knowledge, right? So, let's take a look at some examples to understand the
descending index in detail. First, create a table with the following definition:

CREATE TABLE t1 (
 a INT, b INT,
 INDEX idx1 (a ASC, b ASC),
 INDEX idx2 (a ASC, b DESC),
 INDEX idx3 (a DESC, b ASC),
 INDEX idx4 (a DESC, b DESC)
);

As per the table definition, MySQL 8 will create four different indexes, and as a result, the
optimizer performs a forward index scan for each clause. Consider the following
different version of the clause:

ORDER BY a ASC, b ASC -- optimizer can use idx1
ORDER BY a DESC, b DESC -- optimizer can use idx4
ORDER BY a ASC, b DESC -- optimizer can use idx2
ORDER BY a DESC, b ASC -- optimizer can use idx3

Indexing in MySQL 8 Chapter 7

[241]

Now, let's take a look at a second scenario for the same table definition, which will describe
the performance impact of a descending index compared to the MySQL 5.7.14 version.
Consider the following select queries to measure performance:

Query 1: SELECT * FROM t1 ORDER BY a DESC;
Query 2: SELECT * FROM t1 ORDER BY a ASC;
Query 3: SELECT * FROM t1 ORDER BY a DESC, b ASC;
Query 4: SELECT * FROM t1 ORDER BY a ASC, b DESC;
Query 5: SELECT * FROM t1 ORDER BY a DESC, b DESC;
Query 6: SELECT * FROM t1 ORDER BY a ASC, b ASC;

The following statistical graph is provided by MySQL 8 on 10 million rows, with respect to
the previously mentioned queries:

Indexing in MySQL 8 Chapter 7

[242]

There are some important points that you should remember at the time of using descending
indexes, which are as follows:

All the data types supported by ascending indexes are also supported by
descending indexes.
Descending indexes are supported for but not for , , and

 indexes. If you try to use and keywords explicitly for ,
, and indexes, then MySQL 8 will generate an error.

Descending indexes only support storage engines, but the SQL
parser does not use descending indexes. Change buffering is not supported for
secondary indexes if the primary key includes a descending index.

 can use any index, including a descending key, but for /
, no descending key parts are used.

Both non-generated and generated columns allow use of descending indexes.

Summary
Everything becomes very interesting when you are aware of how it works, right? We hope
you have found the same thing about indexing in this chapter. We have covered very useful
information which will help you to define indexes on the right columns to get better
performance. In addition to that, we have also described various types of indexing with
their storage structures.

In the next chapter, we will provide you with information about replication. We will
explain the configuration and implementation of replication in detail.

88
Replication in MySQL 8

In the previous chapter, we dived deep into MySQL 8 indexing. Indexes are an important
entity for any database management system. They help improve SQL query performance by
limiting the number of records to be visited. Database administrators working on
performance improvement must be aware of this important technique. This chapter
explains in detail the types of indexes and their advantages. This chapter also explains how
indexing works in MySQL 8. It's going to be a pretty informative chapter!

Moving further along the same line, in this chapter, we will discuss database replication.
How much are we already aware about database replication? It doesn't actually matter. This
chapter covers insightful details about database replication. If you have prior knowledge of
database replication, this chapter will add to it. If you have only just heard about it for the
first time, you will find every detail that is required to make it work in this chapter. So, are
we ready to jump in? The following is a list of topics that we will be covering in this
chapter:

Overview of replication
Configuring replication
Implementing replication
Group replication versus clustering
Replication solutions

Replication in MySQL 8 Chapter 8

[244]

Overview of replication
We will walk through the basics of database replication in this section. We will understand
what replication is, the advantages it provides, and the scenarios in which replication can be
beneficial.

What is MySQL replication?
It is assumed that you are reading this for two reasons. You're familiar with MySQL
replication and are willing to gain more knowledge, and perhaps you're unfamiliar with
MySQL replication and want to learn.

MySQL replication is useful for serving lots of different purposes. Usually, people start
thinking about MySQL replication when they start having more queries than a single
database server can handle. Based on this, do you have any guesses on what MySQL
replication is? Replication is the technique to have more than one databases set up to serve
single or multiple client applications. A client can be an end user or person who sends a
request for any query in terms of read data or write data from different devices, such as
computers, mobiles, tablets, and so on. These databases are replicas of the same database.
This means all databases participating in database replication are exactly the same as each
other. Replication works by frequently copying data from one database to all other replica
databases. These databases may be located on the same database server, different database
servers, or different machines altogether.

As mentioned earlier, database replication serves various purposes. It depends on the
reason why MySQL database replication is set up. MySQL replication is set up to scale up a
database or an application that is backed up by the database. It is also useful for
maintaining database backups and reporting purposes. We will discuss these in detail a
little later in this chapter.

MySQL replication is mostly set up for scaling reads. In any web application, the number of
read operations is pretty higher compared to that of write database operations. Most
common web applications are always read heavy. Consider an example of a social
networking website. If we navigate to a user profile page, we see a lot of information such
as the user's personal information, demographic information, social connections, some
ratings, and so on. If observed carefully, we will find that the number of queries
executed on a database are much higher than , , or queries. With
MySQL database replication, we can direct read operations to be performed on particular
databases so that we can achieve higher performance.

Replication in MySQL 8 Chapter 8

[245]

MySQL replication looks pretty easy and can be set up in a couple of hours, but it gets
complicated pretty easily. It is very easy to set up on a new database. On the contrary, it is
pretty complex to set it up on a production database. We should not confuse MySQL
replication with a distributed database system. In a distributed database system, the
databases hold different sets of data. Database operations are routed to a particular
database based on some key information.

In a traditional MySQL replication, one of the databases acts as a master and the rest of the
databases play the role of slaves. It is not always necessary that we have only one master
database. We can have multiple master databases in a replication. This technique is called
multi-master replication. The slaves copy data from master databases. The process of
copying data is asynchronous in traditional MySQL replication. This means slave database
servers are not permanently connected with master database servers. MySQL supports
replication at different levels. We can replicate all master databases, selected databases, or
selected tables from a master database in to slave databases.

MySQL 8 provides different database replication methods. MySQL 8 has a binary log file.
The contents of the file are events describing database changes. The event can be of type

 or . The changes include data definition changes and data
manipulation changes or statements that can potentially modify the database such as

 statements. The binary log also contains information on how much time each SQL
statement took to update the database. The traditional MySQL database replication method
synchronizes databases from master to slaves based on the binary log file on the master
database server. The slaves replicate or copy the contents of binary log file from the master
database server based on the positions of log records in the file.

MySQL 8 also supports newer database replication methods along with the one based on
the binary log file. Every transaction committed on the MySQL 8 database server is treated
as unique. A unique global transaction identifier (GTID) is associated with every
committed transaction on the master database server. As the name suggests, the global
identifier is not unique only to the master database server on which it is created, but across
all the databases participating in MySQL 8 replication. So, essentially, there is a 1 to 1
mapping between each committed transaction and global transaction identifier. The newer
method of MySQL replication is based on the GTID. It greatly simplifies the replication
process as it is not dependent on events from binary log files and their positions. GTID is
represented as a pair of colon () separated coordinates, as shown in the following block:

GTID = source_id:transaction_id

Replication in MySQL 8 Chapter 8

[246]

The is the identifier for database servers originated from the GTID. Usually, a
database server's is used as the . The is the
sequence number in which the transaction was committed on the database server. For
example, the following example shows the GTID for the first committed transaction:

1A22AF74-17AC-E111-393E-80C49AB653A2:1

The sequence number for transactions committed starts with . It can never be .

A GTID-based MySQL replication method is transactional and so this is why it is more
reliable than a binary log file-based replication method. GTID guarantees the replication
accuracy and consistency between master and slave databases as long as all the transactions
committed on master database servers have also been applied on all of the slave database
servers.

As mentioned earlier, MySQL database replication is usually asynchronous. However,
MySQL 8 supports different types of synchronization for replication. The usual method of
synchronization is asynchronous. It means one server acts as a master database server. It
writes all events to a binary log file. Other database servers act as slaves. Slave database
servers read and copy position-based event records within binary log files from the master
database server. So, it is always from a master database server to a slave database server.
MySQL 8 also supports semisynchronous synchronization methods. In semisynchronous
methods of replication, any transaction committed on a master database server is blocked
until the master database server receives acknowledgement from at least one of the slave
database servers that it has received and logged the transaction event. Delayed replication
is another replication method supported by MySQL 8. In delayed replication, slave database
servers intentionally log the transaction event behind master database servers by some
amount of time.

Advantages of MySQL replication
As we are now familiar with what MySQL database replication is, it's time to assess if the
added complexity of maintaining multiple database servers is worth it or not.

Replication in MySQL 8 Chapter 8

[247]

The advantages of MySQL 8 database replication are as follows:

Scale out solutions: As described earlier, usually web applications are read-1.
heavy applications. The read operations are much higher in number than the
write operations. The applications provide features that require heavy, complex
SQL queries to be executed on the database server. These are not the queries that
take milliseconds to execute. Such complex queries may take a few seconds to
minutes for execution. Execution of such queries put up heavy load on database
server. In such cases, it is always better to have such read operations performed
on a separate database server than master database servers. Write database
operations will always be performed on master database servers. Do you know
why? It's because it triggers database modifications. Events of these modifications
must be written to binary log files for replication synchronization by slave
servers. Also, the synchronization is from master to slaves. So, if we performed
write database operations on slaves, those will never be available on master
database servers. This approach improves performance of write operations with
increased speed for read operations as the read operations are performed across
the number of slave servers.
Data Security: Security, in general, is an important feature that every web2.
application needs. The security can on at an application layer or on a database
layer. Data security protects against loss of data. Data security is achieved by
backing up a database on a regular basis. If replication is not set up, backing up
production databases requires the application to be put on maintenance mode.
This is required because simultaneous access to a database by an application and
the back up process may corrupt the data. With replication in place, we can use
one of the slaves for backup. As the slave database server is always in
synchronization with the master database server, we can back up the slave
database server. For that, we can make the slave database server stop replicating
from a master database server while the back up process is running. This doesn't
require the web application to stop using a master database server. In fact, it
doesn't impact the master database server in any way. Another data security
aspect is to provide role-based access to production or master database servers.
We can have only a few roles who can access the master database server from the
backend. The rest of the users or roles have access to the slave database server.
This reduces the risk of accidental data loss because of human error.
Analytics: Analytics and reporting are always important features for a database3.
backed application. These features require fetching of information from a
database on a frequent basis so that analysis on the data can be performed. If
database replication is set up, we can fetch the data required for analytics from
the slave database server without affecting the master database server
performance.

Replication in MySQL 8 Chapter 8

[248]

Long distance data distribution: It is a common requirement for application 4.
developers to replicate production data on local development environments. In a
database replication enabled infrastructure, a slave database server can be used to
prepare database copy on a development database server without constant access
to the master database server.

Configuring replication
In this section, we will learn configuration for different types of MySQL 8 replication
methods. It includes step by step instructions for setting up and configuring replication.

Binary log file based replication
One of the most common traditional methods of MySQL database replication is the binary
log file position method. This section focuses on configuration of the binary log file position
method of replication. Before we jump into the configuration section, it would be good to
revise and understand the basics of binary log position based replication.

As described earlier, one of the MySQL database servers acts as master and the rest of the
MySQL database servers become slaves. The master database server is the origin for the
database changes. The master database server writes events based on updates or changes to
the database in the binary log file. The format of the information record being written in the
binary log file varies based on the database change being recorded. MySQL

 database servers are configured so that they read the binary log events from the
master database server. Slaves execute the events on local database binary log files. This
way slaves synchronize the database with the master database. When slave database servers
read the binary log file from the master database server, slaves get an entire copy of the
binary log file. Once the binary log file is received, it is up to the slaves to decide which
statements to execute on the slave binary log file. It is possible to specify that all statements
from the master database server binary log file should be executed on the slave database
servers binary log file. It is also possible to process events filtered by particular databases or
tables.

Only slave database servers can be configured to filter events from master
database server log files. It is not possible to configure the master database
server to log only specific events.

Replication in MySQL 8 Chapter 8

[249]

MySQL 8 provides a system variable that helps identify the database server uniquely. All
the database servers participating in MySQL replication must be configured to have a
unique ID. Each of the slave database servers must be configured with the master database
server hostname, log file name, and position within the log file. Once set up, it is possible to
modify these details from within a MySQL session using the statement
executed on the slave database server.

When the slave database server reads the information from the master database binary log
file, it keeps track of a record of the binary log coordinates. The binary log coordinates
consists of the filename and position within the file, which is read and processed from the
master database server. The efficiency of slave database servers reading the binary log file
from the master database server is very high because multiple slave database servers can be
connected to the master database server and process different parts of the binary log file
from the master database server. The master database server operations remain unaffected
because the connecting and disconnecting of slave database servers from the master
database server is controlled by slaves themselves. As mentioned earlier, each slave
database server keeps track of the current position within the binary log file. So, it is
possible for the slave database server to disconnect and reconnect with the master database
server and resume the binary log file processing.

A number of methods for setting up database replication are available in MySQL. The exact
method for replication depends on if data already exists in the database and how
replication is being set up. Each of the following sections are a step for configuring MySQL
replication.

Replication master configuration
Before we set up the replication master database server, it must be ensured that the
database server has a unique ID established and binary logging is enabled. It may be
required to restart the database server after these configurations are made. The master
database server binary log is the basis for MySQL 8 database replication.

To enable binary logging, the system variable should be set to . Binary logging
is enabled for a MySQL database server by default. If is used to initialize the data
directory manually with a or option, the binary
logging is disabled by default. It has to be enabled by specifying the option. The

 option specifies the base name to be used for the binary log files.

Replication in MySQL 8 Chapter 8

[250]

If the filename is not specified with the startup option, the binary log filenames will be set
based on the database server hostname. It is recommended that the binary log filename is
specified with the option. If the log filename is specified with

, the log filename will be retained even after the database
server host is changed.

To set up the master database server, open the MySQL configuration file on the master
database server:

sudo vim /etc/mysql/my.cnf

In the configuration file, make the following changes.

First of all, find the section that binds the server to localhost:

bind-address = 127.0.0.1

Replace the local IP address with the actual database server IP address. This step is
important because the slaves can access the master database server using the public IP
address of the master database server:

bind-address = 175.100.170.1

The following changes are required to configure a unique ID for the master database server.
It also includes the configuration required for setting up the master binary log file:

[mysqld]
log-bin=/var/log/mysql/mysql-bin.log
server-id=1

Now, let's configure the database to be replicated on the slave database servers. If more
than one database is required to be replicated on slave database servers, repeat the
following line multiple times:

binlog_do_db = database_master_one
binlog_do_db = database_master_two

Once these changes are done, restart the database server using the following command:

sudo service mysql restart

Replication in MySQL 8 Chapter 8

[251]

Now, we have the master database server set up. The next step is to grant privileges to the
slave user as follows:

mysql> mysql -u root -p
mysql> CREATE USER 'slaveone'@'%' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'slaveone'@'%' IDENTIFIED BY
'password';

The preceding commands creates the slave user, grants privileges on the master database
server, and flushes database cached privileges.

Now, we have to back up the database that we want to replicate. We will back up the
database using the command. This database will be used for creating the
database. The master status output displays the name of the binary log filename, current
position, and the name of the database to be replicated:

mysql> USE database_master_one;
mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;
+------------------+----------+---------------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+---------------------+------------------+
| mysql-bin.000001 | 102 | database_master_one | |
+------------------+----------+---------------------+------------------+
1 row in set (0.00 sec)

mysqldump -u root -p database_master_one > database_master_one_dump.sql

Before we take the database backup using the command, we have to lock the
database to check the current position. This information will be used later to set up the slave
database server.

After the database dump is taken, the database should be unlocked using the following
commands:

mysql> UNLOCK TABLES;
mysql> QUIT;

We are done with all the configuration required to set up a replication master database
server and make it accessible by the database servers.

Replication in MySQL 8 Chapter 8

[252]

The following options have an impact on the master database server setup:

 and options should be1.
set to achieve higher durability and consistency. The options can be set in
the configuration file.
The option must not be enabled. If it is enabled, the slave2.
cannot communicate with the master and database replication fails.

REPLICATION SLAVE configuration
Similar to the master database server, each slave database server must have a unique ID.
Once set up, this will require database server restart:

[mysqld]
server-id=2

For setting up multiple slave database servers, a unique non zero must be
configured that is different from that of master or any other slave database servers. Binary
logging on a slave database server is not required for replication to be set up. If enabled, a
binary log file on a slave database server can be used for database backups and crash
recovery.

Now, create a new database that will become the replica of the master database and import
the database from the database dump prepared from the master database as follows:

mysql> CREATE DATABASE database_slave_one;
mysql> QUIT;

mysql -u root -p database_slave_one <
/path/to/database_master_one_dump.sql

Now, we have to configure a few other options in the file. Like the binary log, a
relay log consists of numbered files with database change events as contents of the file. It
also contains an index file that has the names of all the used relay log files. The following
configurations set the relay log file, binary log file, and name of the slave database, which is
a replica of the master database as follows:

relay-log = /var/log/mysql/mysql-relay-bin.log
log_bin = /var/log/mysql/mysql-bin.log
binlog_do_db = database_slave_one

Replication in MySQL 8 Chapter 8

[253]

A database server restart is required after this configuration change. The next step is to
enable slave replication from within MySQL shell prompt. Execute the following command
to set the database information required by the database server:

mysql> CHANGE MASTER TO MASTER_HOST='12.34.56.789', MASTER_USER='slaveone',
MASTER_PASSWORD='password', MASTER_LOG_FILE='mysql-bin.000001',
MASTER_LOG_POS= 103;

As a final step, activate the slave server:

mysql> START SLAVE;

If the binary logging is enabled on the database server, a slave can participate in a
complex replication strategy. In such a replication setup, database server acts as a master
for database server . acts as a slave to the database server. Now, in turn can
act as a master database server for the database server. Something like this can be
seen as follows:

A -> B -> C

Adding slaves to replication
It is possible to add a new slave database server to an existing replication configuration.
This doesn't require the master database server to be stopped. The approach should be to
make a copy of an existing database server. Once copied, we have to modify the
value for a configuration option.

The following instructions set up a new slave database to an existing replication
configuration. First, an existing slave database server should be shut down as follows:

mysql> mysqladmin shutdown

Now, a data directory from the existing slave should be copied to the new slave database
server. Along with the data directory, binary logs and relay log files must be copied as well.
It is recommended to use the same value for for the new slave database
server as that of the existing slave database server.

Replication in MySQL 8 Chapter 8

[254]

If the master info and relay log info repositories use files then those files must be copied
from an existing slave database server to a new slave database server. These files hold a
master's current binary log coordinates and a slave's relay logs.

Now, start the existing slave server that was stopped earlier.

Now, we should be able to start the new slave database server. We must have the unique
 configured before starting the new slave server, if it is not set up already.

Global transaction identifiers based replication
This section focuses on global transaction identifiers based replication. It explains how
GTIDs are defined, created, and represented in MySQL server. It describes the procedure
for setting up and starting GTID-based replication.

With GTID-based replication, each transaction is assigned a unique transaction ID as it is
committed to the originating database server, known as GTID. The unique identifier is
global, which means it is unique across all the database servers participating in replication.
With GTID, it is easier to track and process each transaction as it is committed on to
a database server. With this replication method, it is not necessary to rely on the log
files for synchronization between and databases. It is also easier to identify if
the and databases are consistent as this method of replication is transaction
based. Consistency between master and slave databases is guaranteed as long as all the
transactions committed on the database are applied on the slave databases as well.
Either statement-based or row-based replication can be used with GTID. As mentioned
earlier, GTID is represented with a pair of coordinates separated by colons (), as shown in
the following example:

GTID = source_id:transaction_id

The advantages of using the GTID based replication method are:

With this method of replication, it is possible to switch the master database server1.
in the event of server failover. The global transaction identifier is unique across
all participating database servers. The slaves maintain track of the last executed
transaction using GTID. This means if the master database server is switched
over to a new database server, it is a little easier for slaves to continue with the
new master database server and resume the replication processing.

Replication in MySQL 8 Chapter 8

[255]

The state of the slave database server is maintained in a crash-safe way. With the2.
newer replication technique, database server keeps track of the current
position in a system table named . Using a transactional
storage engine such as , updates to the state are recorded within the same
transaction as that of the database operation. So, if the slave server goes down, on
booting up again, the slave server starts the crash recovery and makes sure that
the recorded replication position matches the replicated changes. This is not
possible with traditional binary log file based replication because the relay log file
that is updated independently of the actual database changes can easily go out of
synchronization if the slave server crashes.

Before diving into the GTID based replication configuration, let's understand a few more
terms.

A is a set of global transaction identifiers. It is represented in the following
example:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9|A-F]

interval:
 n[-n]
 (n >= 1)

There are several ways in which GTID sets are used. System variables and
 are represented with GTID sets. The MySQL functions and

 require GTID sets as input parameters.

Replication in MySQL 8 Chapter 8

[256]

Both master and slave database servers preserve GTIDs. Once a transaction is committed
with one GTID on one server, any subsequent transaction with similar GTID is ignored by
that server. This means a transaction committed on a database server can only be
committed or applied on a database server only once. This helps to maintain the
consistency between and databases.

The following is a summary of the lifecycle of a GTID:

A transaction is executed and committed on the master database server. This1.
transaction is assigned a GTID using the master's UUID. The GTID is written to
the binary log file of a master database server.
Once the binary log file is received by the slave and recorded in the the slave's2.
relay log, the slave sets the value of the system variable to the GTID
read. This indicates to that the next transaction to be executed is the one
with this GTID.
The database server maintains its set of GTID for already processed3.
transactions in a binary log file. Before applying the transaction with GTID
indicated by , it checks if the GTID is recorded or logged in its binary
log file. If the GTID is not found in the binary log file, the slave processes the
transaction associated with the GTID and writes the GTID in the binary log file.
This way the slave guarantees that the same transaction is not executed more
than once.

Let's now move to the master configuration for GTID-based MySQL replication. As a first
step, open the file and make the following changes:

[mysqld]
server-id = 1
log-bin = mysql-bin
binlog_format = ROW
gtid_mode = on
enforce_gtid_consistency
log_slave_updates

These configuration changes require server restart. The preceding configurations are self-
explanatory. The option enables the GTID based database replication.

Now, create a user for accessing the master database from the slave database1.
server. Also, take a database backup using the command. The
database backup will be used for setting up the slave database server.

 > CREATE USER 'slaveuser'@'%' IDENTIFIED BY 'password';
 > GRANT REPLICATION SLAVE ON *.* TO 'slaveuser'@'%' IDENTIFIED

Replication in MySQL 8 Chapter 8

[257]

 BY 'password';
 > mysqldump -u root -p databaseName > databaseName.sql

This is all for the master database configuration. Let's move onto the slave side of
configurations.

Using the shell prompt on the database server, import the database from2.
the database server backup as follows:

 > mysql -u root -p databaseName < /path/to/databaseName.sql

Now, add the following configurations in the file on the slave:3.

 [mysqld]
 server_id = 2
 log_bin = mysql-bin
 binlog_format = ROW
 skip_slave_start
 gtid_mode = on
 enforce_gtid_consistency
 log_slave_updates

Once these configurations are made, restart the database server using the4.
following command:

 sudo service mysql restart

The next step is to set up master database server information on the 5.
database server using the command:

 > CHANGE MASTER TO MASTER_HOST='170.110.117.12', MASTER_PORT=3306,
 MASTER_USER='slaveuser', MASTER_PASSWORD='password',
MASTER_AUTO_POSITION=1;

Now, start the server:6.

 START SLAVE;

In this replication method, the master database backup already has GTID
information. So, we just need to provide the position from which the slave server
should start synchronizing.

Replication in MySQL 8 Chapter 8

[258]

This is done by setting up the system variable:7.

 -- -- GTID state at the beginning of the backup --
 mysql> SET @@GLOBAL.GTID_PURGED='b9b4712a-df64-11e3-
b391-60672090eb04:1-7';

MySQL multi-source replication
This section focuses on replicating from multiple immediate masters in parallel. The
method is known as multi-source replication. With multi-source replication, a

 receives transactions from multiple sources at the same time. A
channel is created by a for each from which it should receive
transactions.

The multi-source replication configuration requires at least two masters and a slave to be
configured. The masters can be configured using binary log position based replication or
GTID-based replication. Replication repositories are stored in or based
repositories. A based repository is crash safe. MySQL multi-source replication
requires a based repository. There are two ways to set up a repository.

One is to start with options as follows:

mysqld master-info-repostiory=TABLE && relay-log-info-repository=TABLE

Another preferred way of doing this is to modify the file as follows:

[mysqld]
master-info-repository = TABLE
relay-log-info-repository = TABLE

It is possible to modify an existing that is using a repository to
use a repository. The following commands convert the existing repositories
dynamically:

STOP SLAVE;
SET GLOBAL master_info_repository = 'TABLE';
SET GLOBAL relay_log_info_repository = 'TABLE';

Replication in MySQL 8 Chapter 8

[259]

The following commands can be used to add a new GTID-based replication master to an
existing multi-source . It adds a master to the existing slave channel:

CHANGE MASTER TO MASTER_HOST='newmaster', MASTER_USER='masteruser',
MASTER_PORT=3451, MASTER_PASSWORD='password', MASTER_AUTO_POSITION = 1 FOR
CHANNEL 'master-1';

The following commands can be used to add a new binary log file position based
replication master to an existing multi-source . It adds a master to the
existing slave channel:

CHANGE MASTER TO MASTER_HOST='newmaster', MASTER_USER='masteruser',
MASTER_PORT=3451, MASTER_PASSWORD='password' MASTER_LOG_FILE='master1-
bin.000006', MASTER_LOG_POS=628 FOR CHANNEL 'master-1';

The following commands / / all the configured replication channels:

START SLAVE thread_types; -- To start all channels
STOP SLAVE thread_types; -- To stop all channels
RESET SLAVE thread_types; -- To reset all channels

The following commands / / a named channel using a
clause:

START SLAVE thread_types FOR CHANNEL channel;
STOP SLAVE thread_types FOR CHANNEL channel;
RESET SLAVE thread_types FOR CHANNEL channel;

Replication administration tasks
This section describes a few commonly required MySQL replication administrative tasks.
Usually, once set up, MySQL replication doesn't require regular monitoring.

One of the most common tasks is to ensure that replication is taking place without errors
between master and slave database servers. A MySQL statement is
used for this as follows:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004

Replication in MySQL 8 Chapter 8

[260]

 Read_Master_Log_Pos: 931
 Relay_Log_File: slave1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0
Master_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids: 0

In the preceding output, a few of the key fields are explained as follows:

: Current state of the slave
: Indicates if the I/O thread for reading a master's log file is

running
: Indicates if the SQL thread for executing events is running

: Last errors reported by I/O or SQL threads
processing the relay thread

: Indicates the number of seconds the slave SQL
thread is running behind the master processing the master binary log

Replication in MySQL 8 Chapter 8

[261]

We can check the status of connected slaves using a statement:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: slave1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

The statement, when executed on master, provides information about
slaves as follows:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

Another important replication administrative task is to be able to start or stop the
replication on a database server. The following commands are used to do that:

mysql> STOP SLAVE;
mysql> START SLAVE;

It is also possible to stop and start individual threads by specifying the type of the thread as
follows:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

Replication in MySQL 8 Chapter 8

[262]

Implementing replication
The basis for replication is that the master database server keeps track of all the changes
taking place on the master database. The changes are tracked in the binary log files in the
form of events since the server was started. operations are not recorded as they
modify neither the database nor the contents. Each of the pull a copy
of the binary log file from instead of a master database pushing the log file to the

. The slave in turn executes the events as it is read from the master's binary log file.
This maintains the consistency between and servers. In MySQL replication,
each functions independently from and other servers. So, it is up to
the slave to request the master's binary log file at a convenient time without impacting the

 or functioning.

The focus for this section of the chapter is on MySQL replication details. We have already
understood the basics, which will help us understand the in depth details.

Replication formats
As we already know by now, MySQL replication works based on replicating events from
the master server generated binary logs. Later, these events are read and processed by the
slave. What we do not yet know is the format in which the events are recorded in binary log
files. Replication formats is the emphasis of this section.

When the events are recorded in the master's binary log files, the replication format used
depends on the binary log format used. Basically, two binary logging formats exist:
statement based and row based.

With statement-based binary logging, SQL statements are written in the master's binary log
file. Replication on the slave works by executing the SQL statements on the database.
This approach is called statement-based replication. It corresponds with the MySQL
statement-based binary logging format. This was the only traditional format that existed
until MySQL versions 5.1.4 and earlier.

With row-based binary logging, the events written in the master binary log indicate how
individual table rows changed. Replication in this case works by the slave copying the
events representing changes to the table rows. This is called row-based replication. Row-
based logging is the default MySQL replication method.

Replication in MySQL 8 Chapter 8

[263]

MySQL supports configuration to mix statement-based and row-based logging. The
decision to use the logging format depends on the change being logged. This is known as
mixed-format logging. Statement-based logging is the default format when mixed-format
logging is used. Based on the type of statements and storage engine being used, the log
automatically switches to row-based format. Replication based on the mixed logging format
is known as mixed-format replication.

The system variable controls the logging format used in a running MySQL
server. or privileges are required to set the

 system variable at a session or global scope.

Statement-based versus row-based replication
In the earlier section, we learned three different logging formats. Each one of these has its
own advantages and disadvantages. In usual cases, mixed format should provide the best
combination of integrity and performance. However, to achieve the best performance from
either statement-based or row-based replication, the advantages and disadvantages
described in this section are helpful.

Statement-based replication is a traditional and proven technique in comparison with row-
based replication. The number of records or events recorded in the log files is smaller. If a
statement impacts many rows, only one statement will be written to the binary log file. In
case of row-based replication, a record will be entered for every table row modified though
as part of the single statement. In essence, this means statement-based replication requires
much less storage space for log files. It also means backing up and restoring or replicating
the events is much quicker.

Along with the advantages described previously, statement-based replication has
disadvantages as well. As the replication works based on the SQL statements, it is possible
that not all the statements that modify data can be replicated with statement-based
replication. A few examples are described as follows:

SQL statements depend on a user-defined function that is non-deterministic
when the value returned by such user-defined functions depend on factors other
than the parameters supplied to it.

 and statements with a clause without an clause
is non-deterministic as it is possible that the order may have changed while
replicating.

 or locking read statements that use or
 options.

Replication in MySQL 8 Chapter 8

[264]

User-defined functions must be applied on the slave databases.
SQL statements using functions such as , , ,

, , , , and so on cannot be
replicated properly using statement-based replication.

 or statements require higher number of row level locks.
 with table scan requires locking a higher number of rows.

Complex SQL statements must be evaluated and executed on the slave database
server before rows are inserted or updated.

Let's see advantages provided by row-based replication. Row-based replication is the safest
form of replication because instead of depending on SQL statements, it depends on the
values stored in the table rows. So, every change can be replicated. It requires fewer row
locks in case statements. and statements with
clauses that do not use keys require fewer row level locks.

The major disadvantage with row-based replication is that it generates more data that must
be logged. With statement-based replication, one DML SQL statement is sufficient for
logging though it modifies many rows. In case of row-based replication, it requires logging
for every row that changed. The binary log file grows very quickly with row-based
replication. It takes longer time to replicate deterministic user defined functions that
generate large values.

Replication implementation details
There are three threads that participate in implementing replication in MySQL. Out of these
three threads, one is on the master server and the two others are on the database
server. Let's dive into the details of these threads:

Binlog dump thread: When the slave database server requests the binary log file,
the master server is responsible for sending the contents to the slave database
server. To accomplish this, the master database server creates a thread when the
slave database server connects to the master database server. The dump
thread sends the binary log contents to the slave database server. In the output of
the command on the master database server, this thread can
be identified as the thread. The dump thread locks the
binary log file on the master for reading each event that is to be sent to the slave
database server. The lock is released as soon as the event is read, even before it is
sent to the slave database server.

Replication in MySQL 8 Chapter 8

[265]

Slave I/O thread: The primary responsibility of the slave I/O thread is to request
binary log updates from the master database server. The slave database server
creates the I/O thread when a command is executed. The thread
connects to the master database server and requests to send updates from the
binary logs. Once the contents are sent by the master's dump thread, the
slave I/O thread reads the contents and copies those to the local files including
the slave's relay log. The status of this thread can be obtained in the output of

 or commands.
Slave SQL thread: The slave I/O thread writes the events in the slave's relay logs.
It is the responsibility of the slave SQL thread to execute those events on the slave
database server. The slave SQL thread reads the events in the relay logs written
by a slave I/O thread and executes them.

Based on the preceding description, every master-slave connection pair creates three
threads. If a master has more than one databases servers, it creates one dedicated
binary log dump thread for each slave connected currently. On the other end, each slave
creates its own I/O and SQL threads. Why does the slave database server create two
separate threads, one for writing the events and another one for executing the events? The
reason is that with this approach, the task of reading the statements is not slowed down by
the executing of the statements. Considering the slave server is not running, its I/O thread
quickly fetches all the binary logs from a master database when the server starts
regardless of the SQL thread lags behind. Also, if the database server stops before
the SQL thread can execute all of these statements, the statements are recorded in the slave
relay logs. So, when the slave starts again, the SQL thread can execute those statements. So,
relay logs work as a safe copy of the statements read from the master database server.

The statement provides information about what is happening on
the or the database servers. The output of the statement when executed on
the database server looks as follows:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Replication in MySQL 8 Chapter 8

[266]

The preceding output shows that thread 2 is the master's dump thread. The state
indicates that all the recent updates have been sent to the slave.

When a statement is executed on the slave database server, the output
looks as follows:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O thread to update
it
 Info: NULL

In the output, thread 10 is the slave's I/O thread and thread 11 is the slave's SQL thread. The
I/O thread is waiting for the master's dump thread to send binary log contents. The
SQL thread has read all the statements logged in the relay logs. From the
column, it can be determined how slow the is running behind the .

Replication channels
A replication channel is a path of transaction flow from a master to a slave. This section
explains how channels can be used in replication. The MySQL server automatically creates a
default channel with the name as (empty string) on startup. The default channel is
always present and can't be created or destroyed by the user. Replication statements work
on the default channel if no other channel is created. This section describes statements that
are applied to replication channels when there exists at least one named channel.

Replication in MySQL 8 Chapter 8

[267]

In multi-source replication, the database server opens multiple channels, one for
each master. Each channel has its own relay log and SQL threads. The replication channel
has a hostname and port association. Multiple channels can be assigned to the same
hostname and port combination. A maximum of 256 channels can be added to one slave in a
multi-source replication topology in MySQL 8. The channel must have a nonempty unique
name.

The clause is used with various MySQL statements for the replication
operations to be performed on individual channels. The clause can be applied to the
following statements:

Apart from these, the following functions have an additional channel parameter:

For multi-source replication to work correctly, the following startup options must be
configured:

: As described earlier, this must be set to
 for multi-source replication. In MySQL 8, the option is deprecated

and is the default option.
: This must be set to .

: Transactions received from the master are written to the
binary logs.

: Each channel purges its own relay logs automatically.
: SQL threads of all channels retry

transactions.

Replication in MySQL 8 Chapter 8

[268]

: No replication threads start on any channels.
: Execution continues and errors are skipped for all

channels.
: The relay log file is rotated after reaching the

maximum size.
: Upper limit for total size of all relay logs for

each individual channel.
: Number of slave parallel workers per

channel.
: Waiting time by I/O thread.

: Each channel's relay log index filename.
: Each channel's relay log filename.

: Each channel waits for N seconds to check for broken
connection.

: Each channel skips N events from the master.

Replication relay and status logs
The server creates logs that hold the binary log events sent from the
master database server to the slave database server. The information is recorded about the
current status and location in the relay log. Three types of logs are used in this process:

Relay log: The relay log has events sent from the master's binary log. The events1.
are written by a slave's I/O thread. Events from the slave's relay log are executed
on the slave by the slave's SQL thread.
Master info log: The master info log has information about status and current2.
configuration for the slave's connection to the master database server. The
information held by the master info log includes hostname, login credentials, and
coordinates indicating a slave's position on reading the master's binary log. These
logs are written to the table.
Relay log info log: The relay log info log stores information regarding the3.
execution point within the slave's relay log. The relay log info log is written in
a table.

Replication in MySQL 8 Chapter 8

[269]

No attempt should be made to insert or update rows in the
 or tables manually. This

may cause unexpected behavior. It is not supported in MySQL replication.

The slave relay log consists of an index file along with a set of numbered log files. The index
file contains the names of all relay log files. MySQL data directory is the default location for
the relay log files. The relay log file indicates an individually numbered file containing
events. Whereas the relay log denotes the set of numbered relay log files and an index file
collectively. The format for relay log files is the same as that of the binary log files. The
index filename for relay log is by default for the default
channel and for non-default replication
channels. The default locations for the relay log file and relay log index file can be
overridden with the and server startup options. If the
slave's hostname is changed after replication has been set up and the slave uses default
host-based relay log filenames, it can throw errors such as Failed to open the relay log and
Could not find target log during relay log initialization. This may fail the replication. Such
errors may be avoided by using and options to specify
relay log filenames explicitly. Using these options on slave setup will make the names
independent of the server's hostname.

Evaluating replication filtering rules
This section focuses on the filtering rules and how servers evaluate these rules. Basically, if
the master doesn't log the statement, the slave doesn't replicate the statement. If the master
logs the statement in its binary log file, the slave receives the statement. However, it is up to
the slave database server if it processes the statement or ignores it. Options are available for
the master server to control which databases and tables should be replicated on the slaves.
The recommended way is to use filters on the slave to control the events that are to be
executed on the slave database server. The decision about whether to execute or ignore the
statements received from the master are made based on the options used
when the slave was started. Once the slave server is started, the

 statement can be used to set the options dynamically.

All replication filtering options follow the same rules for case sensitivity as
names of databases and tables, including the
system variable.

Replication in MySQL 8 Chapter 8

[270]

Group replication
This section of the chapter explains what group replication is, setting up group replication,
configure and monitor group replication. Basically, MySQL group replication is a plugin
that enables us to create elastic, highly-available, fault-tolerant replication topologies.

The purpose of the group replication is to create a fault tolerant system. To create a fault
tolerant system, the components should be made redundant. The component should be
removed without impacting the way system operates. There are challenges in setting up
such a system. The complexity of such a system is of a different level. Replicated databases
require maintenance and administration of several servers instead of just one. The servers
cooperate together to create a group, which raises the problems related to network
partitioning and split-brain scenarios. So, the ultimate challenge is to have agreement from
multiple servers on the state of the system and data after every change applied on the
system. This means that the servers need to operate as a distributed state machine.

MySQL group replication can provide such a distributed state machine replication with
strong coordination between servers. The servers that belong to the same group coordinate
themselves automatically. In a group, only one server accepts updates at a time. The
election of primary is done automatically. This mode is known as single-primary mode.

MySQL provides a group membership service, which is responsible for keeping the view of
the group consistent and available for all servers. The view is kept updated when the
servers join or leave the group. In case, any of the servers leaves the group unexpectedly,
the failure detection mechanism notifies the group about view change. This behavior is
automatic.

The majority of the group members have to agree on the order of the transaction to commit
in the global sequence of transactions. It is up to the individual server to decide whether the
transaction should be committed or aborted, but all servers make the same decision. The
system does not proceed until the members are unable to reach to agreement as a result of
split due to network partition. This means the system has built-in, automatic, split-brain
protection mechanism. All this is done by Group Communication System (GCS) protocols.
It provides a failure detection mechanism, group membership service, safe and completely
ordered message delivery. The implementation of the Paxos algorithm is at the core of this
technology, which acts as the group communication engine.

Replication in MySQL 8 Chapter 8

[271]

Primary-secondary replication versus group
replication
This section focuses on some background details of how replication works. This will be
useful in understanding the requirements for group replication and how it is different from
the classic asynchronous MySQL replication.

The following figure showcases how traditional asynchronous primary-secondary
replication works. The primary is the master and the secondary is one or more slaves
connected to the master, as shown in the following figure:

MySQL also supports semi synchronous replication in which the master waits for at least
one of the slaves to acknowledge the transaction receipt:

Replication in MySQL 8 Chapter 8

[272]

The blue arrows in the figures indicate the messages passed between servers and the client
application.

With group replication, a communication layer is provided that guarantees atomic
messages and total order message delivery. All read-write transactions are committed only
after they are approved by the group. The read only transactions are committed
immediately as it does not need coordination. So, in group replication, the decision to
commit a transaction or not is not unilateral by the originating server. When the transaction
is ready for commit, the originating server broadcasts the write values and corresponding
write set. All servers receive the same set of transactions in the same order. So, all servers
apply the same transactions in the same order. This way all servers remain consistent
within the group:

Group replication configuration
This section focuses on configuring group replication.

First of all, open the configuration file and add the following entries in the
section as follows:

[mysqld]
gtid_mode = ON
enforce_gtid_consistency = ON
master_info_repository = TABLE
relay_log_info_repository = TABLE
binlog_checksum = NONE
log_slave_updates = ON
log_bin = binlog

Replication in MySQL 8 Chapter 8

[273]

binlog_format = ROW
transaction_write_set_extraction = XXHASH64
loose-group_replication_bootstrap_group = OFF
loose-group_replication_start_on_boot = OFF
loose-group_replication_ssl_mode = REQUIRED
loose-group_replication_recovery_use_ssl = 1

These are general configurations related to global transaction IDs and binary logging
required for group replication.

The next step is to set up group replication configurations. These configurations include
group UUID, group members white listing, and indicating seed members:

Shared replication group configuration
loose-group_replication_group_name = "929ce641-538d-415d-8164-ca00181be227"
loose-group_replication_ip_whitelist =
"177.110.117.1,177.110.117.2,177.110.117.3"
loose-group_replication_group_seeds =
"177.110.117.1:33061,177.110.117.2:33061,177.110.117.3:33061"
 . . . Choosing

The following configuration is required for deciding whether a single-master group or
multi-master group is to be set up. For enabling the multi-master group, uncomment

 and

 directives. It will
set up a multi-master or multi-primary group:

. . .
Single or Multi-primary mode? Uncomment these two lines
for multi-primary mode, where any host can accept writes
loose-group_replication_single_primary_mode = OFF
loose-group_replication_enforce_update_everywhere_checks = ON

It must be ensured that these configurations are the same on all the servers. Any changes to
these configurations require MySQL groups to be restarted.

The following configurations are different on each of the servers in the group:

. . .
Host specific replication configuration
server_id = 1
bind-address = "177.110.117.1"
report_host = "177.110.117.1"
loose-group_replication_local_address = "177.110.117.1:33061"

Replication in MySQL 8 Chapter 8

[274]

The must be unique across all servers in the group. The port 33061 is the one
used by members to coordinate for group replication. MySQL server restart is required after
these changes are made.

If not already done, we have to allow access to these ports using the following commands:

sudo ufw allow 33061
sudo ufw allow 3306

The next step is to create a replication user and enable the replication plugin. The
replication user is required for each server to establish group replication. We need to turn
binary logging off during the replication user creation process as the user will be different
for each server, as shown in the following block:

SET SQL_LOG_BIN=0;
CREATE USER 'mysql_user'@'%' IDENTIFIED BY 'password' REQUIRE SSL;
GRANT REPLICATION SLAVE ON *.* TO 'mysql_user'@'%';
FLUSH PRIVILEGES;
SET SQL_LOG_BIN=1;

Now, use to configure the server to use the credentials for the
 channel:

CHANGE MASTER TO MASTER_USER='mysql_user', MASTER_PASSWORD='password' FOR
CHANNEL 'group_replication_recovery';

Now, we are all set to install the plugin. Connect to the server and execute the following
command:

INSTALL PLUGIN group_replication SONAME 'group_replication.so';

Use the following statement to verify if the plugin is activated or not:

SHOW PLUGINS;

The next step is to start up the group. Execute the following statements on one member of
the group:

SET GLOBAL group_replication_bootstrap_group=ON;
START GROUP_REPLICATION;
SET GLOBAL group_replication_bootstrap_group=OFF;

Replication in MySQL 8 Chapter 8

[275]

Now, we can start group replication on another server:

START GROUP_REPLICATION;

We can check the group members list using the following SQL query:

mysql> SELECT * FROM performance_schema.replication_group_members;
+---------------------------+--------------------------------------+
| CHANNEL_NAME | MEMBER_ID |
+---------------------------+--------------------------------------+
group_replication_applier	13324ab7-1b01-11e7-9dd1-22b78adaa992
group_replication_applier	1ae4b211-1b01-11e7-9d89-ceb93e1d5494
group_replication_applier	157b597a-1b01-11e7-9d83-566a6de6dfef
+---------------------------+--------------------------------------+	
+---------------+-------------+--------------+	
MEMBER_HOST	MEMBER_PORT
+---------------+-------------+--------------+	
177.110.117.1	3306
177.110.117.2	3306
177.110.117.3	3306
+---------------+-------------+--------------+
3 rows in set (0.01 sec)

Group replication use cases
The MySQL group replication feature provides a way to build fault tolerant systems by
replicating the state of the system throughout a set of servers. The group replication system
stays available as long as the majority of servers are functioning even if some of the servers
fail. Server failures are tracked by a group membership service. The group membership
service relies on the distributed failure detector, which signals if any server leaves the
group, voluntarily or due to unexpected halt. The distributed recovery procedure ensures
that when the servers join the group, they are brought up to date automatically. Therefore,
continuous database service is guaranteed with MySQL group replication. There is one
problem though. Although the database service is available, the clients connected to it must
be redirected to a different server when the server crashes. The group replication does not
attempt to resolve it. It should be dealt with by a connector, load balancer, router, or some
other middleware.

Replication in MySQL 8 Chapter 8

[276]

The following are the typical use cases of MySQL group replication:

Elastic replication: Group replication is suitable for fluid environments where1.
the number of servers grow or shrink dynamically with minimum side effects.
The example is cloud-based database services.
Highly available shards: MySQL group replication can be used to implement2.
highly available write scale-out shards where each replication group maps to one
shard.
Alternative to master-slave replication: Group replication can be an answer to3.
contention problems arising in certain situations with single master server
replication.
Autonomic systems: MySQL group replication can be deployed for the4.
automation built into the replication protocol.

Replication solutions
MySQL replication is useful in many different scenarios to fulfill a range of purposes. This
section focuses on specific use cases and provides general information on how to use the
replication.

One of the major use cases is to use replication for backup purposes. The data from the
 can be replicated on the database server and then the data on the slave can

be backed up. The database server can be shut down without affecting the
operations running on the database server.

Another use case is to handle unexpected halt of the . To accomplish
this, once the restarts, the I/O thread must be able to recover information about the
transactions received and the transactions that are executed by the SQL thread. This
information is stored in the tables. As the storage engine is transactional, it
is always recoverable. As mentioned earlier, for MySQL 8 replication to use tables,

 and must be set to .

In a row-based replication, it is possible to monitor the current progress of the slave's SQL
thread. It is done through performance schema instrument stages. To track the progress of
all three row-based replication event types, use the following statement to enable three
performance schema stages:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
WHERE NAME LIKE 'stage/sql/Applying batch of row changes%';

Replication in MySQL 8 Chapter 8

[277]

The MySQL 8 replication process can work even though the source table on the master and
the destination table on the slave uses different engine types. The

 system variable is not replicated. This is a huge advantage in
replication wherein different engine types can be used for different replication scenarios.
An example is a scale-out scenario where we want all read operations to be performed on
the slave database server, whereas all write operations should be performed on the master
database server. In such a case, we can use a transactional engine on the master and
a non-transactional engine type on the slave database server.

Consider an example of an organization that wants to distribute sales data to different
departments to spread the load for data analysis. MySQL replication can be used to have a
single master replicate different databases to different slaves. This can be achieved by
limiting the binary log statements by using the
configuration option on each slave.

Once MySQL replication is set up, as the number of slaves connected to the master increase,
the load also increases. The network load on the master also increases as each slave is
supposed to receive a full copy of the binary logs. The master database server is also busy
processing requests. In this scenario, it becomes necessary to improve the performance. One
of the solutions to improve performance is to create a deeper replication structure that
enables replication of a master to only one slave. The rest of the slaves connect to the
primary slave for their operations.

Summary
In this chapter, we learned insightful details about MySQL 8 replication, what replication is,
and how it helps solve specific problems. We also learned how to set up statement-based
and row-based replication types. Along the way, we also learned about the system variables
and server start up options for replication. In the later part of the chapter, we dived deep
into group replication and how it is different from the traditional method of MySQL
replication. We also learned logging and replication formats. Last but not least, we learned
different replication solutions in brief. We covered a lot of stuff, huh?

It's now time to move on to our next chapter, where we will be setting up several types of
partitioning, and exploring the selection of partitioning, and pruning of partitioning. It also
explains how to cope with restrictions and limitations while partitioning. The reader will be
able to understand which type of partitioning suits a situation as per the requirement.

99
Partitioning in MySQL 8

In the previous chapter, replication in MySQL 8 was explained. This included detailed
explanations of replication, configuration, and implementation. The chapter also explained
group replication versus clustering, and covered the replication approach as a solution.

In this chapter, we will do partitioning in MySQL 8. Partitioning is the concept of managing
and maintaining data with specific operations with several operators, and defining rules to
control over partitioning. Basically, it provides a configuration hook for managing the
underlying data files in a specified way.

We will cover the following topics on partitioning:

Overview of partitioning
Types of partitioning
Partition management
Partition selection
Partition pruning
Restriction and limitation in partitioning

Partitioning in MySQL 8 Chapter 9

[279]

Overview of partitioning
The concept of partitioning relates to the physical aspects of data storage in the database. If
you look at the standards, they do not give much information on the concept, and the

 language itself intends to work independently of which media or data structure is used
for storing information or data specific to different schemas, tables, rows, or columns.
Advanced database management systems have added means of specifying the physical
location used for data storage as hardware, the file system, or as both. In MySQL,
the storage engine provides support for these purposes with the notion of

.

Partitioning enables us to distribute parts of individual tables to be stored as separate tables
at different locations in the file system. Additionally, the distribution is accomplished with
user specified rules provided, such as in the form of modulus, a hashing function, or
matching with simple value or range, and the user provided expression acts as a parameter
that is commonly known as a partitioning function.

In MySQL 8, currently is the only storage engine that supports partitioning. No
extra specification is required to enable partitioning in the storage engine.
Partitioning can not be used with the storage engines , , , . For
all examples given in this chapter we assume that the default storage engine is .

When a partition table is created, the default storage engine is used, same as creating a
table, and can be overridden just as we would do for any table by specifying the

 option. The following example demonstrates creating a table partitioned by hash
into four partitions, all of which use the storage engine:

CREATE TABLE tp (tp_id INT, amt DECIMAL(5,2), trx_date DATE)
 ENGINE=INNODB
 PARTITION BY HASH (MONTH (trx_date))
 PARTITIONS 4;

Partitioning is applicable on all indexes and all data of the table. It is not
applicable on either indexes or data, and vice versa is also not applicable.
It can be applicable on both indexes and data together and it cannot be
applied on part of the table.

Partitioning in MySQL 8 Chapter 9

[280]

The preceding table has no unique or primary keys defined but in
general practice we usually have primary keys, unique keys, or both as
part of the table, and partitioning column choice depends upon these keys
if any of them is present. The partitioning column choice is given in detail
in the partitioning keys, primary keys, and unique keys section. To simplify the
concept of partitioning the examples given may not include these keys.

Types of partitioning
Several types of partitioning are supported in MySQL 8, listed as follows :

: Assigns rows to partitions from the column values that
come between the given range of values

: Assigns rows to partitions from the column values that
matches with one of the given set of values

: Assigns rows to partitions with multiple column
values with either or partitioning

: Assigns partition based on user specified expressions
evaluated on column values

: In addition to partitioning, allows the use of multiple
column values

: In addition to partitioning, allows further division in
partitioned tables, also known as composite partitioning

Different rows of the table can be assigned to different physical partitions; this is known as
horizontal partitioning. Different columns of the table can be assigned to different physical
partitions; this is known as vertical partitioning. MySQL 8 currently supports horizontal
partitioning.

For the , , and types of partitioning, the value of partitioning
columns is given to the partitioning function. The partitioning function returns an integer
value that is the partition number in which the record should be stored. The
function must be nonrandom and nonconstant. The function cannot contain
queries and can use the SQL expression which returns either an integer or , where the
integer as must follow the expression .
Here, represents the lower limit and is the upper limit for the integer
type value.

Partitioning in MySQL 8 Chapter 9

[281]

The storage engine must be the same for all partitions of the same table, however there is no
restriction on using different storage engines for different partitioned tables in the same
database or MySQL server.

Partitioning management
There are different ways to use statements to modify partitioned tables and perform
operations such as add, redefine, merge, drop, or split existing partitioned tables.
Information about partitioned tables and partitions can also be obtained with
statements.

 and can be used to configure the maximum and minimum number of
rows and can be stored in the partition table.

Partition selection and pruning
Explicit selection of partition and subpartition is also provided. It enables row matching to
the conditions given in the where clause. In partition, the pruning concepts described do
not scan partitions where no possible matching values can be present, and are applied using
queries, whereas partition selection is applicable for both queries and many of the
statements.

Restrictions and limitations in partitioning
Stored procedures or functions, user defined functions or plugins, and user variables or
declared variables are restricted in partitioning expressions. There are also several
restrictions and limitations applicable to partitioning given in the detailed section.

See the following list for some of the advantages of partitioning:

Partitioning facilitates storing more data in one table than can be held on a file
system partition or single disk.
Data that has become useless can be removed easily by dropping a partition or
partitions that only contain the useless data. In some cases where specific data is
required to be added separately, this can be done easily with partitioning in
single or multiple partitions based on the specified rule.

Partitioning in MySQL 8 Chapter 9

[282]

Query optimization that occurs automatically based on partitioned data by
not searching for data in partitions that are not applicable as per the where
condition.
In addition to partition pruning, partition selection is supported explicitly by
which where clause is applied on a specified partition or multiple partitions.
Greater query throughput is achieved by separating data search into multiple
disks.

Types of partitioning
In this section, you will understand different types of partitioning and also the purpose of
using specific partitioning. The following is a list of the partitioning types that are available
in MySQL 8 :

In addition to the above list, we will also see handling in MySQL 8 Partitioning in
detailed section.

A very common use case for database partitioning is segregating data by date. MySQL 8
does not support date partitioning, which some database systems provide explicitly, but it
is easy to create partitioning schemes with date, time, or datetime columns, or that are
based on date/time related expressions that evaluate values from these column types.

You can use the date, time, or datetime types as column values for partition columns
without any modifications if using or partitioning, whereas in other
partitioning types an expression giving back an integer or value is required.

Irrespective of which type of partitioning you use, partitions always get numbered
automatically with an integer number in sequence of the partitions created. If, for example,
the table uses four partitions, they are numbered as 0,1,2, and 3 for each of the partitions as
per creation sequence.

Partitioning in MySQL 8 Chapter 9

[283]

When you specify numbers of partitions, it must be evaluated to a positive, non zero integer
without any leading zeros. Decimal fractions are not allowed as partition numbers.

Names of partitions are not case-sensitive and should follow conventions or rules just like
other MySQL identifiers such as tables. The options used in partition definition are already
provided by the syntax.

Now, let's look at partition in detail and examine each of the types to learn how they are
different to each other.

RANGE partitioning
In this type of partitioning, as the name states, is given in an expression that
evaluates whether a value lies in the given range or not. Ranges are defined with the

 operator and they should not be overlapping and contiguous.

For the next few examples, suppose we are creating a table holding employee personal
records for 25 food stores. The stores are numbered from 1 to 25 and is a chain of 25 food
stores, as shown in the following block:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Now let's do partitioning of the table, so you can partition the table by range as per your
need. Suppose you consider using division to split the data five ways with the
range for partitioning. For this, the table creation definition will look as follows:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (

Partitioning in MySQL 8 Chapter 9

[284]

 PARTITION p0 VALUES LESS THAN (6),
 PARTITION p1 VALUES LESS THAN (11),
 PARTITION p2 VALUES LESS THAN (16),
 PARTITION p3 VALUES LESS THAN (21),
 PARTITION p4 VALUES LESS THAN (26)
);

So, as per the above partitioning scheme, all inserted rows that contain the employees
working at stores 1 to 5 are stored in the partition, employees working at stores 6 to 10
are stored in the partition, and so on. If you take a look at the partition definition,
partitions are ordered from the lowest to highest column values, and the

 syntax looks similar to programming statements
statements, doesn't it?

Well, you are thinking about what will happen if a record comes with ; this
would result in an error as the server does not know where to place the record. There are
two ways to keep this error from occurring:

By using the key word with the statement.1.
By using instead of a specified range ().2.

And yes, of course, you can extend the limits by using the statement to add
new partitions for stores 26-30, 30-35, and so on.

Similar to , you could also partition the table based on the job codes - based on
the range of column values. Suppose if 5 digit codes are used for management positions, 4
digit codes are used for office and support personnel, and 3 digit codes are used for regular
workers, then the partition table creation definition would be as follows:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
 PARTITION p0 VALUES LESS THAN (1000),
 PARTITION p1 VALUES LESS THAN (10000),
 PARTITION p2 VALUES LESS THAN (100000)
);

Partitioning in MySQL 8 Chapter 9

[285]

You can also specify partitioning with one of the two columns of date type values. Suppose
you wish to partition based on the year each of the employee joined - so by the value of

. Now the table definition will be as follows:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY RANGE (YEAR(hired_date)) (
 PARTITION p0 VALUES LESS THAN (1996),
 PARTITION p1 VALUES LESS THAN (2001),
 PARTITION p2 VALUES LESS THAN (2006),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

According to this scheme, all employees recorded hired before will be stored in the
partition , then records with a hire date before will be stored in the partition ,
records between and in , and the rest of the records will be stored in partition

.

Partition schemes based on time intervals can be implemented using the following two
options:

Partition the table by and use a function operating on the date, time or1.
datetime column values to return an integer value for the partitioning expression
Partition the table by and use the date, time, or datetime columns2.
as the partition column

 is supported in MySQL 8 and is described in detail in the
 section.

LIST partitioning
As the name states, partitioning uses lists for table partitioning. The list is comma
separated integer values defined while partitioning with ;
here, refers to comma separated integer literals.

Partitioning in MySQL 8 Chapter 9

[286]

 partitioning is similar to partitioning in many ways, but there are differences.
The operator used in each partitioning is different. The operator uses a list of comma
separated values to be matched with the column value or the partition expression
evaluating to integer value.

Considering the employee table as an example, the basic definition for the table using the
create table syntax will be as follows:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
);

Suppose you wish to distribute these 25 food stores among five zones North, South, East,
West, and Central, with the store ID numbers (1,2,11,12,21,22), (3,4,13,14,23,24),
(5,6,15,16,25), (7,8,17,18), and (9,10,19,20) respectively for the zones.

Partitioning the table with the zones list will provide the following definition for table
partition:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY LIST (store_id) (
 PARTITION pNorth VALUES IN (1,2,11,12,21,22),
 PARTITION pSouth VALUES IN (3,4,13,14,23,24),
 PARTITION pEast VALUES IN (5,6,15,16,25),
 PARTITION pWest VALUES IN (7,8,17,18),
 PARTITION pCentral VALUES IN (9,10,19,20)
);

Partitioning in MySQL 8 Chapter 9

[287]

As you can see in the preceding statement, partitioning per zones means it will be easy to
update records for stores based on zones within particular partitions. Suppose the
organization sold the west zone to another company; then you might need to remove all
employee records from the west zone using the partition in query. Executing

 employee would be much easier and efficient than
the statement ;
also, you can use the statement for employee records removal -

. Along with the previous statement execution you
will also remove the from the table partition definition, and will need to
use the statement again to add the and restore the partition table
scheme you had earlier.

Similar to partitioning, you can also use partitioning using hash or key to
produce composite partitioning, which is also known as . You will get to
know more details on as a dedicated section for
follows.

In partitioning there is no catch-all mechanism such as that can contain all
possible values. Instead, you have to manage the expected values list in the
itself, otherwise the statement will result in an error where the table has no
partition for value 9, as in the following example:

CREATE TABLE tpl (
 cl1 INT,
 cl2 INT
)
PARTITION BY LIST (cl1) (
 PARTITION p0 VALUES IN (1,3,4,5),
 PARTITION p1 VALUES IN (2,6,7,8)
);

INSERT INTO tpl VALUES (9,5) ;

As you can see in the preceding statement, value 9 is not part of the list given
during partition schema and so there is an error. If you use multiple value insert statements,
the same error can result in failure for all inserts and no records will be inserted; instead use
the keyword to avoid such errors, as in the following statement example:

INSERT IGNORE INTO tpl VALUES (1,2), (3,4), (5,6), (7,8), (9,11);

Partitioning in MySQL 8 Chapter 9

[288]

COLUMNS partitioning
As the name suggests, this type of partitioning uses columns themselves. We can use two
versions of column partitioning. One is and the other is . In
addition to both and partitioning, MySQL 8 supports using
non-integer types of column that can be used to define value ranges or list values. The list of
permitted data types are as follows:

All column types of , , , , and are
supported for the and partitioning columns, but other numeric
column types such as or are not supported

 and are supported but other column types relating to date and
time are not supported as partitioning columns
The string column types , , and are supported
but the and column types are not supported as partitioning columns

Now, let's see partitioning and partitioning in detail one by
one.

RANGE COLUMN partitioning
As the name suggests, you can define range using columns with partitioning and

 partitioning, but the difference is that you can define multiple columns
providing range, and additionally you are able to select column types other than integer.

Thus, partitioning is different to partitioning in the following listed
ways :

 can use one or multiple columns and the comparison occurs
between list of column values and not between scalar values

 can use only names of columns and not any expressions
 partitioning column types are not restricted to column

types only but can use the string, date, and datetime column types as partitioning
columns

Partitioning in MySQL 8 Chapter 9

[289]

Table partitioning by has the following basic syntax:

CREATE TABLE table_name
PARTITION BY RANGE COLUMNS (column_list) (
 PARTITION partition_name VALUES LESS THAN (value_list) [,
 PARTITION partition_name VALUES LESS THAN (value_list)] [,
...]
)
column_list:
 column_name[, column_name] [, ...]
value_list :
 value[, value][, ...]

In the preceding syntax, stands for partitioning column list and
stands for partition definition value list, and must be given for each of the
partition definitions, along with the same number of values defined in . To
say it straight, the number of columns () in the clause must be the
same as the number of values () in the clause.

The following example makes clear what it is and how it goes with the table definition:

CREATE TABLE trc (
 p INT,
 q INT,
 r CHAR(3),
 s INT
)
PARTITION BY RANGE COLUMNS (p,s,r) (
 PARTITION p0 VALUES LESS THAN (5,10,'ppp'),
 PARTITION p1 VALUES LESS THAN (10,20,'sss'),
 PARTITION p2 VALUES LESS THAN (15,30,'rrr'),
 PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE,MAXVALUE)
);

Now you go and insert records into the table with the following statement :

INSERT INTO trc VALUES (5,9,'aaa',2) , (5,10,'bbb',4) , (5,12,'ccc',6) ;

Partitioning in MySQL 8 Chapter 9

[290]

LIST COLUMN partitioning
In this type of partitioning, lists of columns are used in the table partitioning definition, and
similar to the the value list for the respective columns must be provided.
Similar to , column types other than integer types can be used that is, the
string, date, and datetime column types.

Suppose you have the requirement that a business has spread over 12 cities, and for
marketing purposes you manage them with four zones of three cities as follows:

Zone 1 with cities: Ahmedabad, Surat, Mumbai
Zone 2 with cities: Delhi, Gurgaon, Punjab
Zone 3 with cities: Kolkata, Mizoram, Hyderabad
Zone 4 with cities: Bangalore, Chennai, Kochi

Now, create a table for the customer data that has four partitions of the corresponding
zones, and list them with the name of the city where the customer resides. The table
partition definition will look as follows:

CREATE TABLE customer_z (
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 street_1 VARCHAR(35),
 street_2 VARCHAR(35),
 city VARCHAR(15),
 renewal DATE
)
PARTITION BY LIST COLUMNS (city) (
 PARTITION pZone_1 VALUES IN ('Ahmedabad', 'Surat', 'Mumbai'),
 PARTITION pZone_2 VALUES IN ('Delhi', 'Gurgaon', 'Punjab'),
 PARTITION pZone_3 VALUES IN ('Kolkata', 'Mizoram', 'Hyderabad'),
 PARTITION pZone_4 VALUES IN ('Bangalore', 'Chennai', 'Kochi')

);

Similar to partitioning, it is not required to provide any expression in
the clause that converts the column value to an integer literal, and nothing
other than the list of column names itself is permitted.

Partitioning in MySQL 8 Chapter 9

[291]

HASH partitioning
The primary intention behind introducing partitioning is to ensure an even
distribution of date among the number of partitions defined. So, with partitioning you
need to specify the column value or the expression evaluating the column value being
hashed, and the number of partitions into which the partitioned table is to be divided.

For defining partitioning in table you need to specify the
 clause in the table definition, where is the expression that will return the

integer, and additionally you need to specify the number of partitions with ,
where is a positive integer number that stands for the number of partitions.

The following definition creates a table with partitioning on the column,
dividing into five partitions:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,
 store_id INT NOT NULL
)
PARTITION BY HASH (store_id)
PARTITIONS 4;

In the above statement, if you exclude the clause, the number of partitions
automatically defaults to one.

LINEAR HASH partitioning
MySQL 8 supports linear hashing, which is based on a linear power-of-two algorithm
instead of regular hashing, which is based on the modulus of the hashing function's value.

 partitioning requires the keyword in the clause,
shown as follows:

CREATE TABLE employee (
 employee_id INT NOT NULL,
 first_name VARCHAR(30),
 last_name VARCHAR(30),
 hired_date DATE NOT NULL DEFAULT '1990-01-01',
 termination_date DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT NOT NULL,

Partitioning in MySQL 8 Chapter 9

[292]

 store_id INT NOT NULL
)
PARTITION BY LINEAR HASH (YEAR(hired_date))
PARTITIONS 4;

An advantage of using linear hashing is faster partitioning operations, and a disadvantage
is less even data distribution compared to regular hashing partitioning.

KEY partitioning
This type of partitioning is similar to partitioning, with the change of the use of a user-
defined expression instead of the hashing function. uses
the clause in the statement for the partitioning
definition. The syntax rules for partitioning are similar to that of partitioning, so
let's list out the differences so as to understand:

Instead of , is used for partitioning

One or more column names list is taken in , and if there is no column defined in
but the table has a defined primary key or unique key with the constrain, the
column is automatically taken as partitioning column for :

CREATE TABLE tk1 (
 tk1_id INT NOT NULL PRIMARY KEY,
 note VARCHAR(50)
)
PARTITION BY KEY ()
PARTITIONS 2;

Unlike other partitioning types, the column type is not only limited to or integer
values:

CREATE TABLE tk2 (
 cl1 INT NOT NULL,
 cl2 CHAR(10),
 cl3 DATE
)
PARTITION BY LINEAR KEY (cl1)
PARTITIONS 3;

As you can see in the preceding example statement, similar to partitioning,
partitioning also supports partitioning and has the same effect as

 partitioning.

Partitioning in MySQL 8 Chapter 9

[293]

Subpartitioning
Subpartitioning is also known as composite partitioning, and as the name suggests it is only
a division of each partition into a partitioned table itself. See the following statement:

CREATE TABLE trs (trs_id INT, sold DATE)
PARTITION BY RANGE (YEAR(sold))
 SUBPARTITION BY HASH (TO_DAYS(sold))
 SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1991),
 PARTITION p1 VALUES LESS THAN (2001),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

As you can see in the preceding example statement, table has three partitions
and each of the partitions is further divided into two more subpartitions.
Effectively, the entire table is divided into six partitions.

Subpartitioning is possible on tables partitioned using or partitioning, and
subpartitioning can use the or partitioning types. The syntax rules for
subpartitioning are the same as in regular partitioning, with the exception to specify the
default column in partitioning as it does not take the column automatically for
subpartitioning.

The following is a list of points to consider when using subpartitioning:

Number of partitions must be same for each of the partitions defined
Name must be specified with the clause or specify a default
option instead
Names specified for subpartitioning must be unique across the table

Handling NULL in partitioning
There is nothing specific to MySQL 8 that disallows in partitioning as a column value,
partitioning expression, or the value from the user-defined expression. Even if is
permitted as a value ,the value returned from the expression must be an integer and so
MySQL 8 has implementation for partitioning such that it treats as less than any non-

 value as done in the clause.

Partitioning in MySQL 8 Chapter 9

[294]

Behavior for handling varies among different types of partitioning:

Handling in partitioning: If a value contained in the column is
inserted, the row will be inserted in the lowest partition specified in range
Handling with partitioning: If the table has a partitioning definition
with partitioning and its partitions are defined with a value list that
explicitly specifies as a value in , then insertion will be
successful; otherwise, it will give an error table that has no partition specified
for
Handling with and partitioning: is handled differently
when table partitioning is defined with or partitioning, and if a
partition expression returns it is wrapped with zero value. So that based on
partitioning the insertion operation will successfully insert the record to partition
being zero.

Partition management
There are plenty of ways to use statements in order to modify partitioned tables you
can drop, add, merge, split, or redefine partitions with the statement. There
are also ways to retrieve partitioned tables and partition information. We will see each of
these in the following sections:

 and partition management
 and partition management

Partition maintenance
Obtain partition information

RANGE and LIST partition management
Partition adding and dropping is handled in a similar way for the and partition
types. A table partitioned by or partitioning can be dropped using the

 statement with the option available.

Make sure you have the privilege before executing the
 statement. will delete all the data and also remove the

partition from the table partition definition.

Partitioning in MySQL 8 Chapter 9

[295]

The following example illustrates the option with the
statement:

SET @@SQL_MODE = '';
CREATE TABLE employee (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(25) NOT NULL,
 last_name VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,
 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);
INSERT INTO employee VALUES
 ('', 'Chintan', 'Mehta', 3, 2), ('', 'Bhumil', 'Raval', 1, 2),
 ('', 'Subhash', 'Shah', 3, 4), ('', 'Siva', 'Stark', 2, 4),
 ('', 'Chintan', 'Gajjar', 1, 1), ('', 'Mansi', 'Panchal', 2, 3),
 ('', 'Hetal', 'Oza', 2, 1), ('', 'Parag', 'Patel', 3, 1),
 ('', 'Pooja', 'Shah', 1, 3), ('', 'Samir', 'Bhatt', 2, 4),
 ('', 'Pritesh', 'Shah', 1, 4), ('', 'Jaymin', 'Patel', 3, 2),
 ('', 'Ruchek', 'Shah', 1, 2), ('', 'Chandni', 'Patel', 3, 3),
 ('', 'Mittal', 'Patel', 2, 3), ('', 'Shailesh', 'Patel', 2, 2),
 ('', 'Krutika', 'Dave', 3, 3), ('', 'Dinesh', 'Patel', 3, 2);

ALTER TABLE employee DROP PARTITION p2;

In the preceding statement, after executing the
 statement, you can see that all data is removed from partition . In case

you want to remove all the data but also need to keep the table definition and the
partitioning scheme, you can use the option to achieve a similar
result.

In order to add new or partitions to existing partitioned tables you can use
the statement.

By using the statement you can verify and see if the
statement has the desired effect on the table definition and the partitioning schema.

Partitioning in MySQL 8 Chapter 9

[296]

HASH and KEY partition management
Table partitions of the or types are similar compared to table partitioning by
the or types of partitioning. Dropping a partition is not applicable if a table is
partitioned by the or type of partitioning, but there is option for merging or

 partitions, using .

Consider if you have client table data partitioned by partitioning, divided in twelve
partitions as follows:

CREATE TABLE client (
 client_id INT,
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 signed DATE
)
PARTITION BY HASH (MONTH (signed))
PARTITIONS 12;

In the preceding table partitioning schema, if you want to reduce the number of partitions
to eight instead of twelve, use the following statement:

ALTER TABLE client COALESCE PARTITION 8;

In the preceding statement the number 8 represents the number of partitions to be removed
from the table. You cannot remove more partitions than already exist in the table
partitioning schema. Similarly, you can add more partitions using the

 statement.

Partition maintenance
There are many maintenance tasks that can be done with several statements on a number of
tables and partitions. They can be done using statements such as ,

, , and , which are supported specifically for
partitioned tables.

Partitioning in MySQL 8 Chapter 9

[297]

There are a number of extensions of available for such operations on single
or multiple partitioned tables, listed as follows:

Rebuilding partitions: This option drops all records from the partitions and
reinserts them, so this is considered helpful in the defragmentation process. The
following is an example:

 ALTER TABLE trp REBUILD PARTITION p0, p1, p2;

Optimizing partitions: If many rows are deleted from a partition or partitions of
the table, or there are many row changes in a huge amount of data in variable
length column types such as , , , and so on, you can perform

 to reclaim unused space in the partition data file. The
following is an example:

 ALTER TABLE top OPTIMIZE PARTITION p0, p1, p2;

 does not work correctly with
the storage engine, so instead use

 and for such tables.

Analyzing partitions: In this option key distributions of the partitions are read
and stored. The following is an example:

 ALTER TABLE tap ANALYZE PARTITION p1, p2;

Repairing partitions: This option is only used when there are corrupt partitions
found to be repaired. The following is an example:

 ALTER TABLE trp REPAIR PARTITION p3;

Checking partitions: This option is used to check for any errors in partitions such
as the option used in nonpartitioned tables. The following is an
example:

 ALTER TABLE tcp CHECK PARTITION p0;

There is an option to use instead of a specific partition, specified in all above options, in
order to perform the operation on all the partitions.

Partitioning in MySQL 8 Chapter 9

[298]

Obtain partition information
Information about partitions can be obtained in a number of ways, as follows:

The statement can be used to view the partition's schema
information containing all partitioning clauses in the partitioned tables
The statement can be used to check if the table is
partitioned or not by viewing its status
The statement can be used to see partitions used by given

 option
Using the table for querying partition table
information.

The following is an example with the statement option to see
partition information:

SHOW CREATE TABLE employee;

The output from the preceding statement has separate information for partitioning schema,
including common information for the table schema.

Similarly, you can retrieve information about partitioning from the
 table.

The option gives a lot of information on partitioning with column. For example it
gives number of rows obtained from the query specific to partitions. The partition would be
searched as per the query statement. It also gives information about keys.

 is also used to get information from nonpartitioned tables. It does not give any
error if there are no partitions, but gives a value in the partitions column.

Partition selection and pruning
In this section, you will see how partitioning can optimize statements clause execution
with the optimizer known as partition pruning, and the use of statements to effectively
use partition data for selection and perform modification operations on the partitioning.

Partitioning in MySQL 8 Chapter 9

[299]

Partition pruning
Partition pruning is related to the optimization concept in partition. In partition pruning the
concept described as Do not scan partitions where no possible matching values can be present is
applied based on the query statements.

Suppose there is a partitioned table, , created with the following statement:

CREATE TABLE tp1 (
 first_name VARCHAR (30) NOT NULL,
 last_name VARCHAR (30) NOT NULL,
 zone_code TINYINT UNSIGNED NOT NULL,
 doj DATE NOT NULL
)
PARTITION BY RANGE (zone_code) (
 PARTITION p0 VALUES LESS THAN (65),
 PARTITION p1 VALUES LESS THAN (129),
 PARTITION p2 VALUES LESS THAN (193),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);

In the preceding example table , suppose you want to retrieve a result from the
following statement:

SELECT first_name, last_name , doj from tp1 where zone_code > 126 AND
zone_code < 131;

Now, you can see from the preceding statement that there are no rows that have data in
partitions or as per the statement, so we only need to search the data in or for
matching criteria. So, by limiting the search, it is possible to spend less time and effort
matching and searching for the data through all the partitions in the table. This cutting
away of the unmatched partitions is known as pruning.

The optimizer can make use of partition pruning for performing the query execution much
faster compared to nonpartitioned tables that have the same schema, data, and query
statements.

The optimizer can do pruning in the following cases based on the condition
reduction:

Partitioning in MySQL 8 Chapter 9

[300]

In the first case, the optimizer evaluates the partitioning expression for each of the values in
the list and creates a list of partitions that are matched during evaluation, and then scanning
or searching is performed only on the partitions in this partition list.

In the second case, the optimizer only evaluates the partitioning expression based on the
given constant or specific value and determines which partition contains the value, and
searching or scanning is performed only on this partition. There can be use of another
arithmetic comparison instead of equals for this type of case.

Currently, pruning is not supported on statements but is supported in ,
, and statements.

Pruning is also applicable to short ranges where the optimizer can convert the ranges into
an equivalent list of values. The optimizer can be applied when the partitioning expression
consists of equality or range that can be reduced to equalities set or if an increasing or
decreasing relationship is represented by the partitioning expression.

Pruning can also applicable to the column types of or if the partitioning
uses the or function, and also applicable if such tables use
the function in their partitioning expression.

Suppose you have a table, , as per the following statement :

CREATE TABLE tp2 (
 first_name VARCHAR (30) NOT NULL,
 last_name VARCHAR (30) NOT NULL,
 zone_code TINYINT UNSIGNED NOT NULL,
 doj DATE NOT NULL
)
PARTITION BY RANGE (YEAR(doj)) (
 PARTITION p0 VALUES LESS THAN (1971),
 PARTITION p1 VALUES LESS THAN (1976),
 PARTITION p2 VALUES LESS THAN (1981),
 PARTITION p3 VALUES LESS THAN (1986),
 PARTITION p4 VALUES LESS THAN (1991),
 PARTITION p5 VALUES LESS THAN (1996),
 PARTITION p6 VALUES LESS THAN (2001),
 PARTITION p7 VALUES LESS THAN (2006),
 PARTITION p8 VALUES LESS THAN MAXVALUE
);

Partitioning in MySQL 8 Chapter 9

[301]

Now, in the preceding statement the following statements can benefit from partition
pruning:

SELECT * FROM tp2 WHERE doj = '1982-06-24';
UPDATE tp2 SET region_code = 8 WHERE doj BETWEEN '1991-02-16' AND
'1997-04-26';
DELETE FROM tp2 WHERE doj >= '1984-06-22' AND doj <= '1999-06-22';

For the last statement, the optimizer can act as follows:

Finding the partition that has the low end of the range as 1.
gives the value 1984, found in the partition.
Finding the partition that has the high end of the range as 2.
gives the value 1999, found in the partition.
Scan only the above two identified partitions and any partitions that lie between3.
them.

So, in the above mentioned case the partitions to be scanned are , , and only, and
the rest of the partitions can be ignored while matching.

The preceding examples use partitioning but partition pruning is also applicable on
other types of partitioning as well. Suppose you have the table schema as per the
following statement:

CREATE TABLE tp3 (
 first_name VARCHAR (30) NOT NULL,
 last_name VARCHAR (30) NOT NULL,
 zone_code TINYINT UNSIGNED NOT NULL,
 description VARCHAR (250),
 doj DATE NOT NULL
)
PARTITION BY LIST(zone_code) (
 PARTITION p0 VALUES IN (1, 3),
 PARTITION p1 VALUES IN (2, 5, 8),
 PARTITION p2 VALUES IN (4, 9),
 PARTITION p3 VALUES IN (6, 7, 10)
);

For the preceding table schema, consider if this statement
 is to be executed. The optimizer determines which of the

partitions can have the values , , and and finds and , so it skips the rest of the
partitions and .

Partitioning in MySQL 8 Chapter 9

[302]

Column values with a constant can be pruned, as in the following example statement :

UPDATE tp3 set description = 'This is description for Zone 5' WHERE
zone_code = 5;

The optimization is performed only when the size of the range is smaller
than the number of partitions.

Partition selection
Explicit selection of partition and subpartition is also supported and this enables row
matching to conditions given in the where clause - this is known as partition selection. It is
very similar to partition pruning as only specific partitions are scanned for matching, but
differs in the following two key aspects:

The partitions to be scanned are specified by the issuer of the statement and are
not automatic such as with partition pruning
The partition pruning is limited to queries, whereas partition selection supports
both queries and a number of statements

SQL statements supported for explicit partition selection are listed as follows:

The following syntax with the option is used for explicit partition selection:

PARTITION (partition_names)
partition_names :
 partition_name, ...

Partitioning in MySQL 8 Chapter 9

[303]

The preceding option is always followed by the table structure or table schema it belongs to.
 stands for the list of comma separated names of partitions or

subpartitions that will be used in partitioning. Partition and subpartition names in
 can be in any order or even overlap but each name from the list must be

the existing partition or subpartition name of the specific table, otherwise the statement will
fail with the error message doesn't exist.

If the option is used, only listed partitions and subpartitions are checked for
matching rows. option can also be used in the statement to retrieve
rows belonging to any given partition.

Suppose you have the table created with the following statements:

SET @@SQL_MODE = '';
CREATE TABLE employee (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(25) NOT NULL,
 last_name VARCHAR(25) NOT NULL,
 store_id INT NOT NULL,
 department_id INT NOT NULL
)
 PARTITION BY RANGE(id) (
 PARTITION p0 VALUES LESS THAN (5),
 PARTITION p1 VALUES LESS THAN (10),
 PARTITION p2 VALUES LESS THAN (15),
 PARTITION p3 VALUES LESS THAN MAXVALUE
);
INSERT INTO employee VALUES
 ('', 'Chintan', 'Mehta', 3, 2), ('', 'Bhumil', 'Raval', 1, 2),
 ('', 'Subhash', 'Shah', 3, 4), ('', 'Siva', 'Stark', 2, 4),
 ('', 'Chintan', 'Gajjar', 1, 1), ('', 'Mansi', 'Panchal', 2, 3),
 ('', 'Hetal', 'Oza', 2, 1), ('', 'Parag', 'Patel', 3, 1),
 ('', 'Pooja', 'Shah', 1, 3), ('', 'Samir', 'Bhatt', 2, 4),
 ('', 'Pritesh', 'Shah', 1, 4), ('', 'Jaymin', 'Patel', 3, 2),
 ('', 'Ruchek', 'Shah', 1, 2), ('', 'Chandni', 'Patel', 3, 3),
 ('', 'Mittal', 'Patel', 2, 3), ('', 'Shailesh', 'Patel', 2, 2),
 ('', 'Krutika', 'Dave', 3, 3), ('', 'Dinesh', 'Patel', 3, 2);

Now, if you check with partition , you see the following output as rows added in
partition :

mysql> SELECT * FROM employee PARTITION (p1);
+----+-----------+------------+----------+---------------+
| id | last_name | last_name | store_id | department_id |
+----+-----------+------------+----------+---------------+
| 5 | Chintan | Gajjar | 1 | 1 |

Partitioning in MySQL 8 Chapter 9

[304]

6	Mansi	Panchal	2	3
7	Hetal	Oza	2	1
8	Parag	Patel	3	1
9	Pooja	Shah	1	3
+----+-----------+------------+----------+---------------+
5 rows in set (0.00 sec)

If you use this statement , it
will give the same output.

In order to retrieve rows from multiple partitions you can use a comma separated list of
partition names. For example, , will
result in all the rows from partitions and and exclude the remaining partitions.

Any supported partitioning types can be used using partitioning selection statements.
MySQL 8 automatically adds partition names when a table is created with the

 or partitioning types specified without any names, and this is also
applicable to subpartitions as well. While executing the statement on this table you
can specify partition names generated by MySQL 8 for partition specific data retrieval.

The option is also applicable on the statement for the
 statement, by which we can insert data retrieved from specific partitions or

subpartitions as well.

The option is also applicable on the statement with join queries on
tables with specific partition or subpartition data.

Restrictions and limitations in partitioning
In this section, you will see the restrictions and limitations in MySQL 8 partitioning,
covering prohibited constructs, performance considerations, and limitation aspects related
to storage engines and functions in detail, to gain optimum benefits from the table
partitioning.

Partitioning in MySQL 8 Chapter 9

[305]

Partitioning keys, primary keys, and unique keys
The relationship between partitioning keys with primary keys and unique keys is very
important for partition schema structure design. To say the rule in one line it will be
that the columns used in the partitioning in the partition table must include every
unique key of the table. So every unique key, including the primary key column on the
table, must be part of the partitioning expression. Take a look at the following example for
the statement using a unique key that does not adhere to the rule:

CREATE TABLE tk1 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 UNIQUE KEY (cl1, cl2)
)
PARTITION BY HASH(cl3)
PARTITIONS 4;

CREATE TABLE tk2 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 UNIQUE KEY (cl1),
 UNIQUE KEY (cl3)
)
PARTITION BY HASH(cl1 + cl3)
PARTITIONS 4;

In each of the preceding statements for the creation of table and the proposed table
can have at least one unique key that does not include all columns in the partition
expression.

Now look at the following modified table creation statements, which are made to work and
are turned from invalid to valid statements:

CREATE TABLE tk1 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 UNIQUE KEY (cl1, cl2, cl3)
)
PARTITION BY HASH(cl3)
PARTITIONS 4;

Partitioning in MySQL 8 Chapter 9

[306]

CREATE TABLE tk2 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 UNIQUE KEY (cl1, cl3)
)
PARTITION BY HASH(cl1 + cl3)
PARTITIONS 4;

If you take a look at the following table structure, it cannot be partitioned at all because
there is no way to include both the unique key columns that can be part of partitioning key
columns:

CREATE TABLE tk4 (
 cl1 INT NOT NULL,
 cl2 INT NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 UNIQUE KEY (cl1, cl3),
 UNIQUE KEY (cl2, cl4)
);

As per the definition, every primary key is a unique key. The restriction is also applicable
on a table's primary key, if any. The following are two examples for table and that
are invalid statements:

CREATE TABLE tk5 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 PRIMARY KEY(cl1, cl2)
)
PARTITION BY HASH(cl3)
PARTITIONS 4;

CREATE TABLE tk6 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 PRIMARY KEY(cl1, cl3),
 UNIQUE KEY(cl2)
)
PARTITION BY HASH(YEAR(cl2))
PARTITIONS 4;

Partitioning in MySQL 8 Chapter 9

[307]

In both the preceding statements, the corresponding primary key is not included in all the
columns referenced as in the partitioning expression. The following statements are valid:

CREATE TABLE tk7 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 PRIMARY KEY(cl1, cl2)
)
PARTITION BY HASH(cl1 + YEAR(cl2))
PARTITIONS 4;

CREATE TABLE tk8 (
 cl1 INT NOT NULL,
 cl2 DATE NOT NULL,
 cl3 INT NOT NULL,
 cl4 INT NOT NULL,
 PRIMARY KEY(cl1, cl2, cl4),
 UNIQUE KEY(cl2, cl1)
)
PARTITION BY HASH(cl1 + YEAR(cl2))
PARTITIONS 4;

If the table does not have a unique key or primary key then the restriction is not applicable,
and any column or columns can be used in the partitioning expression as per compatible
column types for the partitioning type. All above restrictions are also applicable to
the statements as well.

Partitioning limitations relating to storage
engines
Partitioning support is not provided by MySQL server but from the storage engine's own or
native partitioning handler in MySQL 8. In MySQL 8, the storage engine only
provides a native partitioning handler and so the partitioned table creation is not applicable
with any other storage engine.

 does not work correctly with
the storage engine, so instead use the

 and operations for such tables.

Partitioning in MySQL 8 Chapter 9

[308]

Partitioning limitations relating to functions
In partitioning expressions only the following listed MySQL functions are allowed in
MySQL 8:

: It provides an absolute value for the given argument
: It provides the smallest integer number possible for the given

argument
: It provides the day of the month for the given date

: It provides the day of the month for the given date same as

: It provides the weekday number for the given date
: It provides the day of the year for the given date

: It provides the number of days between two given dates
: It provides part of the given argument

: It provides the largest integer value possible for the given argument
: It provides the hour from the given argument

: It provides the microseconds from the given argument
: It provides the minute from the given argument

: It performs the Modulo operation and provides the remainder of
divided by where

: It provides the month from the given argument
: It provides the quarter from the given argument

: It provides the second from the given argument
: It provides the second from the given time value argument

: It provides the number of days from year 0 for the given argument
: It provides the number of seconds from the year 0 for the given

argument
: It provides the seconds

since '1970-01-01 00:00:00' UTC for the given argument
: It provides the weekday index for the given argument

: It provides the year for the given argument
: It provides the year and week for the given argument

Partition pruning supports the , , , and
 functions in MySQL 8.

Partitioning in MySQL 8 Chapter 9

[309]

Summary
In this chapter, we learned about different types of partitioning and the need for partitions.
We also covered detailed information on managing all types of partitions. We learned about
partition pruning and selection of partitions which is used by the optimizer. We also
discussed applicable limitations and restrictions to consider while using partitioning.

In the next chapter, you will learn how to do scaling in MySQL 8, and discover common
challenges faced when providing scalability in MySQL 8. You will also learn how to make
the MySQL server highly available and achieve high availability.

110
MySQL 8 – Scalability and High

Availability
In this chapter, we will cover the following important topics for MySQL 8 scalability and
high availability:

Overview of scalability and high availability in MySQL 8
Scaling MySQL 8
Challenges in scaling MySQL 8
Achieving high availability

Before we move on to the details, let's have an overview of scalability and high availability
in MySQL 8

Overview of scalability and high availability
in MySQL 8
In any type of application, be it mobile, web portals, websites, social, e-commerce,
enterprise or cloud applications, data is the core portion of the business. Data availability is
considered an utmost concern for any business or organization. Data loss or any downtime
of an application can result in a heavy loss in terms of money and also impact the credit of
the company in the market.

MySQL 8 – Scalability and High Availability Chapter 10

[311]

If we consider an example of an online shopping site which has a nicely covered market in a
specific area, with customers and good business credit. If this business faced an issue with
data loss or any application server or database server downtime, it would impact the whole
business. Many customers would lose faith in the business and also the business would
suffer a loss both in terms of finance and credit.

There is no single formula that can provide a solution. Different businesses have their own
application requirements, business needs, distinct processes, different infrastructure in
different locations, and operational competencies. In these circumstances, technology plays
a major role in achieving high availability.

As per the requirements of scalability and high availability, MySQL can be used for various
applications, and as per need it is capable of overcoming failures, including failures of
MySQL, failures from the operating system, or any planned maintenance activity that may
impact availability. Scalability in simple terms, that has the capability to distribute database
load and application queries between MySQL servers.

The attributes that matter when choosing the right solution for high availability depend on
to what extent the system can be called highly available, as such requirements vary from
system to system. For smaller applications, where the user load is not expected to be very
high, setting up the replication or cluster environment can result in very high cost. In such
cases, providing the correct configuration of the MySQL can also be enough to reduce
application load.

The following sections briefly describe the primary solutions supported by MySQL 8 for
high availability.

MySQL replication
MySQL replication allows data from one server to be replicated onto the multiple MySQL
servers. MySQL replication provides master-slave design, so that one of the servers from
the group acts as a master where write operations are performed from the application and
then the master server copies the data to the multiple slave servers. Replication is a well
established solution for high availability and is used by the social giants such as Facebook,
Twitter, and so on.

MySQL 8 – Scalability and High Availability Chapter 10

[312]

MySQL cluster
This is another popular high availability solution for MySQL. Clustering enables data to be
replicated to multiple MySQL servers with automated sharing. It is designed for better
availability and throughput.

Oracle MySQL cloud service
Oracle MySQL cloud service provides an efficient means to help build a secure, cost-
effective MySQL database as a service for applications used in modern world. It proves to
be scalable and cost-efficient with less resource utilization for managing the service when
compared to on-premises.

MySQL with the Solaris cluster
The sun Solaris cluster provided by the MySQL data service provides a mechanism for
orderly startup and shutdown, fault monitoring, and automatic failover of the MySQL
service. The following MySQL components are protected by the sun cluster HA for the
MySQL data service.

There are some further options available using third-party solutions. Each architecture that
is used to achieve highly available database services is differentiated by the levels of uptime
that each offers. These architectures can be grouped into three main categories:

Data replication
Clustered and virtualized systems
Geographically-replicated clusters

Based on the best answer to the question, you can select the right option for your
application with optimal cost and a highly available solution. This discussion gives us a fair
overview of MySQL 8's high availability.

MySQL 8 – Scalability and High Availability Chapter 10

[313]

Scaling MySQL 8
Scalability is the ability to distribute the load of any application queries across various
MySQL instances. For some cases, it is unpredictable that data cannot exceed up to some
limit or the number of users will not go out of bounds. Scalable databases would be a
preferable solution so that, at any point, we can meet unexpected demands of scale. MySQL
is a rewarding database system for its scalability, which can scale horizontally and
vertically; in terms of data, distribution of client queries across various MySQL instances is
quite feasible. It is pretty easy to add horsepower to the MySQL cluster to handle the load.

The requirements for achieving High Availability (HA) and scalability may vary from
system to system. Each system requires a different configuration in order to achieve these
abilities. There are many questions that come to mind when we think about scaling in
MySQL, and while we perform scaling operations in MySQL:

Why is scaling required?
What are the advantages of scaling in MySQL?
What points need to put across in our minds when we perform scaling in
MySQL?
How will scaling work?
Is it secure for data - does it provide surety of data security?
Plus many more...

Let's take a real time example to understand why we need scaling in MySQL. We have an
online e-commerce website that has covered a small market, with limited users and limited
hits on the website, with a single database server. The business is growing up nicely; the
performance of the business is continuously increasing and the user count is increasing, and
with our single database server all requests and performance cannot be scaled at all time.
This may possibly result in a server crash and the business might face loss in terms of profit
and credit in the market. To avoid such a situation, scalability will perform a major part. If
any request from a customer fails due to any reason, or if the node goes down, the other
node will take care of it quickly and give the appropriate response to the customer.

Scaling is required for the continuous increase in performance of database response time
and to improve the productivity of the product. It will help the end product in terms of data
scalability, performance, and better results. Cluster and replication are both key features in
MySQL that can be leveraged for scaling.

MySQL 8 – Scalability and High Availability Chapter 10

[314]

Scaling using cluster
Basic cluster architecture is divided into four different layers:

Client node
Application node
Management node
Data node

These are shown in the following image:

MySQL 8 – Scalability and High Availability Chapter 10

[315]

Client node
The client node is an end user or application that sends a request for any query in terms of
read data or write data from a different device, such as a computer, mobile, tablet, and so
on.

Application node
The application node is meant to provide the bridge between the logic of the application
and the nodes containing the data in MySQL. Applications can access the data, which is
stored in the MySQL cluster, by SQL, with one or many MySQL servers using the function
of SQL. In the application we have multiple technologies from where we connect to the
MySQL server. We connect MySQL server with standard the MySQL connectors, which
gives us the ability to connect with a wide range of access technologies.

As another option, we have NDB API; a high performance interface that can be used to
control real-time user experiences and provide better throughput. In MySQL we have NDB
API, which adds a layer additionally to NoSQL interfaces that consist capability to access
the cluster directly. Application nodes can fetch data from all the data nodes, so the only
cause of failure can be the unavailability of application services, as the application can use
all data nodes to perform data manipulation.

Management node
The management node performs the important role of publishing relevant cluster
information across the nodes in its cluster, along with node management. Nodes for
management work at startup when all nodes want to join the MySQL cluster and also when
reconfiguration of the system is required. The management node can be stopped and restart
all services without damaging or impacting an ongoing operation, execution, or processing
of data and the application node.

MySQL 8 – Scalability and High Availability Chapter 10

[316]

Data node
The data nodes stores the data. Tables get shared across the data nodes, which also helps to
handle load balancing, replication, and high availability failover.

Data nodes are the main nodes of a MySQL cluster solution. It provides the following
functionality and benefits:

In a shared-nothing scenario, data is stored in at least one replica without the use of shared-
disk space. MySQL create one replica of the database which does a synchronous replication
process. If any data node fails due to any specific reason, the replicated data will take care
of it and provide the respective output. It does a synchronous copy of the node so it consists
of the same data as the main node data.

We can store the data either in memory or partially on disk based on the requirement. Data
that frequently change are suggested to be stored in-memory. In-memory data is routinely
checked with the local disk and coordinates to update the data to the rest of the data nodes.

MySQL cluster provides low latency, high throughput, scalability, and high availability.
This adopts horizontal scaling and auto sharding to serve heavy load read/write operations
through the different NoSQL queries. An NDB cluster is a set of different nodes where each
task is running on its own processor.

When we have data replication for the data node it follows synchronous replication, so at
any time all node data will be in-sync. If any node fails for any reason, the other nodes have
the same data and so will be able to provide the data for a query. So, without any downtime
for data response, MySQL provides a perfect solution.

MySQL 8 – Scalability and High Availability Chapter 10

[317]

MySQL supports each of the transactions that can be mapped, as it is committed on the
master server and applied on the slave server. This method is not referring to files
or the relevant position in the file. replication is solely working based on
transactions; it becomes very easy to identify whether the master and the slave servers are
in sync or not.

If any data node fails for any reason, the other nodes take responsibility and gives the
response to the request. Replication of the database is very helpful in critical conditions of
downtime or a failure in any of the nodes.

If any node is failed it will start automatically and again perform the synchronization of
data to the rest of the nodes, which are active nodes, and copy all recent data in the node. In
that case it does self-healing of the failures.

Scaling using memcached in MySQL 8
In MySQL 8, using memcached is one of the ways to achieve scalability. Memcached is a
simple and highly scalable solution for storing data in key and value form in cache
whenever memory is available. Memcached is commonly used for quick access of data.
Data stored in memory doesn't have I/O operations performed for fetching the data.

As all the information is stored in memory, the access speed for data is much faster than
compared to loading every time from disk and results in a better query execution time on
the database server. This plugin also has the feature of serialization, which converts binary
files, code blocks, or any other objects to strings that can be stored, and provides a simple
means to retrieve such objects. While specifying a memory allocation it should not be larger
than the available physical memory of the server.

If you specify too large of a value then some of the memory allocated for memcached will
use swap space and not physical memory. This may lead to delays when storing and
retrieving values because data is swapped to disk instead of storing the data directly in
memory:

MySQL 8 – Scalability and High Availability Chapter 10

[318]

The preceding image depicts memcached architecture, which displays the flow of the data
from memcached to a client or an end user, or a request of the data from an application.

The data in memcached never gets stored in the database. It's always available in memory
itself. If either of the memcached servers fail, data will be fetched from the database, so it
will not impact end-users for data retrieval or have a major performance impact on the
application. The only thing need to keep in mind while we use a memcached server is that
data related to any important information, for instance a financial transaction, should not be
placed in memcached. In that case if there is a failure in memcached, the data might not be
retrieved. In a memcached server data integrity is not healthy as it stores in memory, so
during failure it would be good to have data that is important not saved in memcached.
When configuring a memcached server, memory size is the key factor. If there is improper
configuration, then you can expect a bad situation.

This way we can use memcached to scale the MySQL server for an increased data response
time, and to provide faster performance. It will reduce the load on MySQL server and
multiple servers as a part of cache group and also provides an interface for multiple
languages. It is suggested to be used ideally when there are heavy read operations.

MySQL 8 – Scalability and High Availability Chapter 10

[319]

NoSQL APIs
MySQL cluster provides numerous ways to help access the data store. One of most generic
way is leveraging SQL; however, in real-world use cases we can also depend on native
APIs, which allow the fetching of the data from within the database without affecting
performance or adding further complexity by developing an application to convert SQL.

Scaling using replication
Replication is the copying of a MySQL database. MySQL provides replication with a
different approach. MySQL has a feature of replication that provides scale-out solutions,
data security, long distance data distribution and many more benefits. We have discussed
this at length in , Replication in MySQL 8. The following image explains the basic
architecture of replication in MySQL:

MySQL 8 – Scalability and High Availability Chapter 10

[320]

Replication is one of the best features of MySQL. It simply creates a copy of the data to the
new server or another physical machine, which will import the data from the master server.
Whenever the data is required it will populate the accurate results. It follows the master and
slave approach for the replication. The master database is the actual database of the
application and the slave database is created by MySQL in the database server of another
physical server, which contains replicated data from the master server. We can configure
the slave database for the specific operation, such as when the query relates to reading the
data from the database; we can execute this on the slave server. In this case the master data
will have less load than earlier. Suppose we have a ratio of the 40% write data query and
60% read data query; in this case if we have a single server it will handle all operations
related to the read and write operation. But, as defined in the preceding image we have
replicated the database in two different servers and read operations are performed on the
slave servers, so we can make use of one of the slave server to perform complex read
queries. This makes it possible to generate reports for doing data analysis on MySQL 8, as
performing complex read queries will not impact the overall application performance.

In standard MySQL replication the master server creates binary log files and maintains the
index of the log files to maintain and keep track of log rotation. The binary log files serve
the records updates and are sent to the slave server. When the slave server connects to the
master database server it considers the last position it has read in the log files, after which
the slave server then receives any updates that have taken place since that time. The slave
subsequently blocks and waits for the master to notify it for further updates.

The question in mind is why do we need replication? Or, what is the purpose of the
replication? If replication requires another database server, complexity, and additional
configuration, it increases the maintenance and monitoring time. Still, we have many
additional benefits for business and database admin.

In any case, if the master database server fails we can easily switch our database connection
to the replicated slave server to provide stability in critical situations. This includes if there
is network failure, server failure, hardware issues, and many more reasons for failure.

Performance is the main part in the database. When we have a distributed database over
multiple servers we can connect different applications to different database servers to
increase performance. This feature reduces the response time of the query.

MySQL 8 – Scalability and High Availability Chapter 10

[321]

Replication helps back up the master database. It is more efficient than storing the database
on disk. Users can store the database in the master using the replicated database as a
backup instead of digging up the backup files. When required to restore the data of the
master server a user can easily get it from the slave server, with no need to work on the
backup files and go about finding the last updates and other operations.

By using the replication load of the database, query execution can be reduced; we can split
read and write operations over the databases. If we execute write operations in the master
database and read operations in the slave database that will improve the response time of
the application. We can create load balanced environments in MySQL, which share the load
of all requests to the database server. The load balancer then further sends requests to the
database that can handle each transaction with much better throughput.

Asynchronous data replication means that data is copied from one machine to another, with
a resultant delay. This delay is based on networking bandwidth, resource availability, or a
time interval set by the administrator in configuration. The correct configuration and time
setting provides an accurate result in response. It's based on the network administrator's
configuration. Synchronous data replication implies that data is committed to one or more
machines at the same time.

Group replication makes it possible to copy the master's data to the slave server that resides
at a remote location and perform the read operations for a separate group of client without
impacting the master's operations.

Global transaction identifiers (GTID) uses transaction based replication of data instead of
binary log file based replication. Until and unless transactions that have been operated and
committed on the master servers are present on all the slave servers, GTID will not consider
replication in a consistent state.

MySQL 8 – Scalability and High Availability Chapter 10

[322]

In MySQL 8 replication can be done either in asynchronous mode or in semi-synchronous
mode. In asynchronous mode, write operations are performed on the master server
immediately, while replication in slaves is done periodically as per the configuration.

In the semi-synchronous mode of replication, if semi-synchronous configuration is enabled
on the master and at least one slave server, a transaction on the master node waits before
getting a transaction time out until the semi-synchronous enabled node confirms that
required data or update has been received. And on time-out, the master node again looks
for the semi-synchronous slave and performs the replication.

MySQL 8 provides a new replication method, GTID, where a unique identifier is created
and connected with each transaction saved or committed on the master server. The
uniqueness of these identifiers is in all servers that are in the server where it's created, and
also in the replicated servers. GTID have one to one mapping between all transactions. The
concept of the log file referencing a position within files is not required when starting a new
slave creation or failover to a new MySQL master. You can use either row-based or
statement-based replication with GTIDs.

Using a global transaction ID primarily provides two major benefits:

It's easy to change a master server to connect with a slave server during
failover: GTID is unique out of all servers in the replication group. The slave
server remembers the global transaction ID of the last event from the old master.
This means it becomes easy to identify where to reinitialize replication on the
new MySQL master, as the global transaction IDs are known throughout the
entire replication hierarchy.
The status of the slave provides a crash-safe method: The slave holds current
position information in the system table. If this table is
using a transactional storage engine (such as , which is the default), then
further updates are done in the same transaction.

A GTIDs is a unique key created and associated with each transaction (insert and update
operations) committed on the master server. The key is not only unique to the master
server, but it's unique across all servers in replication.

MySQL 8 – Scalability and High Availability Chapter 10

[323]

The ZFS file system has the ability to provision a snapshot of the server files, such as file
system contents, transfer the snapshot to another machine, and extract the snapshot to
recreate the file system on a different server. Users can create a snapshot at any time and
can create as many snapshots as required. By continually creating, transferring, and
restoring snapshots, it can provide synchronization between one or more machines in a
fashion similar to DRBD.

We have seen all the possible ways to scale a database in MySQL, using different
techniques. As per business need and flexibility we can perform scaling with database
backup. Scaling is not an easy task but its possible in MySQL 8, with the proper knowledge
and understanding of the requirements of the business and a configuration provided by
MySQL 8. For database scaling, we must have proper understanding of the entire workflow
of the database and communication approach.

Challenges in scaling MySQL 8
We have seen how scaling works and the advantages and purpose of scaling in the previous
topic. When we start working with scaling in MySQL 8, what type of challenges will we
face, and what steps need to be kept in mind while we work towards scaling? We have to
account for if we are doing scaling and the master server fails, limits are reached, read and
write operations are not able to handle the requests of the application, or while re-
platforming the database. Scaling is not an easy task; it needs to ensure it is able to handle
increasing transactions without any difficulty. At the time of performing the scaling we
need to keep in mind many points, such as the write and read operation limits in the master
and slave servers. Database load balancing is one of the approaches that help reduce the
traffic of the transaction, but again it needs perfection, and needs to understand the load
balancing configuration properly. The following are the major challenges faced when we
perform scaling.

Business type and flexibility
This is the first point that needs to kept in mind while we perform the scaling. Business type
or business behavior is the core part; if the business is an e-commerce, we already know e-
commerce businesses have a number of functionalities and very critical data about clients,
such as product details, monopoly of the business for offers and discounts. The main thing
is customer details and payment information such as credit card details, debit card details,
and customer feedback.

MySQL 8 – Scalability and High Availability Chapter 10

[324]

In this case, while we are doing scaling in MySQL 8, all parameters need to kept in mind,
such as database back up, security, roles/privileges of the database and backward
compatibility of the scaling. While doing scaling by clustering all data nodes need to be on
the same page. If the application is developed using multiple technologies and we perform
the scaling for each of the stack, we can have different data nodes available; in this case the
database sync is one of the most important things that need to be sure in configuration
while scaling. Which type of data should reside in cached memory in memcached and in
disk should also be clear before we design scaling.

The behavior of the application accesses data from the shared data nodes. If we have an e-
commerce site and we perform the sharding for the same and at a certain level the data are
not available for the client who uses the data of the other shard server for any reason, at that
time the cross-node transaction would be required. It's completely based on the business
behavior, and depends on how flexible the business is when it comes to accepting changes
regarding database scaling.

Understand server workload
For the setup of flexibility, scale, and performance improvement many options and actions
are available in MySQL 8. Many people face issues while performing such activities because
they do not have enough understanding or knowledge to handle various technology stacks
and configuration option selections that can improve scalability, performance, security, and
the flexibility of the application and deployment activity. These configuration options
including clustering, replication, sharding, memcached, storage engine, and many more,
which can be well designed to handle the whole workload of the application. The database
workload and business behavior helps to decide the MySQL configuration.

Read-write operation limit
What happen if the read and write limit is reached and the transaction increases on the
master database server. MySQL has limitations to the capacity; for instance if a number of
customers are visiting the site at the same time that a read-write operation is running and
the server or node are not synced, then at that time it will create confusion or
misunderstanding for the end user. Or, in an e-commerce site, if one customer is purchasing
the product, which is last item left in stock, and at same time another customer searches for
the same product and it's still available, in this case both operations are not in sync in terms
of the read and write operation of the database.

MySQL 8 – Scalability and High Availability Chapter 10

[325]

In the end, the other customer might purchase the same product, which we don't have in
the warehouse. This impacts inventory calculation, and customers have doubts about the
process of the purchase cycle. In that case we would loose the faith of the customer in the
business and the credit of the business would also be impacted.

Another approach is to have database sharding. Sharding can be simply stated as
partitioning the database in multiple servers. Sharding helps to reduce the load on a single
database or the master database. If we have databases sharding geographically, and for
different country or region we have different servers for the database, we can solve the
issue of the limit of read and write operations on the MySQL server. But again, the
technique which we use for the sharding also determines the performance of the database.
We have already learned about this in detail in , Partitioning in MySQL 8.

Maintenance
While we have performed scaling in MySQL 8, we must know how to manage master and
slave servers, and which configuration is required while performing scaling. What are the
steps that need to be taken care of at the time when the server is in a critical stage? What
steps needs to be performed at time of sharding, clustering, or replication of the database
server?

Scaling is possible but its not an easy operation. If we want to perform scaling we should
know that the database can handle more transactions without any issue. We should know
the appropriate configuration to be done to overcome the default limits on the master server
for the write and read operation. Once it's completed, we need to perform similarly steps to
configure the slave database server, which should only have read operations available for
the end user and should always be in sync with the master database.

If we have multiple servers, then the maintenance of the server also becomes a costly
overhead. All the server needs to be on same page, configuration should be in proper
manner, and the cost of the server will also affect the business. If the number of data
constantly increases at that time, server space also needs to be managed in an appropriate
manner.

MySQL 8 – Scalability and High Availability Chapter 10

[326]

Master server failure
If the master server fails and data is not available to the customer at that time, the end user
will get frustrated and the business will be hampered in terms of credit in market and in
losing the customer also. The business will have to suffer from the loss.

Synchronization
Whether we perform the scaling with clustering or replication, in both cases we need to
secure synchronization. All slave servers should have the same database as the master
server. If write operations are performed on the master server and read operations are
performed on the slave server, at that time all data needs to be synced up. All results should
be same, and if any server goes down at a time when data was not synced, it will create
issues regarding the loss of data.

Database security
How do we secure the database if we have different servers and sharding is performed? If
we have different database servers at different locations and access to the database is not
restricted to the user specific at that time then the issue of a data leak is a strong possibility.
We have to completely understand access points of the data in terms of IP configuration of
the database server, with appropriate roles and privileges for the database users who
perform various activities. Which IPs have access and which IPs need to restrict the data
transaction from the server? While we are performing the cross node transaction on the
database, accurate data should be available; it should not give the permission to access
restricted data from the server.

Cross node transaction
Cross node transaction is required when we have multiple nodes after doing scaling and
one node requires the other node data as a part of input. For instance, if we have different
nodes at different locations and we have a single inventory for all the locations at that time,
one user request for any product that is not available in that data node at that time will have
to communicate with other data nodes for the information of the product, based on the
user's request.

MySQL 8 – Scalability and High Availability Chapter 10

[327]

Growing team for development
While the application may have a positive response and its continuous success increase the
business team, the expansion of the database administrators will also be required. When we
performing sharing and scaling or replication in MySQL 8, we require appropriate team
members with the proper knowledge and experience to handle continuous expansion and
the management of database servers. It's not only limited to the setup of database servers;
we also need to keep an eye on maintenance of the server and keep watching the server
activity also.

Manage change request
When we have a change in any database structure and we have already performed the
scaling or replication than a few things need to be taken care of as part of a change request,
or if we add a new feature or an enhancement of the functionality. This includes things such
as updating sharing keys, modifying the data distribution with replication of the nodes,
updating the queries to take replication latency into account to avoid stale data with on-
going managing shards, data balancing, and ensuring that data is available with new
updates.

Scale-up and scale-out
Scale-up describes the process of maximizing the capacity that a single MySQL node can
handle. The process of scaling-up can involve optimally tuning your database software and
choosing the right storage engine, as previously discussed in , MySQL 8 Storage
Engines, and selecting appropriate hardware. There are limits on how far you can scale-up a
node and these are determined by some combination of data size, schema complexity, CPU
cycles, system memory, and disk IO operations. While scale-out has been garnering much
attention because of the need to handle increasingly massive data sets, it is very important
to remember that the better we scale-up, the fewer scale-out nodes that we will require and
so the less we need to spend on hardware.

Scale-out can be used to deliver solutions that cover several different use cases. Some of
most common ones are to increase read capacity by using replication or to use database
sharding to increase total database size and overall transaction throughput.

MySQL 8 – Scalability and High Availability Chapter 10

[328]

All of these are the key challenges faced while scaling MySQL 8. These challenges need to
be considered while we are performing scaling of the database in MySQL 8. A single
mistake can put a business into an situation which none of us would like to be in. Scaling is
the the better way to improve the performance of the database.

Achieving high availability
High availability refers to systems that are durable and can perform operations without any
hindrance on the data that is required for the response or any request from any mobile, web
portals, websites, social, e-commerce, enterprise, and cloud applications. Data availability is
considered an utmost concern for any business or organization. Any issues with downtime
may have an impact on the business credit, and in some cases businesses have to suffer
financial loss.

For instance, if we have an e-commerce application with a single database server, if that
server goes down for reasons such as hardware failure, network issue, virus, or operating
system issues, it impacts the data also. An e-commerce application may have a large
number of customer hits at same time, and any server failures to serve the response to user
requests will impact the user; they will search for other options for the purchase
commodity.

MySQL 8 has capabilities to provide backend for the application to help achieve high
availability and prepare a fully scalable system. An ability of the system to keep the
connection persistent, in case a part of the infrastructure fails, and the ability of the system
to recover from such failures is considered high availability. A failure of the system can be
caused by either a maintenance activity on one part of the system, such as a hardware or
software upgrade, or by the failure of the installed software.

Purpose of high availability
The requirements for achieving HA and scalability may vary from system to system. Each
system requires a different configuration in order to achieve these abilities. MySQL 8 also
supports different approaches, such as the replication of data across multiple MySQL
servers, or preparing multiple data centers based on geographical locations and serving the
client requests from the data centers closest to the location of the client. Such solutions can
be used to achieve the highest uptime of MySQL.

MySQL 8 – Scalability and High Availability Chapter 10

[329]

Today, in the world of competitive marketing, an organization's key point is to have their
system up and running. Any failure or downtime directly impacts business and revenue.
Hence, high availability is a factor that cannot be overlooked. MySQL is quite reliable and
has constant availability using cluster and replication configurations. Cluster servers
instantly handle failures and manage the failover part to keep your system available almost
all the time. If one server gets down, it will redirect the user's request to another node and
perform the requested operation.

Data availability
Data is always available in any situation. In any application, data is the core part, which is
actually the wealth of the application owner. If we have a health care system and at the time
of medical check up of any patient their data is not available, due to server downtime or
any other reason, it might block further process of the doctor and in this case impacts the
life of the patient.

Security of data
The first thing that comes to mind is securing data, because nowadays data has become
precious and it can impact business continuity if legal obligations are not met; in fact, it can
be so bad that it can close down your business in no time. MySQL is the most secure and
reliable database management system, used by many well-known enterprises such as
Facebook, Twitter, and Wikipedia. It really provides a good security layer that protects
sensitive information from intruders. MySQL gives access control management so that
granting and revoking required access on the user is easy. Roles can also be defined with a
list of permissions that can be granted or revoked for the user. All user passwords are
stored in an encrypted format using plugin-specific algorithms.

Synchronization of data
While we have a single database server, if it goes down for any reason we would lose the
whole database, and if we have database backup available up to the current day, we can
restore the database till that day, but all current transactions would also be lost in this case.
The last transaction data would not be available at that time.

MySQL 8 – Scalability and High Availability Chapter 10

[330]

Backup of the data
Database backup till the last transaction should be in the plan when a business has any
server base application where a single database server is performing all the tasks. When
doing high availability, include all scenarios of the backup and restore operation in the
architecture.

Competitive market
In the market many competitors are available with the same nature of business. In this case,
if a business is having issues with data availability to end users, customers might not
continue with that business and instead move to another provider. Its an integral part of
business continuity.

Performance
High availability is also important in terms of the performance of the data operation. If we
have a single server and all operations are performed on that server only, it will reach its
limit at some stage, where the server capacity is exhausted. So, in that case, if we have high
availability architecture implemented it would provide a means to load the balance of a
transaction and the performance of the data manipulation operation. Replication and
clustering enables for better concurrency and manages the workload.

Updates in the system
While any online site or application requires updates or any new production release is
planned it directly impacts the end users. If an application has only limited users at that
time, we can manage the update regarding all end-users via emails or messages within the
application before the release. But in cases where there are a large number of user in a
single application, at that time it will impact the business. It will stop all users at the same
time, and due to this running transactions would be impacted.

Choosing the solution
Again, we have to think about selecting the right solution for the availability. Many things
need to be kept in mind while we plan high availability in MySQL. The requirements for
achieving HA and scalability may vary from system to system. Each system requires a
different configuration in order to achieve these abilities.

MySQL 8 – Scalability and High Availability Chapter 10

[331]

Such solutions can be used to achieve the highest uptime of MySQL with regard to the
following:

The level of availability required
The type of application being deployed
Accepted best practices within your own environment

In MySQL, replication and clustering are the best options for achieving high availability. All
applications have their own architecture, and nature of their business needs to be
considered when we are selecting any technique to achieve high availability of MySQL 8.

Advantages of high availability
The following are the advantages that we have when we perform high availability in
MySQL:

MySQL is quite reliable and has constant availability using cluster and replication
configurations.
Cluster servers instantly handle failures and manage the failover part to keep
your system available almost all the time. If one server goes down, it will redirect
the user's request to another node and perform the requested operation.
An ability of the system to keep the connection persistent, in case a part of
infrastructure fails, and the ability of the system to recover from such failure is
considered as high availability.
MySQL 8 also supports different approaches such as replication of data across
multiple MySQL servers or preparing multiple data centers based on
geographical locations and serving the client requests from the data centers
closest to the location of the client.
MySQL gives high speed transaction processing with optimal speed. It can cache
the results, which boosts read performance.
Replication and clustering enables better concurrency and manages the
workload. Group replication basically takes care of committing transactions once
most of the members in group replication have acknowledged the transaction has
been received concurrently. This helps create better throughput if the overall
number of writes does not exceed the capacity of the members in the group
replication.
Clustering enables data to be replicated to multiple MySQL servers with
automated sharing. It is designed for better availability and throughput.

MySQL 8 – Scalability and High Availability Chapter 10

[332]

Memcached removes the SQL layer and directly accesses the InnoDB database
tables. Hence, overhead operations like SQL parsing will no longer be executed,
which really impacts the performance.
Memcached with MySQL also provides you with a way to make in-memory data
persistent so that we can use it for various data types without losing it.
Memcached APIs are available in different programming languages such as Perl,
Python, Java, PHP, C, and Ruby. With the help of a Memcached API, an
application can interact with the Memcached interface to store and retrieve
information.

Summary
In this chapter, we started with an overview of scalability and high availability in MySQL 8,
which covered the various scalability needs, advantages, methods, and key points to be
noted when we make scalable designs of MySQL 8. We also discussed the shortcomings
that we generally come across when we perform scalability and how to overcome
challenges with appropriate solutions. We have learned about scaling in MySQL 8 and
troubleshooting challenges in scaling MySQL 8. We also learned about many diverse ways
to achieve high availability in MySQL 8.

In the following chapter, we will learn how to take care of MySQL 8 security. We will learn
about general factors that affect security, the security of core MySQL 8 files, access control,
and securing the database system itself. We will also learn the details of security plugins
and gain an in-depth understanding of database security in general for relational databases.

111
MySQL 8 – Security

In previous chapters, we learned about the scalability of MySQL 8 and how to troubleshoot
challenges when scaling MySQL 8. Apart from that, we also learned how to make MySQL 8
highly available for use. Nowadays, security is important for any application, right? When
we talk about security, it includes account management, roles, privileges, and more.
Considering these aspects, we will cover all of these topics in this chapter. This chapter
mainly focuses on MySQL 8 database security and its related features. The following topics
are covered in this chapter:

Overview of security for MySQL 8
Common security issues
Access control in MySQL 8
Account management in MySQL 8
Encryption in MySQL 8
Security plugins

Overview of security for MySQL 8
The term security is not bound to a specific topic; it covers a wide range of topics related to
MySQL 8. Before starting a detailed discussion on it, let's mention some important points
related to security:

Consider security within a database where users and their privileges related to
various database objects need to manage.
Password security for users.

MySQL 8 – Security Chapter 11

[334]

Security configuration during the installation process, which includes various
types of files, such as log files, data files, and many more. These files must be
protected for their read/write operations.
To handle system level failure scenarios, you must have a backup and recovery
plan. This includes all the required files, such as database files, configuration
files, and many more.
Manage network security of the system where MySQL 8 was installed, which
permits a limited number of hosts for the connection.

Now your ride begins with another important and very interesting topic. Here we go.

Common security issues
Before going into detail on complex issues, you must first understand some basic points
that will help you prevent misuse or attacks.

General guidelines
In MySQL 8, all connections, queries, and operations performed by the user are based on
the Access Control Lists (ACLs) security. The following are some general guidelines related
to security:

Don't allow access to the table to any user except the root account. Manage
user privileges with and statements.
Use encrypted protocol, such as SSH or SSL, in the case of data transfer over the
internet. MySQL 8 supports SSL connections for that.
Use proper defensive programming techniques at the time when the client is
entering data into MySQL using an application.
Use a hashing function to store passwords into the MySQL 8 database; don't store
plain text as a password. As the same way for password recovery consider some
string as salt and use values.
Use a proper password policy to protect it from break down. This means your
system should accept only those passwords which follow your rules/conventions.
Use of a firewall reduces the chance of failure by 50% and provides more
protection to your system. Define MySQL under a demilitarized zone or behind a
firewall to protect from distrusted hosts.

MySQL 8 – Security Chapter 11

[335]

The Linux based system provides the command to perform tasks of
transferring in a more secure way. This command works on the network layer to
provide security. For example, using the following command, you can check
whether MySQL data streams are encrypted or not:

 shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

 Guidelines for a secure password
In this section, we describe guidelines for securing passwords with respect to different users
and cover how to manage it during the logging process. MySQL 8 provides
the plugin to define the policy for acceptable passwords.

Guidelines for end users
This section describes various methods to define your password, as an end user, in the
safest way. It explains how to make your password more secure. The safest way is to define
the password in a protected option file or prompt for the password in a client program. See
the following different ways to define your password:

Provide the password using the command line with the following options:

 cmd>mysql -u root --password=your_pwd
 --OR
 cmd>

In the preceding two commands, you have to specify your password in the
command line itself, which is not preferable. MySQL 8 provides another secure
way to connect with the command line for that. Execute the following command,
which will prompt you for the password. Once you enter the password, MySQL
shows the asterisk () sign for each password character:

 cmd>mysql -u root -p
 Enter password: *********

MySQL 8 – Security Chapter 11

[336]

This is a more secure way than the previous two, where you define the password in the
command-line argument:

Use the environment variable to define your password. This method
is insecure as compared to other methods because there is a possibility that the
environment variable is accessible by the other users.
Define the password using the utility, which is a
provided option to store the password into an encrypted login path file, named

. MySQL 8 will use this file later to connect with the
MySQL server.
Use the option file to store your password. When you define your credentials into
the file, make sure this file is not accessible by any other user. For example, in a
UNIX-based system, you define the password in the option file under the client
section as follows:

 [client]
 password=your_pass

To make your file safe or to set an access mode on it, execute the following command:

shell> chmod 600 .my.cnf

Guidelines for administrators
For a database administrator, the following guidelines should be followed to secure
passwords:

Use to apply the policy on accepted passwords
MySQL 8 uses the table to store user passwords, so configure the
system in a way that only administrative users can access this table
Users should be allowed to reset account passwords in the case of expired
passwords
Apply protection on the log file if it contains passwords
Manage access to the plugin directory and the file, because it can modify
capabilities provided by the plugins

MySQL 8 – Security Chapter 11

[337]

Password and logging
MySQL 8 allows you to write passwords as plain text in SQL statements, such as

, , and . If we execute these statements, MySQL 8 will write
passwords as text in log files, and they are visible to all the users that have access to the log
files. To overcome this problem, avoid direct updates on grant tables using the mentioned
SQL statements.

Secure MYSQL 8 against attackers
To secure MySQL 8 against attackers, strongly consider the following points:

Set a password for all MySQL accounts. Never define an account with no
password, because this permits access to your account by any user.
To make a connection with MySQL 8, use secure protocols/channels, such as
compressed protocols, MySQL 8 internal SSL connections, or SSH for encrypted
TCP/IP connections.
For a Unix-based system, set read/write privileges on the data directory for the
Unix account which is used for running . Don't use the root user to start
the MySQL 8 server.
Use the variable to specify the directory for read and write
permission. Using this variable, you can restrict non-administrative users from
accessing important directories. Use this variable to set permissions on

; it is very important. In the same way, do not provide
privileges to all the users, because it permits users to write files anywhere in the
system.
Use the variable to restrict the number of connections
per account.
At the time of creating grant table entries, use wildcards properly. It is preferable
to use IPs instead of DNS.
Follow security guidelines during stored program and view creation.

MySQL 8 – Security Chapter 11

[338]

Security options and variables provided by
MySQL 8
The following options and variables are provided by MySQL 8 for security:

Name Cmd-Line Option File System Var Status
Var Var Scope Dynamic

Yes Yes

 Yes Global Yes

Yes Yes

Yes Yes

 Yes Global Yes

 Yes Both Yes

Yes Yes

Yes Yes Global Yes

 Yes Global Yes

Yes Yes Global No

 Yes Global No

Yes Yes

Yes Yes Global No

 Yes Global No

Yes Yes Global No

 Yes Global No

Yes Yes Global No

 Yes Global No

Security guidelines for client programming
Don't trust any data entered by the application user, because there is the possibility that the
user has entered a or statement for the MySQL database. So, there is always
the risk of security leaks and data loss. As an administrator of a MySQL database, the
following checklist should be followed:

The size of the data must be checked before passing it to MySQL 8.
To make MySQL 8 more restrictive, enable the strict MySQL mode.

MySQL 8 – Security Chapter 11

[339]

For numeric fields, enter characters, special characters, and spaces instead of
numeric itself. Change field values to their original forms by your application
before sending them to the MySQL 8 server.
Use two different users for application connection to the database and for
database administration.
Modify datatypes from numeric to character types by adding quotes in the case
of dynamic URLs and web forms. Also add %22 ("), %23 (#), and %27 (') in
dynamic URLs.

Previously defined functionalities are available built in to all of the programming
interfaces. For example, Java JDBC provides prepared statements with placeholders, and
Ruby DBI provides the method.

Access control in MySQL 8
Privileges are mainly used to authenticate users and will verify user credentials and check if
a user is allowed for the requested operation or not. When we connect with the MySQL 8
server, it will first check the identity of the user by the provided host and user name. After
connection, when a request comes in, the system will grant privileges according to the
user's identity. Based on this understanding, we can say that access control contains two
stages when we try to connect with the MySQL 8 server using the client program:

Stage 1: The MySQL server will either accept or reject the connection, based on
the provided identity
Stage 2: After getting a connection from the MySQL server, when the user sends
a request for performing any operation, the server will check whether sufficient
privileges are available for the user or not

There are some limitations of the MySQL 8 privilege system:

User is not allowed to set a password on specific objects, such as a table or a
routine. MySQL 8 allows it globally at the account level.
As an admin user, we cannot specify privileges in a way that create/drop table is
allowed but create/drop database of that table is not allowed.

MySQL 8 – Security Chapter 11

[340]

You are not allowed to restrict user access explicitly, which means that explicitly matching
the user and refusing its connection is not possible. MySQL 8 manages the content of grant
tables in memory, so in the case of , , and statements, execution on
grant tables requires the server to restart for effect. To avoid server restarts, MySQL has
provided a command for flushing privileges. We can execute this command in three
different ways:

By issuing .1.
Using .2.
Using .3.

When we reload grant tables, it will work as per the following mentioned points:

Table and column privileges: Changes of these privileges will be available from
the next client's request
Database privileges: Changes of these privileges will be available the next time
the client executes a statement
Global privileges and passwords: Changes of these privileges are unaffected for
a connected client; it will be applicable from the subsequent connections

Privileges provided by MySQL 8
Privileges define which operations are permissible to the user accounts. Based on the level
of operation and the context in which it is applied, it will work. It is mainly classified as
follows:

Database privileges: Applied on the database, and all objects of the database
within it. It can be granted to a single database or defined globally to apply on all
databases.
Administrative privileges: It is defined at the global level, so not restricted to a
single database. It enables users to manage operation of the MySQL 8 server.
Database object's privileges: It is used to define privileges on the database
objects, such as tables, views, indexes, and stored routines. It can be applied on a
specific object of the database, can be applied on all objects of a given type in a
database, or can be applied globally for all the objects of a given type in all
databases.

MySQL 8 – Security Chapter 11

[341]

MySQL 8 will store account privilege related information into grant tables and store the
contents of these tables into memory upon server start-up for better performance. Privileges
are further classified in terms of static and dynamic privileges:

Static privileges: These are available built in with the server and cannot be
unregistered. These privileges are always available for the user to be granted.
Dynamic privileges: These privileges can be registered or unregistered at
runtime. If privileges are not registered, then they are not available to be granted
for user accounts.

Grant tables
Grant tables contain information related to user accounts and granted privileges for that
user. MySQL 8 automatically inserts data into these tables when we execute any account
management statements in the database, such as , , and .
MySQL allows insert, update, or delete options on grant tables to the admin user, but it's
not a preferable approach. The following tables of the MySQL 8 database contain grant
information:

: It contains details related to user accounts, global privileges, and other
non-privilege columns

: It contains history of password changes
: It contains column level privileges

: It contains privileges related to stored procedures and functions
: It contains privileges for proxy users

: It contains table level privileges
: It contains details related to dynamic global privileges

assignments
: It contains edges for role subgraphs

: It contains privileges at the database level
: It contains details related to default user roles

MySQL 8 – Security Chapter 11

[342]

Grant tables contain scope and privilege columns:

Scope column: This column defines the scope of rows in the tables, which means
the context under which the row applies.
Privilege column: This column indicates which operation is permitted to the
user. The MySQL server combines information from the various grant tables to
build a complete detail of a user's privileges.

From MySQL 8.0 onward, grant tables use the storage engine by managing
transactional states, but before that, MySQL used the engine by managing
nontransactional states. This change enables users to manage all account management
statements in the transactional mode, so in the case of multiple statements, either all of them
are successfully executed or none of them are executed.

Verification of access control stages
MySQL 8 performs access control checks in two different stages.

Stage 1 - Connection verification
This is the connection verification stage, so after verification, MySQL 8 will either accept or
reject your connection request. Verification will be performed with the following
conditions:

Based on a user's identity, with its password.1.
Whether a user's account is locked or not.2.

The server will deny access if either of these cases fails. Here, the identity contains the
username and hostname from which the request is coming. MySQL performs a locking
check on the column of the user table and a credential check on the three
columns of the user table scope: , , and .

Stage 2 - Request verification
Once a connection is established with the MySQL server, stage 2 comes into the picture,
where the MySQL server checks which operation you want to perform and whether that is
permissible to you or not. For this verification, MySQL uses the privilege columns of the
grant tables; it might be coming from , , , ,
or tables.

MySQL 8 – Security Chapter 11

[343]

Account management in MySQL 8
As the name implies, this topic describes how to manage user accounts in MySQL 8. We
will describe how to add new accounts, how to remove accounts, how to define usernames
and passwords for the accounts, and more.

Add and remove user accounts
MySQL 8 provides two different ways to create accounts:

Using account management statements: These statements are used to create
users and set their privileges; for example, with and
statements, which inform the server to perform modifications on the grant table

Using manipulation of grant tables: Using , , and
statements, we can manipulate the grant table

Out of these two approaches, account management statements are preferable, because they
are more concise and less error-prone. Now, let's see an example of using the commands:

#1 mysql> CREATE USER 'user1'@'localhost' IDENTIFIED BY 'user1_password';
#2 mysql> GRANT ALL PRIVILEGES ON *.* TO 'user1'@'localhost' WITH GRANT
OPTION;

#3 mysql> CREATE USER 'user2'@'%' IDENTIFIED BY 'user2_password';
#4 mysql> GRANT ALL PRIVILEGES ON *.* TO 'user2'@'%' WITH GRANT OPTION;

#5 mysql> CREATE USER 'adminuser'@'localhost' IDENTIFIED BY 'password';
#6 mysql> GRANT RELOAD,PROCESS ON *.* TO 'adminuser'@'localhost';

#7 mysql> CREATE USER 'tempuser'@'localhost';

#8 mysql> CREATE USER 'user4'@'host4.mycompany.com' IDENTIFIED BY
'password';
#9 mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP ON db1.* TO
'user4'@'host4. mycompany.com';

MySQL 8 – Security Chapter 11

[344]

The preceding commands perform the following actions:

 command creates and command assigns full privileges to
. But indicates that is allowed to

connect with only.
 command creates and command assigns full privileges to

, the same as . But in #4, is mentioned, which
indicates that is allowed to connect with any host.

 creates and allows it to connect with only. In ,
we can see that only and privileges are provided to the

. It allows to execute the
, , commands, and

the command, but it has no access on any database.
 creates the account without a password and allows the user to

connect with only. But no grant is specified for , so this
user is not able to access the database nor perform any administrative
commands.

 creates and allows the user to access the database using
only. indicates has grant on for all the mention operations.

 To remove a user account, execute the command as follows:

mysql> DROP USER 'user1'@'localhost';

This command will drop the account from the system.

Security using roles
The same as a user account role having privileges, we can also say that a role is a collection
of privileges. As an admin user, we can grant and revoke privileges from the roles. MySQL
8 provides the following commands, functions, and variables related to role configuration.

MySQL 8 – Security Chapter 11

[345]

SET ROLE
 changes the active roles within the current session. Refer to the following

commands related to :

mysql> SET ROLE NONE; SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| NONE |
+----------------+
mysql> SET ROLE 'developer_read'; SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| `developer_read`@`%` |
+----------------+

The first command will deactivate all roles for the user in the current session. You can see
the effect with the function. In the second command, we are setting
the role as default, and then checking the current role using the
predefined function again.

CREATE ROLE
 is used to create a role; refer to the following command, which will create a

role with the name :

CREATE ROLE 'developer_role';

DROP ROLE
 is used to remove a role. Refer to the following command, which will remove

the role:

DROP ROLE 'developer_role';

MySQL 8 – Security Chapter 11

[346]

GRANT
 assigns privileges to roles and assigns roles to accounts. For example, the following

command assigns all privileges to the developer role:

GRANT ALL ON my_db.* TO 'developer_role';

In the same way, to assign roles to the user account, execute the following command:

GRANT 'developer_role' TO 'developer1'@'localhost';

This command assigns the role to the account. MySQL 8
also provides a feature to assign from user to user and role to role. Consider the
following example:

CREATE USER 'user1';
CREATE ROLE 'role1';
GRANT SELECT ON mydb.* TO 'user1';
GRANT SELECT ON mydb.* TO 'role1';
CREATE USER 'user2';
CREATE ROLE 'role2';
GRANT 'user1', 'role1'TO 'user2';
GRANT 'user1', 'role1'TO 'role2';

In this example, and is created and is applied on them in a simple way
by using the command. Now, for and , we have applied from
the and , respectively.

REVOKE
 is used to remove privileges from the role and remove a role assignment from the

user account. Refer to the following commands:

REVOKE developer_role FROM user1;
REVOKE INSERT, UPDATE ON app_db.* FROM 'role1';

The first command is used to remove for , and the second
command is used to remove insert and update privileges from the on .

MySQL 8 – Security Chapter 11

[347]

SET DEFAULT ROLE
 indicates which roles are active by default, whenever user login

default roles are available to the user. To set a default root, execute the following command:

mysql>SET DEFAULT ROLE app_developer TO root@localhost;

mysql> SELECT CURRENT_ROLE();
+---------------------+
| CURRENT_ROLE() |
+---------------------+
| `app_developer`@`%` |
+---------------------+
1 row in set (0.04 sec)

After setting the default role, restart the server and execute the function
to check whether a role is assigned or not.

SHOW GRANTS
 lists down privileges and role assignments related to accounts and roles. For

a role, execute the following command:

mysql> show grants for app_developer;
+---+
| Grants for app_developer@% |
+---+
| GRANT USAGE ON *.* TO `app_developer`@`%` |
+---+
1 row in set (0.05 sec)

This command shows the grant available on the role. In the same way,
to check grants on a user, execute the following command:

mysql> show grants for root@localhost;

The preceding command lists down all the access available with the user root:

: This function is used to list current roles within the current
session. As described in the default role command, it shows currently assigned
roles of the user.

: This is a system variable used to
automatically activate all granted roles at the time of user login. By default,
automatic activation of roles is disabled.

MySQL 8 – Security Chapter 11

[348]

: This is a system variable used to define mandatory roles.
Remember that roles which are defined as mandatory can't be deleted using the

 command. Define your mandatory roles in the server file as
follows:

 [mysqld]
 mandatory_roles='app_developer'

To persist and set these roles at runtime, use the following statement:

SET PERSIST mandatory_roles = 'app_developer';

This statement applies changes on the running MySQL 8 instance and also saves it for
subsequent restarts. If you want to apply changes for the running instance and not for other
restarts, then use the keyword instead of .

Password management
MySQL 8 provides the following password management related capabilities:

Password expiration: Used to define periods for password expiration so that
users can change it periodically. MySQL 8 allows for setting password expiration
manually for accounts, along with an expiration policy. For an expiration policy,
the , , or

 plugins can be used. To set a password manually, execute the following
command:

 ALTER USER 'testuser'@'localhost' PASSWORD EXPIRE;

This will mark a password as expired for the mentioned user. For password policies, you
have to define the duration in terms of the number of days. MySQL uses the system
variable , which contains a positive integer number to
define the number of days. We can define it in the file or can define it at runtime
using the option:

Password reuse restrictions: Used to prevent the use of old passwords again.
MySQL 8 defines this restriction based on two parameters - the number of
changes and time elapsed; they can be used separately or in combination. MySQL
8 defines and system
variables, respectively, to apply restrictions. We can define these variables in the

 file, or can persist them.

MySQL 8 – Security Chapter 11

[349]

: This variable indicates that new passwords cannot be
set/duplicated from the old passwords. Here, consider the most recent old
passwords as per the specified number.

: This variable indicates that the password cannot
be set/duplicated from the old password. Here, interval defines the specific
period and MySQL 8 will check new password with all the passwords which
were falls under that period for a user. For example, if the interval is set as 20
days, then the new password should not have existed in the last 20 days of
changed data.
Password strength assessment: Used to define strong passwords. It is
implemented using the plugin.

Encryption in MySQL 8
When there is a need to transfer data over the network, it is a must to use encryption for the
connection. If you are using unencrypted data, then someone who has access to the network
can easily watch all of your traffic and can see what data is transferred between the client
and server. To protect your data over the network, use encryption. Make sure the
encryption algorithm used contains security elements to protect your connection from
known attacks, like changing the order of a message or replay twice on data. Based on your
application requirements, you can choose either an encrypted or unencrypted type
connection. MySQL 8 performs encryption per connection using Transport Layer Security
(TLS) protocol.

Configuring MySQL 8 to use encrypted
connections
This section describes how to configure the server and client for the encrypted connection.

Server-side configuration for encrypted connections
On the server side, MySQL 8 uses the option to specify properties related to
encryption. The following options are used at the server side to configure encryption:

: This option specifies the path name of the Certificate Authority (CA)
certificate file

MySQL 8 – Security Chapter 11

[350]

: This option specifies the path name of the server public key
certificate file

: This option specifies the path name of the server private key file

You can use the above options by specifying them in the file as follows:

[mysqld]
ssl-ca=ca.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

The option is enabled by default, so on server startup, MySQL 8 will try to find the
certificate and key file under the data directory, even though you have not defined it in
the file. If those files are found, then MySQL 8 will provide an encrypted
connection, or else continue without an encrypted connection.

Client-side configuration for encrypted connections
At the client side, MySQL uses the same options used at the server side to specify the
certificate and key file, but apart from that, it has options. By default, the client
is allowed to set up an encrypted connection with the server if the server permits it. For
further control, the client program uses the following options:

: This option indicates that an encrypted connection
must be established, and fails if it is not established
 : This option indicates the client program can establish
an encrypted connection if the server permits it, or else establish an unencrypted
connection without a fail

: This option indicates the client program is unable to use
an encrypted connection, and only an unencrypted connection is allowed

: This option is the same as , but in addition
to that, it verifies the CA certificate against the configured CA certificate and
returns a fail if no matches are found

: It is the same as the option, but in
addition to that, it will perform the hostname identity

MySQL 8 – Security Chapter 11

[351]

Command options for encrypted connections
The following options are available in MySQL 8 for an encrypted connection. You can use
these options on the command line, or you can define them in an option file:

Format Description

Do not use encrypted connection

Enable encrypted connection

File that contains a list of trusted SSL Certificate Authorities

Directory that contains trusted SSL Certificate Authority certificate files

File that contains X509 certificate

List of permitted ciphers for connection encryption

File that contains certificate revocation lists

Directory that contains certificate revocation list files

File that contains X509 key

Security state of connection to server

Protocols permitted for encrypted connections

Connect with MySQL 8 remotely from Windows
with SSH
To connect remotely with MYSQL 8 by using SSH from the Microsoft Windows system,
perform the following steps:

Install the SSH client on your local system.1.
After starting the SSH client, set the hostname and user ID by which you want to2.
connect with the server.

MySQL 8 – Security Chapter 11

[352]

Configure port forwarding as follows and save the information:3.
For remote forwarding configure: ,

,
For local forwarding configure: ,

,

Log in to the server with the created SSH session.4.
In your local Microsoft Windows machine, start any ODBC application, such as5.
Microsoft Access.
In your local system, create new file and try to link with MySQL server using the6.
ODBC driver. Make sure you have defined in the connection instead
of .

Security plugins
MySQL 8 provides several plugins to implement security. These plugins provide various
features related to authentication protocols, password validation, secure storage, and much
more. Let's discuss the various types of plugins in detail.

Authentication plugins
The following list of authentication plugins, with their details:

Native pluggable authentication: To implement native authentication, MySQL 8
uses the plugin. This plugin uses a common name in
server and client both the side and inbuilt provided by MySQL 8 for both the
server and client program.

SHA-256 pluggable authentication

To implement SHA-256 hashing MySQL 8 provides two different plugins:

: This plugin is used to implement basic SHA-2561.
authentication.

: This plugin implements SHA-256 authentication2.
along with caching for better performance, and has some additional features as
compared to the basic plugin.

MySQL 8 – Security Chapter 11

[353]

This plugin is inbuilt available with MySQL 8 server and client program with the same
name as . In the client, it is located under the library.
To use this plugin for an account, execute the following command:

CREATE USER 'testsha256user'@'localhost'
IDENTIFIED WITH sha256_password BY 'userpassword';

SHA-2 pluggable authentication
SHA-2 pluggable authentication is the same as the SHA-256 pluggable plugin, except its
plugin name is . When compare to , this
plugin has the following advantages:

If you are using Unix socket-file and shared-memory protocols, then support is1.
provided for client connections.
In-memory caching is available in SHA-2 plugins, which provides faster re-2.
authentication for users who have connected previously.
This plugin provides RSA-based password exchange, which works regardless of3.
the SSL library provided by MySQL 8.

Client-side cleartext pluggable authentication
This plugin is used to send passwords to the server without hashing or encryption. It is
available at the client side with the name . MySQL 8 provides it
built-in within the client library.

No-login pluggable authentication
This is a server-side plugin used to prevent all client connections to any account that uses it.
The plugin name is , and it's not a built-in MySQL plugin, so we must
use the library. To make it usable, put the library file under the
plugin directory first, then perform either of these steps:

Load the plugin on server startup by adding the parameter1.
in the file:

 [mysqld]
 plugin-load-add=mysql_no_login.so

MySQL 8 – Security Chapter 11

[354]

To register the plugin at runtime, execute the following command:2.

 INSTALL PLUGIN mysql_no_login SONAME 'mysql_no_login.so';

To uninstall this plugin, execute the following commands:

If the plugin was installed on the server startup by using 1.
, then restart the server by removing the option.

If the plugin was installed using the command, then use the2.
uninstall command to remove it:

UNINSTALL PLUGIN mysql_no_login;

Socket peer-credential pluggable authentication
The server-side plugin named is used to authenticate clients which are
connected from the local host using the Unix socket file. It is only used for a system that
supports the option. is used to obtain information about the
user running the client program. This is not a built-in plugin; we must use
the library with this plugin. To make it usable, put the library file under
the plugin directory first, and then perform either of these steps:

Load the plugin on server startup by adding the parameter1.
in the file:

 [mysqld]
 plugin-load-add=auth_socket.so

Register the plugin at runtime by executing the following command:2.

 INSTALL PLUGIN auth_socket SONAME 'auth_socket.so';

To uninstall this plugin, execute the following commands:

If the plugin was installed on server startup using ,1.
then restart the server by removing the option.
If the plugin was installed using the command, then use the2.

 command to remove it:

 UNINSTALL PLUGIN auth_socket;

MySQL 8 – Security Chapter 11

[355]

Test pluggable authentication
A test plugin is provided by MySQL 8 to check account credentials and log successes or
failures on the server logs. It is not a built-in plugin and needs to be installed before use.
This is available for both the server and client side, and is named
and , respectively. MySQL 8 uses the

 library for this plugin. To install and uninstall this plugin, perform
the same steps mentioned in the preceding plugin.

The connection-control plugins
MySQL 8 uses these plugins to introduce an increasing delay in the server response to the
client after some specific number of failed connection attempts. MySQL has provided two
plugins for connection control.

CONNECTION_CONTROL
This plugin will check all the incoming requests of connections and, based on that, add a
delay in the server response if required. This plugin uses some system variables for
configuration, and status variables for monitoring purposes. It also uses some other plugins,
event classes, and processes, like audit plugin,
event class, ,
and processes for checking whether the server
should have added a delay before attending any client connection:

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS

This plugin implements uses of the table to provide details on
monitoring of the failed connections.

Plugin installation
We must use the library with this plugin. To make it usable, put
the library file under the plugin directory first, and then perform either of the steps:

Load the plugin on server startup by adding the parameter1.
in the file:

 [mysqld]
 plugin-load-add= connection_control.so

MySQL 8 – Security Chapter 11

[356]

Register the plugin at runtime by executing the following command:2.

 INSTALL PLUGIN CONNECTION_CONTROL SONAME
 'connection_control.so';
 INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS SONAME
 'connection_control.so';

Variables related to CONNECTION-CONTROL
The following variables are provided by plugins:

: This is a status variable, mainly
used to manage the counter. It indicates how many times the server added a
delay in its response on failed connection attempts. It also depends on
the system variable,
because this status variable does not increment the count unless the number of
attempts reaches the limit defined by the threshold variable.

: This is a system
variable which indicates how many consecutive failed attempts are allowed to
clients before the server adds a delay on each attempt.

: This is a system variable
which defines the maximum delay time in milliseconds for the server response on
failed connections attempts. MySQL 8 will consider this variable once the
threshold variable contains a value higher than zero.

: This system variable defines
the minimum delay time in milliseconds for the server to failed connection
attempt. MySQL 8 will consider this variable once the threshold variable contains
a value higher than zero.

The password validation plugin
For password validation, MySQL provides a plugin named . It is
mainly used to test passwords and improve security. The following are the two major
capabilities of this plugin:

: An SQL function used to find the strength
of a password. It takes a password as an argument and returns an integer value
between 0 and 100. Here, 0 indicates a weak password and 100 indicates a strong
password.

MySQL 8 – Security Chapter 11

[357]

Check password as per policy in SQL statements: For all the SQL statements
which use a password as a clear text value, the plugin will check the provided
password against the policy of the password and, based on that, return a
response. In the case of a weak password, the plugin will return
an error. , , ,

 statements, and the function are always checked by this
plugin if the password is defined as clear text in an argument.

Install password validation plugin
We must use the library with this plugin. To make it usable, put
the library file under the plugin directory first, and then perform either of these steps:

Load the plugin on server startup by adding the parameter1.
in the file:

 [mysqld]
 plugin-load-add=validate_password.so

Register the plugin at runtime by executing the following command:2.

 INSTALL PLUGIN validate_password SONAME 'validate_password.so';

Variables and options related to the password
validation plugin
MySQL 8 provides following system variables, status variables and options related to
password validation plugin.

: This is a system variable, and is
enabled by default in MySQL 8. As the name implies, it is used to compare a
password with the username of the currently effective user. If the password
matches with the username or its reverse, MySQL 8 will reject the password,
irrespective of the function value.

: This system variable contains the
pathname of the directory which is used by the plugin.
You can set it at runtime without a server restart, and it is available once the
plugin is installed. Set the password policy value as 2(strong), if you define the
directory for the password check. Possible values for password policy is describe
under system variable.

MySQL 8 – Security Chapter 11

[358]

: This system variable is available once a plugin is
installed and is used to define the minimum number of characters for a password
to check with the plugin.

: This system variable is available
once a plugin is installed and is used to define the minimum number of
lowercase and uppercase characters for a password check.

: This system variable is available once the
plugin is installed and is used to define the minimum number of digits for the
password check.

: This system variable is available
once a plugin is installed and is used to define the minimum number of non-
alphanumeric characters in a password check.

: This system variable is available once a plugin is
installed, and it indicates how a plugin should behave in the case of other system
variables. The following values of this variable describe the behavior of
the plugin:

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and special characters

2 or STRONG Length; numeric, lowercase/uppercase, and special characters; dictionary file

: This is a status
variable used to indicate the time when a directory file was last parsed.

: This is a status
variable used to indicate the number of words read from the directory file.

: This option is used to define how a server
loads the plugin on startup. This option is available only if
the plugin was registered with or if it is loaded with the

 feature.

MySQL 8 – Security Chapter 11

[359]

MySQL 8 keyring
MySQL 8 provides a keyring service, which allows the MySQL server's internal components
and plugins to store their sensitive information for later use. For this feature, MySQL 8 uses
the plugin, which will store data into the file located on the server host. This
plugin is available in all distributions of MySQL, such as the Community Edition and
Enterprise Edition.

Install keyring plugin
We must use the library with this plugin. To make it usable, put the
library file under the plugin directory first, and then perform either of these steps:

Load the plugin on server startup by adding the parameter
in the file:

 mysqld]
 plugin-load-add=keyring_file.so

Register the plugin at runtime by executing the following command:

 INSTALL PLUGIN keyring_file SONAME 'keyring_file.so';

System variables related to keyring plugin
MySQL 8 provides below system variable related to keyring plugin:

: This system variable is available once a plugin is installed
and is used to define a pathname of the data file which is used by
the plugin to store secure data. Keyring operations are
transactional, so this plugin uses a backup file during write operation to handle a
rollback scenario. In this case, the backfile is also named with the same naming
convention as defined in the system variable, with the
suffix as .

MySQL 8 – Security Chapter 11

[360]

Summary
In this chapter, we started with an overview of security, and then the ride began with the
MySQL 8 security related features. First we discussed some common security issues, then
we showed how to assign privileges and how to manage access control in MySQL 8.
Encryption was also covered in this chapter, to secure your sensitive data. And finally, we
covered some important security plugins, which are useful to implement security in MySQL
8.

It's now time to move on to our next chapter, where we will be configuring MySQL 8 for
optimization. For optimization, we will cover different areas of the database, such as
optimizing queries, optimizing tables, optimizing buffering and caching, and much more.
Apart from server configuration, it also covers how to configure a client for optimization.

112
Optimizing MySQL 8

In the previous chapter, we learned about security, which is an important aspect of any
production-grade application. The chapter started with an introduction to security and
identifying common security issues. Moving on, the chapter covered access control
mechanisms, account management, and encryption in MySQL 8. We learned various
MySQL 8 security plugins in the later part of the chapter. Security is an important
benchmark for every production-grade application. That's why the previous chapter is an
important one.

Moving along a similar line, with the objective of developing highly optimized databases,
this chapter focuses on optimization methods. It starts with an overview of what
optimization means in MySQL 8. It takes the reader through MySQL 8 server and client
optimization, optimizing database structure, and optimizing common queries and database
tables. Later in the chapter, emphasis is given to buffering and caching techniques.

The following is a list of topics to be covered:

Overview of MySQL 8 optimization
Optimizing MySQL 8 servers and clients
Optimizing database structure
Optimizing queries
Optimizing tables
Leveraging buffering and caching

Optimizing MySQL 8 Chapter 12

[362]

Overview of MySQL 8 optimization
Let's start with understanding MySQL 8 optimization. Optimization is the process of
identifying performance bottlenecks and implementing optimized solutions to overcome
these issues. Optimization in MySQL 8 involves performance measurement, configuration,
and tuning at several different levels. It is an important task for an administrator to
optimize the performance at different levels, like individual SQL queries, entire database
applications, database servers, or distributed database servers. Performance optimization at
the CPU and memory levels improves scalability. It also allows the database to handle more
complex queries without slowing down the database server.

The performance of a database depends on multiple factors. At the database level, these
factors can be tables, queries, and configurations. Database server startups and database
query executions are a couple of the events when these constructs impact the CPU or
perform I/O (Input/Output) operations at the hardware level. This is a responsibility of the
MySQL 8 database administrator: to make sure that the hardware performance stands at an
optimum level. It is required that the hardware is used with the maximum efficiency
possible. At the software level, performance optimization starts by learning generic rules
and guidelines and measuring performance with clock time. Gradually, we understand the
internals of various database operations. We can measure the performance in terms of CPU
cycles and I/O operations. To attain the best database performance, we can optimize the
software and hardware configurations at a basic level. At an advanced level, we can
improve MySQL itself by developing custom storage engines and hardware appliances,
which expand the MySQL ecosystem.

Optimizing the database
What is the most important factor in making the database perform at the optimum speed?
The answer is, basic database design. The following is a checklist to keep an eye on for
database design:

The database columns have to be of the right data types. Tables must have
appropriate columns for the purposes to be served. Applications that have
frequent operations to be performed on the database have many tables with
fewer columns, whereas applications that analyze large amounts of data have
limited tables with many columns.

Optimizing MySQL 8 Chapter 12

[363]

As we learned in one of the previous chapters, database indexing plays an
important role in enhancing query performance. So, it is important to have
correct indexes in place for query execution efficiency.
We discussed database storage engines, such as or , in earlier
chapters. Use of an appropriate storage engine for each individual table is
important. is preferable for transactional database tables, whereas

 is preferable for defining non-trasactional database tables. The choice of
storage engine plays a vital role in defining the performance and scalability of the
database.
In the chapter on MySQL 8 data types, we learned about row formats in detail. It
is again important for each to have an appropriate row format. The choice of row
format depends on the storage engine chosen. Compressed tables occupy less
disk space and require fewer disk I/O operations. For tables, compression
is available for all read and write operations. On the contrary, compression is
available for read-only tables.
The MySQL database supports multiple locking strategies. The locking can be at
a table-level or a row-level. The application must use an appropriate locking
strategy. By granting shared access wherever appropriate, it becomes possible to
run database operations concurrently. Also, it should be possible to request
exclusive access, so that critical database operations can be executed with data
integrity issues and priority can be maintained. In this case, the choice of storage
engine is again significant. The storage engine handles most locking
issues without user involvement. It allows for better concurrency and reduces the
amount of experimentation and tuning for the code.
The memory areas must use the correct caching size. It should be large enough to
hold frequently accessed data, and at the same time, not so large that they
overload physical memory and cause paging. The buffer pool and

 key cache are the main memory areas to be configured.

For newly created tables, is the default storage engine. In practical
use, advanced performance features mean that tables with

 storage engines outperform the tables for an operations-
heavy database.

Optimizing MySQL 8 Chapter 12

[364]

Optimizing the hardware
Growth is the nature of every software application. As the application grows, so does the
database. The database becomes more and more busy in performing operations. At a certain
point, the database application eventually hits the hardware limits. An administrator must
evaluate the possibility of tuning the application or re-configuring the server to avoid these
issues. It should also be evaluated whether deploying more hardware resources would
help. System bottlenecks usually arise from the following sources:

Disk seeks: As part of the disk read operation, finding a piece of data takes time
for the disk. The mean time for finding a piece of data is usually lower than 10
milliseconds with modern disks. So, in theory, it should be 100 seeks per second.
With technological evolution, the new disks have improvements on the disk time,
but it is very hard to optimize for single tables. To optimize the seek time, it is
necessary to distribute data across more than one disk.
Disk reading and writing: To read or write data from a disk, it is required for the
disk to be at the correct position. One disk delivers at least 10 to 20 MB of
throughput per second (throughput is the amount of data read or written per
second). So, the read and write throughput is more easily optimized than the seek
time, as we can read in parallel from multiple disks.
CPU cycles: We must process the data when it is in the main memory to get the
desired result. With large tables, the amount of memory is the most common
limiting factor. With small tables, however, speed is usually not an issue.
Memory bandwidth: In an uncommon scenario, the main memory bandwidth
becomes a bottleneck when the CPU needs more data than can be fit in the CPU
cache memory.

Optimizing MySQL 8 servers and clients
This section focuses on optimization for MySQL 8 database servers and clients, starting
with optimizing the server and followed by optimizing MySQL 8 client-side entities. This
section is more relevant to database administrators, to ensure performance and scalability
across multiple servers. It would also help developers preparing scripts (which includes
setting up the database) and users running MySQL for development and testing to
maximize the productivity.

Optimizing MySQL 8 Chapter 12

[365]

Optimizing disk I/O
In this section, we will learn ways to configure storage devices to devote more and faster
storage hardware to the database server. A major performance bottleneck is disk seeking
(finding the correct place on the disk to read or write content). When the amount of data
grows large enough to make caching impossible, the problem with disk seeds becomes
apparent. We need at least one disk seek operation to read, and several disk seek operations
to write things in large databases where the data access is done more or less randomly. We
should regulate or minimize the disk seek times using appropriate disks.

In order to resolve the disk seek performance issue, increasing the number of available disk
spindles, symlinking the files to different disks, or stripping disks can be done. The
following are the details:

Using symbolic links: When using symbolic links, we can create a Unix symbolic
links for index and data files. The symlink points from default locations in the
data directory to another disk in the case of tables. These links may also
be striped. This improves the seek and read times. The assumption is that the
disk is not used concurrently for other purposes. Symbolic links are not
supported for tables. However, we can place data and log files
on different physical disks.
Striping: In striping, we have many disks. We put the first block on the first disk,
the second block on the second disk, and so on. The N block on the (N % number-
of-disks) disk. If the stripe size is perfectly aligned, the normal data size will be
less than the stripe size. This will help to improve the performance. Striping is
dependent on the stripe size and the operating system. In an ideal case, we would
benchmark the application with different stripe sizes. The speed difference while
striping depends on the parameters we have used, like stripe size. The difference
in performance also depends on the number of disks. We have to choose if we
want to optimize for random access or sequential access. To gain reliability, we
may decide to set up with striping and mirroring (RAID 0+1). RAID stands
for Redundant Array of Independent Drives. This approach needs 2 x N drives
to hold N drives of data. With a good volume management software, we can
manage this setup efficiently.
There is another approach to it, as well. Depending on how critical the type of
data is, we may vary the RAID level. For example, we can store really important
data, such as host information and logs, on a RAID 0+1 or RAID N disk, whereas
we can store semi-important data on a RAID 0 disk. In the case of RAID, parity
bits are used to ensure the integrity of the data stored on each drive. So, RAID N
becomes a problem if we have too many write operations to be performed. The
time required to update the parity bits in this case is high.

Optimizing MySQL 8 Chapter 12

[366]

If it is not important to maintain when the file was last accessed, we can mount
the file system with the option. This option skips the updates on the
file system, which reduces the disk seek time. We can also make the file system
update asynchronously. Depending upon whether the file system supports it, we
can set the option.

Using NFS with MySQL
While using a Network File System (NFS), varying issues may occur, depending on the
operating system and the NFS version. The following are the details:

Data inconsistency is one issue with an NFS system. It may occur because of
messages received out of order or lost network traffic. We can use TCP with
and mount options to avoid these issues.
MySQL data and log files may get locked and become unavailable for use if
placed on NFS drives. If multiple instances of MySQL access the same data
directory, it may result in locking issues. Improper shut down of MySQL or
power outage are other reasons for filesystem locking issues. The latest version of
NFS supports advisory and lease-based locking, which helps in addressing the
locking issues. Still, it is not recommended to share a data directory among
multiple MySQL instances.
Maximum file size limitations must be understood to avoid any issues. With NFS
2, only the lower 2 GB of a file is accessible by clients. NFS 3 clients support larger
files. The maximum file size depends on the local file system of the NFS server.

Optimizing the use of memory
In order to improve the performance of database operations, MySQL allocates buffers and
caches memory. As a default, the MySQL server starts on a virtual machine (VM) with 512
MB of RAM. We can modify the default configuration for MySQL to run on limited
memory systems.

Optimizing MySQL 8 Chapter 12

[367]

The following list describes the ways to optimize MySQL memory:

The memory area which holds cached data for tables, indexes, and other
auxiliary buffers is known as the buffer pool. The buffer pool is divided
into pages. The pages hold multiple rows. The buffer pool is implemented as a
linked list of pages for efficient cache management. Rarely used data is removed
from the cache using an algorithm. Buffer pool size is an important factor for
system performance. The system variable defines
the buffer pool size. allocates the entire buffer pool size at server startup.
50 to 75 percent of system memory is recommended for the buffer pool size.
With , all threads share the key buffer. The system
variable defines the size of the key buffer. The index file is opened once for each

 table opened by the server. For each concurrent thread that accesses the
table, the data file is opened once. A table structure, column structures for each
column, and a 3 x N sized buffer are allocated for each concurrent thread.
The storage engine maintains an extra row buffer for internal use.
The optimizer estimates the reading of multiple rows by scanning. The storage
engine interface enables the optimizer to provide information about the recorded
buffer size. The size of the buffer can vary depending on the size of the estimate.
In order to take advantage of row pre-fetching, uses a variable size
buffering capability. It reduces the overhead of latching and B-tree navigation.
Memory mapping can be enabled for all tables by setting
the system variable to 1.
The size of an in-memory temporary table can be defined by
the system variable. The maximum size of the heap table can
be defined using the system variable. If the in-memory
table becomes too large, MySQL automatically converts the table from in-
memory to on-disk. The storage engine for an on-disk temporary table is defined
by the system variable.
MySQL comes with the MySQL performance schema. It is a feature to monitor
MySQL execution at low levels. The performance schema dynamically allocates
memory by scaling its memory use to the actual server load, instead of allocating
memory upon server startup. The memory, once allocated, is not freed until the
server is restarted.

Optimizing MySQL 8 Chapter 12

[368]

Thread specific space is required for each thread that the server uses to manage
client connections. The stack size is governed by the system
variable. The connection buffer is governed by the system
variable. A result buffer is governed by . The connection
buffer and result buffer starts with bytes, but enlarges up
to bytes, as needed.
All threads share the same base memory.
All join clauses are executed in a single pass. Most of the joins can be executed
without a temporary table. Temporary tables are memory-based hash tables.
Temporary tables that contain data and tables with large row lengths are
stored on disk.
A read buffer is allocated for each request, which performs a sequential scan on a
table. The size of the read buffer is determined by the
system variable.
A random read buffer is allocated when reading rows in an arbitrary manner to
avoid disk seeks. The buffer size is determined by the
system variable.
The memory allocated to a thread is released as soon as the thread is no longer
needed. The released memory is returned to the system unless the thread is put
into the thread cache.
MySQL closes all tables that are not in use at once when or

 flush-table commands are executed. It marks all in-use tables to be
closed when the current thread execution finishes. This frees in-use memory.

 returns only after all tables have been closed.

It is possible to monitor the MySQL performance schema and sys schema for memory
usage. Before we can execute commands for this, we have to enable memory instruments on
the MySQL performance schema. It can be done by updating the column of the
performance schema table. The following is the query to view
available memory instruments in MySQL:

mysql> SELECT * FROM performance_schema.setup_instruments WHERE NAME LIKE
'%memory%';

If memory instruments are enabled on startup, it ensures memory
allocations on startup are counted.

Optimizing MySQL 8 Chapter 12

[369]

This query will return hundreds of memory instruments. We can narrow it down by
specifying a code area. The following is an example to limit results to memory
instruments:

mysql> SELECT * FROM performance_schema.setup_instruments WHERE NAME LIKE
'%memory/innodb%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
memory/innodb/adaptive hash index	NO	NO
memory/innodb/buf_buf_pool	NO	NO
memory/innodb/dict_stats_bg_recalc_pool_t	NO	NO
memory/innodb/dict_stats_index_map_t	NO	NO
memory/innodb/dict_stats_n_diff_on_level	NO	NO
memory/innodb/other	NO	NO
memory/innodb/row_log_buf	NO	NO
memory/innodb/row_merge_sort	NO	NO
memory/innodb/std	NO	NO
memory/innodb/trx_sys_t::rw_trx_ids	NO	NO
+---+---------+-------+

The following is the configuration to enable memory instruments:

performance-schema-instrument='memory/%=COUNTED'

The following is an example to query memory instrument data in the
 table in the performance schema:

mysql> SELECT * FROM performance_schema.memory_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'memory/innodb/buf_buf_pool'\G;

EVENT_NAME: memory/innodb/buf_buf_pool
COUNT_ALLOC: 1
COUNT_FREE: 0
SUM_NUMBER_OF_BYTES_ALLOC: 137428992
SUM_NUMBER_OF_BYTES_FREE: 0
LOW_COUNT_USED: 0
CURRENT_COUNT_USED: 1
HIGH_COUNT_USED: 1
LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 137428992
HIGH_NUMBER_OF_BYTES_USED: 137428992

It summarizes data by .

Optimizing MySQL 8 Chapter 12

[370]

The following is an example of querying the sys schema to aggregate currently allocated
memory by code area:

mysql> SELECT SUBSTRING_INDEX(event_name,'/',2) AS
 code_area, sys.format_bytes(SUM(current_alloc))
 AS current_alloc
 FROM sys.x$memory_global_by_current_bytes
 GROUP BY SUBSTRING_INDEX(event_name,'/',2)
 ORDER BY SUM(current_alloc) DESC;
+---------------------------+---------------+
| code_area | current_alloc |
+---------------------------+---------------+
memory/innodb	843.24 MiB
memory/performance_schema	81.29 MiB
memory/mysys	8.20 MiB
memory/sql	2.47 MiB
memory/memory	174.01 KiB
memory/myisam	46.53 KiB
memory/blackhole	512 bytes
memory/federated	512 bytes
memory/csv	512 bytes
memory/vio	496 bytes
+---------------------------+---------------+

Optimizing use of the network
The MySQL database server opens up network interfaces to connect with the clients and
starts listening to these interfaces. The connection manager threads are responsible for
handling client connection requests. The connection manager threads additionally handle
socket files on the Unix platform. The connection manager thread takes care of shared-
memory connection requests, and one other thread handles named-pipe connection
requests on the Windows system. Threads are not created for the interfaces that the server
does not listen to.

The connection manager thread allocates a thread to each client connection. The thread
authenticates and takes care of request processing for that client connection. The manager
threads check within the thread cache for a thread first, which can be used for the client
connection. If no thread is available in the cache, it creates a new thread. Once the client
request is processed and the connection ends, the thread which was created to serve the
client connection is returned to the thread cache unless the cache is full.

Optimizing MySQL 8 Chapter 12

[371]

There are as many threads as the number of clients currently connected in this thread
connection model. It has disadvantages, as well. When the server is required to be scaled to
handle a higher number of connections than it is handling right now, thread creation and
disposal becomes expensive. In this thread connection model, server and kernel resources
are required for each thread.

Few server variables can be used to set up the server for optimized network usage. The
 is the system variable which defines the size of the thread cache. The

default value for thread cache size is 0. This means that for each new connection, a thread is
to be set up and disposed when the connection terminates. If we set
to 10, it enables 10 inactive connection threads to be cached. The thread connection becomes
inactive when the connection with the client it was associated with terminates.

The complexity of the SQL statements a server can handle is limited by the size of the
thread stack. The MySQL 8 server can be started with to set N bytes of
stack size for each thread.

After setting the thread cache size, it becomes critical to monitor the
impact. and are the status variables to find out the
number of threads in the thread cache, and the number of threads created because it could
not be taken from the cache. The following is an example command to find out server status
variable values:

mysql> show global status;
+-----------------------------+--------+
| Variable_name | Value |
+-----------------------------+--------+
Aborted_clients	0
Aborted_connects	1
Acl_cache_items_count	0
Binlog_cache_disk_use	0
Binlog_cache_use	0
Binlog_stmt_cache_disk_use	0
Binlog_stmt_cache_use	0
Bytes_received	443
Bytes_sent	346
Threads_cached	0
Threads_connected	1
Threads_created	1
Threads_running	2
+-----------------------------+--------+

Optimizing MySQL 8 Chapter 12

[372]

The following is an example of filtering the variables:

mysql> show status like '%Thread%';
+--+-------+
| Variable_name | Value |
+--+-------+
Delayed_insert_threads	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Slow_launch_threads	0
Threads_cached	0
Threads_connected	1
Threads_created	1
Threads_running	2
+--+-------+

Optimizing locking operations
As discussed in one of the earlier chapters, MySQL 8 uses locking mechanisms to manage
contention. Contention occurs when concurrently executing queries in multiple threads try
to get ahold of one table at the same time. If these queries are performed on the table
concurrently, the table data is left in an inconsistent state. MySQL 8 supports two types of
locking: internal locking and external locking.

Internal locking is performed by multiple threads within the MySQL server to manage
contention for table contents. This type of locking is performed entirely by the MySQL
server, without involving any other programs. So, why it is called internal locking? In the
case of external locking, the MySQL server and other programs lock table files to decide
which programs can access the table at a time.

The following are the two methods for internal locking:

Row-level locking.
Table-level locking.

Row-level locking in MySQL supports simultaneous write access to multiple sessions. This
enables multi-user and highly concurrent applications. While performing multiple
concurrent write operations on a single table, it is highly possible that a deadlock may
occur.

Optimizing MySQL 8 Chapter 12

[373]

In order to avoid such a deadlock situation, a locking mechanism acquires locks at the
beginning of the transaction using the statement for each set of
rows to be modified. MySQL applies the statements in the same order within each
transaction if transactions lock more than one table. The database engine
automatically detects deadlock conditions and rolls back the affected transactions.
Considering this, deadlocks affect performance.

The deadlock detection may cause slowdown if many threads wait for the same lock in
highly concurrent systems. In such cases, it becomes more efficient to disable deadlock
detection. We can rely on the setting for transaction rollback
when deadlock occurs. Using the configuration option, we can
disable the deadlock detection.

The following are the advantages of row-level locking:

When different sessions access different rows in a table, the number of lock
conflicts is fewer
The number of changes to be rolled back is fewer
It becomes possible to lock a single table row for a long time

Table-level locking is used by MySQL for , , and tables. In the case of
table-level locking, MySQL permits only one session to update these tables at a time. With
table-level locking, these storage engines become suitable for read-only or single-user
applications. These storage engines request all the required locks at once, when the query
begins, to avoid any deadlocks. It always locks the tables in the same order. The major
drawback with table-level locking is that it affects concurrency. If other sessions need to
modify the table, they must wait until the concurrent data change statement finishes.

The following are the advantages of table-level locking:

It requires less memory compared to row-level locking
When used on a large part of the table, it is fast, because only one lock is required
If operations are performed frequently, it is fast

The following is the strategy for MySQL to grant write locks on tables:

Put a write lock on the table if there are no write locks on the table1.
Put a lock request in the write lock queue if the table already has a write lock2.

Optimizing MySQL 8 Chapter 12

[374]

The following is the strategy for MySQL to grant read locks on tables:

Put a read lock on the table if there are no read locks on the table1.
Put a lock request in the read lock queue if the table already has a read lock2.

More priority is given to table updates than table retrievals. The lock is available to the
write lock requests first, and then to the read lock requests when a lock is released.

The following is an example to analyze table lock contention:

mysql> SHOW STATUS LIKE 'Table_locks%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Table_locks_immediate | 5 |
| Table_locks_waited | 0 |
+-----------------------+-------+

The storage engine inherently supports multiple concurrent inserts in order to
reduce contention between readers and writers for a table. It allows the table to
insert rows in the middle of a data file. If the table does not have any free blocks in the
middle of the data file, the rows are inserted at the end of the file. This enables MySQL to
execute and queries on the same table, concurrently.
is the global system variable which controls the behavior of the storage engine to
allow execution of concurrent and statements. If this system variable is set
to , concurrent and are allowed.

If concurrent inserts are not possible and we want to perform multiple and
operations on a table , we can use the temporary table to hold the
table data and update the table with the rows from the table. The
following is an example which demonstrates this scenario:

mysql> LOCK TABLES tab1 WRITE, temp_tab1 WRITE;
mysql> INSERT INTO tab1 SELECT * FROM temp_tab1;
mysql> DELETE FROM temp_tab1;
mysql> UNLOCK TABLES;

Optimizing MySQL 8 Chapter 12

[375]

Performance benchmarking
We must consider the following factors when measuring performance:

While measuring the speed of a single operation or a set of operations, it is
important to simulate a scenario in the case of a heavy database workload for
benchmarking
In different environments, the test results may be different
Depending on the workload, certain MySQL features may not help with
performance

MySQL 8 supports measuring the performance of individual statements. If we want to
measure the speed of any SQL expression or function, the function is used.
The following is the syntax for the function:

BENCHMARK(loop_count, expression)

The output of the function is always zero. The speed can be measured by the
line printed by MySQL in the output. The following is an example:

mysql> select benchmark(1000000, 1+1);
+-------------------------+
| benchmark(1000000, 1+1) |
+-------------------------+
| 0 |
+-------------------------+
1 row in set (0.15 sec)

From the preceding example , we can find that the time taken to calculate for
times is .

Examining thread information
At times, we may need to figure out what the MySQL server is doing. So, it becomes
necessary to find out the process list. The process list is the set of threads currently being
executed within the MySQL server.

Optimizing MySQL 8 Chapter 12

[376]

The following are the sources for getting process list information:

The statement. The following is an example of
process list information:

mysql> show processlist;
+----+-----------------+-----------------+------+---------+--------+
| Id | User | Host | db | Command | Time |
+----+-----------------+-----------------+------+---------+--------+
+------------------------+-----------------------+
| State | Info |
+------------------------+-----------------------+
+----+-----------------+-----------------+------+---------+--------+
| 4 | event_scheduler | localhost | NULL | Daemon | 214901 |
+----+-----------------+-----------------+------+---------+--------+
| 8 | root | localhost:58629 | NULL | Query | 0 |
+----+-----------------+-----------------+------+---------+--------+
+------------------------+-----------------------+
| Waiting on empty queue | NULL |
+------------------------+-----------------------+
| starting | show full processlist |
+------------------------+-----------------------+

The statement.
The table:

mysql> select * from information_schema.processlist;
+----+-----------------+-----------------+------+---------+--------+
| ID | USER | HOST | DB | COMMAND | TIME |
+----+-----------------+-----------------+------+---------+--------+
+------------------------+--+
| STATE | INFO |
+------------------------+--+
+----+-----------------+-----------------+------+---------+--------+
| 8 | root | localhost:58629 | NULL | Query | 0 |
+----+-----------------+-----------------+------+---------+--------+
| 4 | event_scheduler | localhost | NULL | Daemon | 215640 |
+----+-----------------+-----------------+------+---------+--------+
+------------------------+--+
| executing | select * from information_schema.processlist |
+------------------------+--+
| Waiting on empty queue | NULL |
+------------------------+--+

Optimizing MySQL 8 Chapter 12

[377]

The command.
The performance schema threads table, stage tables, and lock tables.

We must be able to view the information of user threads. The privilege is required
to view the information about threads being executed. To access threads, a Mutex access is
not required. It has less impact on the MySQL server performance. Accessing

 and requires a Mutex and has
an impact on performance. Threads also provide details of background threads.

 and do not provide
information about background threads.

The following table shows the information contained in each process list entry:

Information Details

Id Client connection identifier for the client that the thread is associated with.

User, Host Account associated with the thread.

db Default database for the thread or .

Command, State It indicates what the thread is currently doing.

Time It indicates how long the thread has been in the current state.

Info It contains the information of the statement being executed by the thread.

The following is the thread state values associated with general query processing:

: It occurs when the thread creates a table, including internal
temporary tables

: It occurs when the thread is calculating key distribution
: It occurs when checking if the server has the required

privileges to execute the SQL statement
: It occurs when the thread is performing a table check

operation
: It occurs when the thread has processed one command and frees

the memory

Optimizing MySQL 8 Chapter 12

[378]

: It occurs when the thread is flushing the changed table data to
disk and closing the used tables

: It occurs when the server is processing the
statement

: It occurs when the thread is processing
 for the table

: It occurs when the thread is creating a table
: It occurs at the end, but before the clean up of , ,

, , , or statements
: It occurs when the thread has begun executing a statement

: It occurs before the initialization of , , ,
, and statements

The following is the list of common states in the master's dump thread for
replication master threads:

Finished reading one ; switching to next
Master has sent all to slave; waiting for more updates
Sending event to slave
Waiting to finalize termination

The following is a list of common states for a slave server I/O thread:

Checking master version
Connecting to master
Queueing master event to the relay log
Reconnecting after a failed dump request
Reconnecting after a failed master event read
Registering slave on master
Requesting dump
Waiting for its turn to commit
Waiting for master to send event
Waiting for master update
Waiting for slave Mutex on exit
Waiting for the slave SQL thread to free enough relay log space
Waiting to reconnect after a failed dump request
Waiting to reconnect after a failed master event read

Optimizing MySQL 8 Chapter 12

[379]

The following is a list of common states for a slave server SQL thread:

Killing slave
Making temporary file (append) before replaying
Making temporary file (create) before replaying
Reading event from the relay log
Slave has read all relay log; waiting for more updates
Waiting for an event from coordinator
Waiting for slave Mutex on exit
Waiting for slave workers to free pending events
Waiting for the next event in relay log
Waiting until seconds after master executed event

Optimizing database structure
As a database administrator, we must look for efficient ways to organize table schema,
tables, and columns. We minimize I/O, plan ahead, and keep related items together to tune
the application code in order to keep performance high with an increase in data volume. It
usually starts with efficient database design, which makes it easier for team members to
write high-performance application code. It also makes the database likely to sustain itself
as applications evolve or are rewritten.

Optimizing data size
In order to minimize the space on the disk, we should start designing the database tables.
This results in huge performance improvements, as it reduces the amount of data to be
written to and read from the disk. Smaller tables usually need less main memory, while the
contents are actively processed during query execution. Any reduction in table data space
results in a need for smaller indexes that can be processed faster.

As discussed in the chapter on MySQL 8 data types, MySQL supports many different
storage engines and row formats. We can decide the storage and indexing method to be
used for each table. It is a big performance gain to choose the proper table format.

Optimizing MySQL 8 Chapter 12

[380]

Table columns
We should use the smallest feasible data type for a table column. This results in the most
efficient approach. MySQL supports specialized data types to save memory and disk space.
For example, we should use integer types wherever possible to get smaller tables.
Comparing and , is a better choice, as it uses 25% less space
compared to .

We must declare columns to be wherever possible. This enables better use of
indexes and eliminates the overhead of testing whether each value is or not. It results
in faster SQL operations. We can also save one bit per column of storage space. We should
use if we really require it. values should not be allowed as a result of default
settings for every column.

We can attain huge performance gain for a table and minimize storage space requirement
by using following techniques:

Row format
As a default, the row format is used when creating tables. We can
configure to use row formats other than . We can
also specify the option explicitly in a or
statement.

The row formats include , , and . They decrease row storage
space at the cost of increased CPU use for some operations. For the average workload,
which is limited by the cache hit rates and disk speed, it will be faster. If it is limited by the
CPU speed, it will be slower.

The row formats also optimize the data type column storage when it uses a variable
length character set. With the row format, the column value occupies
N times the maximum byte length in the character set. The storage engine allocates
variable amounts of storage within the range of N to N times the maximum byte length in
the character set.

A fixed-size row format is used if we do not have variable-length columns, such
as , , or , in the case of tables.

Optimizing MySQL 8 Chapter 12

[381]

Indexes
A table's primary index must be as short as feasible. This enables easy identification of each
row. It is efficient, too. In the case of tables, the primary key column is duplicated in
each secondary index entry. If we have a short primary key, it saves space in the case of
many secondary indexes.

We should create only those indexes which improve query performance. The indexes
improve information retrieval, but they slow down the insert and update operations.
Indexes must be created with proper attention to the performance impact. If it is required to
access a table by searching on a combination of columns, it is preferred to have a composite
index on the combination of columns, rather than a separate index on each of the columns.
The most used column should be the first part of the index. If it is a common requirement to
use many columns in selected operations on the table, it is advisable to have the column
with the most duplicates as the first column in the index. This gives better compression of
the index.

If a long string column is supposed to have a unique prefix as the first few characters, it is
advisable to index only the prefix, using MySQL's support for indexing on the leftmost part
of the column. Shorter indexes are preferred, not only for the less space they require, but
also because they provide more hits in the index cache and require fewer disk seeks.

Joins
If a table is scanned very often, it is beneficial to split the table into two tables, if feasible.
This holds true especially if it is a dynamic-format table. It is also possible to use smaller
static format tables, which can be used to search for relevant rows while scanning the tables.

The columns with identical information should be declared in different tables with identical
data types. This speeds up joins based on matching columns.

Column names must be kept simple, so as to use the same name across tables. It simplifies
join queries. For example, in a customer table, we should use the column name of ,
rather than using . In order to make the names portable to other SQL
servers, we should keep the column names shorter than 18 characters.

Optimizing MySQL 8 Chapter 12

[382]

Normalization
The data in the table columns must be kept non-redundant, considering the third normal
form in the normalization theory. If the column holds repeating lengthy values, such as
names or addresses, it is preferable to assign unique IDs and repeat these IDs across
multiple smaller tables. In the event of searching, join queries should be used by referencing
IDs in the join clauses.

In an application, if the preference is speed and not disk space or the maintenance costs of
using multiple copies of data, it is advisable to duplicate the information or create summary
tables to gain more speed. An example scenario could be a business intelligence system,
where data is analyzed from large tables. In this case, normalization rules are not strictly
followed.

Optimizing MySQL data types
The following are the guidelines for optimizing numeric data types:

Numeric columns must be preferred over string columns to store unique IDs or
other values that can be represented as either strings or numbers. It is faster and
occupies less memory to transfer and compare, because large numeric values are
stored in fewer bytes compared to strings.
It is faster to access information from a database than from a text file. This is
especially true when numeric data is used. Information in the database is stored
in a more compact format than in the text file. So, it requires fewer disk accesses.

The following are the guidelines for optimizing character and string data types:

The binary collation order (logical sequence) should be used for faster
comparisons and sort operations. The binary operator can also be used within a
query to use binary collation order.
With an table, when we use a randomly generated value as a primary
key, it should be prefixed with an ascending value, such as the date and time, if
feasible. In this case, primary key values are stored nearer to each other,
physically. can insert or retrieve such values faster.
The binary data type should be used instead of for column values
that are expected to hold less than 8 KB of data. If the original table does not have
any columns, the and clauses generate temporary
tables. These temporary tables can use the storage engine.

Optimizing MySQL 8 Chapter 12

[383]

In order to avoid string conversions while running a query, the columns should
be declared with the same character set and order wherever possible when
comparing the values from different columns.
If the table holds string columns which are not frequently used in retrieval
operations, splitting the string columns into a separate table should be
considered. In the retrieval operations, join queries should be used with a foreign
key wherever necessary. MySQL reads a data block containing all the columns of
a row when it retrieves any value from a row. It allows more rows to fit within
each data block when we keep the rows small, with only frequently used
columns. These compact tables reduce memory usage and disk I/O.

The following are the guidelines for optimizing data types:

The performance requirements for a column may be different when
retrieving and displaying information. So, storing the specific table in a
different storage device or a separate database instance should be considered. For
example, it is required to retrieve a in a large sequential disk read. So, a
traditional hard drive or an SSD device might better suit needs.
In order to reduce the memory requirements for a query which does not use
a column, for a table with several columns, splitting the into separate
tables and referencing with join queries should be considered, as needed.
If a table column is a large blob with textual data, compressing should be
considered first. If the entire table is compressed by the storage engine, such
as or , this technique should not be used.

Optimizing for many tables
We learned the technique of splitting a table into many tables for faster execution of queries
in certain situations. This technique cannot be applied in all of the scenarios, as if the
number of tables runs into thousands, the overhead of managing all these tables becomes
another performance nightmare.

In this section, we will see how MySQL opens and closes tables. The following shows how
to discover open files on the MySQL server:

> mysqladmin status
Uptime: 262200 Threads: 2 Questions: 16 Slow queries: 0 Opens: 111 Flush
tables: 2 Open tables: 87 Queries per second avg: 0.000

Optimizing MySQL 8 Chapter 12

[384]

The MySQL 8 server is multi-threaded. It is possible that many clients issue queries for a
table simultaneously. MySQL opens the table independently for each concurrent session, in
order to minimize the problem of multiple client sessions with different states on the same
table. This improves performance, though it requires additional memory. One extra file
descriptor is required in the data file for each client that opens the table.

The system variable determines the number of open tables for all the
threads. The number of file descriptors requires can be increased by increasing this
value. The system variable determines the maximum permitted number
of simultaneous client connections. In a way, these two system variables affect the
maximum number of files that the MySQL server can keep open. If we increase both values,
we may run against a limit imposed by the operating system on the per process number of
open files.

The following are the circumstances under which MySQL closes unused tables:

A thread tries to open a table which is not in the table cache when the table cache
is full.
When the table cache contains more entries than specified in
the system variable and a table in the cache is no longer
used by any threads.
When someone issues the statement or executes a

 or command, the table flushing operation
occurs. MySQL closes the table on this event.

The MySQL 8 server uses the following process to locate a cache entry when the table cache
is full:

Unused tables are released, starting with the table used the least recently.
If it is required to open a new table and the table cache is full and no tables can be
released, the cache is temporarily extended, as needed. If a table transitions from
a used to unused state when the table cache is in a temporarily extended state, the
table is closed and released from the table cache.

The following is an example of finding the number of open tables:

mysql> SHOW GLOBAL STATUS LIKE '%Opened_Tables%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 112 |
+---------------+-------+

Optimizing MySQL 8 Chapter 12

[385]

Use of an internal temporary table in MySQL
The MySQL 8 server creates temporary internal tables while processing SQL statements, in
some cases. The following are the conditions under which the server creates temporary
tables:

UNION statements
Views which uses the algorithm, , or
Derived tables
Common table expressions
Tables created for subquery or semi join materialization
Statements that contain and clauses
Statements with combined with
Queries that use the modifier

 statements that select from and insert into the same table
Multiple table statements

 or expressions

The statement can be used to determine whether the statement requires a
temporary table. The statement has limitations. It will not indicate if the statement
requires a temporary table for derived or materialized temporary tables.

The status variable keeps track of the number of temporary tables
created in internal memory. When the MySQL server creates a temporary table, it
increments the value in the status variable.

 is another status variable that keeps track of the number of
tables created on the disk.

Based on the query conditions, the server prevents the use of temporary tables in memory.
In such cases, the server creates a table on the disk. The following are some instances:

If the table has a or column
If the statement has a string column with a maximum length larger than 512 bytes
in the list, if or is used
If the and statements use as the type of the
column

Optimizing MySQL 8 Chapter 12

[386]

The following are the conditions in which a is evaluated without creating temporary
tables:

The union is and not or
There is no global clause
In a query, the union is not at the top-level query block

Optimizing queries
Similar to tables, database queries are the most crucial element of any database.
Applications interact with the databases using queries. Queries are also called executable
SQL statements. This section focuses on techniques to improve the performance of query
execution.

Optimizing SQL statements
SQL statements are used to perform the core logic of any database application. It does not
matter whether the statements are issued directly through an interpreter or submitted
behind the scenes by an API. This section outlines guidelines to improve the performance of
SQL operations that read and write data in the database.

 statements perform all of the lookup operations in the database. Considering the
frequency of statements, it becomes important to tune these statements at the top
priority. The tuning techniques must be applied to constructs like

, , and clauses in statements.

The following are the main considerations for optimizing queries:

In order to optimize the query, the first thing to check is if
an index can be added. We should add indexes on the columns used in the
clause of the query. This will speed up the evaluation, filtering, and the
retrieval of results. The strategy should be to construct a small set of indexes that
can speed up many related queries used in the application. It also avoids the
wasted disk space.
The indexes are important for queries which reference different tables using joins
and foreign keys. The statement can be used to determine which
indexes are used in a statement execution.

Optimizing MySQL 8 Chapter 12

[387]

The next step should be to isolate and tune parts of the query; for example, a
function call which takes excessive time. Depending upon the structure of the
query, a function call can be done for every row in the table or for every row in
the result set.
The number of full table scans in the query must be minimized, specifically for
big tables.
The statement should be used periodically to keep the table
statistics up-to-date. The optimizer provides the information required to build an
efficient query execution plan.
If the basic guidelines do not solve the performance issues, queries should be
investigated for internal details by reading the plan and adjusting your
indexes, clauses, join clauses, and so on.
Transforming queries in a way that makes them hard to understand should be
avoided, especially when the optimizer does some of the same transformations
automatically.
The buffer pool, key cache, and the MySQL query cache must be
used efficiently for repeated queries to run faster as the results are retrieved from
memory after the first time. The size and properties of the memory area must be
adjusted, as MySQL uses it for caching.
If the query runs faster using the cache memory area, we should still optimize it
further, so that it requires less cache memory. It makes the application more
scalable, which makes the application capable of handling more simultaneous
users, larger requests, and so on, without experiencing performance drop.
Where the speed of the query is affected by other sessions accessing the table at
the same time, we should deal with locking issues.

The following are the guidelines to optimize the clause. These optimizations are
applicable to clauses in , , or queries, equally:

Unnecessary parentheses should be removed. The following is an example of
parentheses removal:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
 -> (a AND b AND c) OR (a AND b AND c AND d)

Optimizing MySQL 8 Chapter 12

[388]

Constant folding is the process of evaluating values at compile time instead of
runtime. If we have assigned a constant value to a variable and then use that
variable in an expression, we should use the constant value instead. The
following is an example of constant folding:

 (a<b AND b=c) AND a=5
 -> b>5 AND b=c AND a=5

Because of constant folding, we should remove constant conditions. The
following is an example of constant condition removal:

 (B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
 -> B=5 OR B=6

Optimizing indexes
The basic use of indexes is to quickly find the rows with specific column values. If the index
is not present, MySQL begins with the first row and reads through the entire table to find
all the matching rows. It takes more time, depending on how large a table is. If the index is
present for the appropriate columns, MySQL is able to quickly determine the position to
seek to in the middle of the data file, without looking at the whole table data.

The following is a list of operations for which MySQL uses indexes:

To find matching rows, based on a clause, quickly.
MySQL uses the index with the smallest number of rows (most selective index) in
the case of choosing from multiple indexes to eliminate rows from consideration.
The optimizer uses the leftmost prefix of the index to look up rows if the table has
a composite index. For example, in a table with three columns indexed (on col1,
col2, col3), the optimizer can look for rows with indexed search capabilities on
(col1), (col1, col2), and (col1, col2, col3).
MySQL uses indexes while it fetches rows from other tables using joins. If the
indexes are declared as the same type and size, MySQL can use them efficiently
on the column. The and are considered the same when declared as
the same size.
MySQL also uses indexes to find the or
value for an indexed column . The preprocessor checks whether it is
using on all key parts to optimize it.

Optimizing MySQL 8 Chapter 12

[389]

It is also possible to optimize the query to retrieve values without consulting the
data rows. (A covering index is an index that provides all the results for a query.)
If the query uses only those columns from a table which are included in some
index, the selected values will be fetched from the index tree. This will have a
higher speed in retrieving values.

Query execution plan
The MySQL optimizer considers optimization techniques to efficiently perform the lookups
involved in the query, depending on the details of the tables, columns, and indexes, and the
conditions in the clause. A query can also be performed without reading all the rows
on a huge table. An SQL join can also be performed without comparing every combination
of rows. A query execution plan is a set of operations that the MySQL optimizer chooses to
perform the most efficient query. It is also known as the plan. As an administrator,
the goal is to recognize the aspects of the query execution plan which indicate if a query is
optimized.

The statement is used to determine the query execution plan. The following is the
set of information provided by the statement:

The statement works with , , , , and
 statements.

MySQL displays information from the MySQL optimizer about the query
execution plan when is used with the SQL statement. This means
MySQL explains the process with which the statement is executed. It includes
information about how tables are joined, and in which order.
If displays the execution plan for the statement execution in the named
connection if it is used with connection_id instead of
explainable SQL statement.

 displays additional execution plan information for statements.
 is also useful in examining queries which involve partitioned tables.
 supports a option, which can be used to select the output

format. The format displays the output in a tabular format. This is
the default format option. The JavaScript Object Notation (JSON) format option
produces information in the JSON format.

Optimizing MySQL 8 Chapter 12

[390]

Based on the output from the statement, it can be figured out where indexes can
be added to the tables, so that the statement executes faster. It can also be found whether
the optimizer joins the tables in the optimized order. Begin the statement with

, instead of just , to give a hint to the optimizer to use the join order
corresponding to the order the tables are named in the statement. As

 disables semi-join transformations, it may prevent the use of indexes.

The optimizer trace is another tool to find the information on the query execution. It is
possible that the optimizer trace may provide information differing from that of .
The format and content of the optimizer trace are subject to variation, based on the versions.

The following table shows the output format of the statement:

Column JSON Name Details

The identifier

The type

The table for the output row

The matching partitions

The join type

The possible indexes to choose

The index actually chosen

The length of the chosen key

The columns compared to the index

Estimate of rows to be examined

Percentage of rows filtered by table condition

Additional Information

Optimizing MySQL 8 Chapter 12

[391]

Optimizing tables
Database tables are the most basic building blocks for any database. In this section of the
chapter, we will focus on optimizing tables. The section provides detailed guidelines for
improving performance through table optimization techniques.

Optimization for InnoDB tables
The storage engine is preferred in production environments in situations where
reliability and concurrency are important. It is the default storage engine for MySQL tables.
This section focuses on optimizing database operations for tables.

The following are the guidelines to optimize tables:

Use of the statement should be considered to reorganize the
table and compact the wasted space once the data reaches a stable size or the
table has increased by tens of megabytes. It requires less disk I/O to perform full
table scans for reorganized tables.
The statement copies the data in the table and rebuilds the
indexes. It is beneficial because of improved packing of the data within indexes,
and fragmentation reduction within the table spaces on the disk. The benefits
may vary, depending on the data in each table. It may be noticeable that the gains
are significant in some cases, and not for others. The gains may also decrease over
time until the next table optimization is done. The operation can be slow if the
table is large or the indexes being rebuilt do not fit in the buffer pool.
A long primary key in a table wastes a lot of disk space. It should be
avoided.
In tables, preference should be given to the data type instead of
the data type to store variable length strings, or for columns which are
expected to contain values. A column always occupies N
characters to store data, even if the value is . Smaller tables are more suitable
to fit in the buffer pool and reduced disk I/O.
Consider using a row format for big tables, or tables containing lots
of repetitive text or numeric data.

Optimizing MySQL 8 Chapter 12

[392]

Optimization for MyISAM tables
For read-only or read-mostly data, or for low concurrency operations, the storage
engine fits the best. This is because table locks limit the ability to perform simultaneous
updates. In this section, the focus will be on optimizing queries to be executed on
tables.

The following are the guidelines for speeding up queries on tables:

Avoid executing complex queries on frequently updated tables.
It prevents problems with table locking that occur because of contention between
writers and readers.
The storage engine supports concurrent inserts. If the table data file does
not have free blocks in the middle, we can new rows in it at the same
time that other threads are reading from the table. Consider using the table to
avoid deleting rows if it is important to be able to do concurrent read-write
operations. Another option is to execute to defragment the
table after deletion of the rows. This behavior can be controlled or modified by
setting the system variable.
Avoid all variable-length columns for frequently changing tables. The
dynamic row format is used by the table if it includes even a single variable
length column.
The command can be used to
sort an index. It also sorts data according to the index. This makes the queries run
faster if we have unique indexes, based on which we want to read all rows in the
order according to the index. It takes a long time when we sort a large table this
way for the first time.
If we usually retrieve rows in the order of , , and so
on, use , and
so on. This will give higher performance, if this option is used after extensive
changes to the table.

Optimization for MEMORY tables
MySQL tables should be considered for use only for noncritical data that is
accessed often and is read-only and rarely updated. The application should be
benchmarked against equivalent or tables under realistic workloads to
confirm that additional performance is worth the risk of losing data.

Optimizing MySQL 8 Chapter 12

[393]

We should examine the kinds of queries against each table for best performance with
 tables. We should also specify the type of use for each associated index. It can be a

B-tree index or a hash index. Use the or clause on the
 statement.

Leveraging buffering and caching
This section focuses on using buffering and caching techniques to increase the performance.

InnoDB buffer pool optimization
The storage engine maintains a storage area known as the buffer pool. It is used for
caching data and indexes in the memory. It is important to know how the buffer
pool works, so as to take advantage of it to keep frequently accessed data in memory. It is
an important aspect of MySQL tuning.

The following are the general guidelines for improving performance with the buffer
pool:

In an ideal case, the size of the buffer pool should be set large enough, while
leaving enough memory for other processes on the server to run without
excessive paging. With larger buffer pools, more functions, like an in-
memory database. In this case, it reads data from the disk once, and then accesses
the data from memory in subsequent reads.
We can consider splitting the buffer pool into many parts for 64-bit systems with
large memory sizes. This minimizes contention for memory during concurrent
operations.
The frequently accessed data should be kept in memory.
It is possible to control when and how performs read-ahead requests to
prefetch pages into the buffer pool asynchronously. uses two read-ahead
algorithms to improve I/O performance. Linear read ahead predicts what pages
might be needed soon, based on the pages being accessed in the buffer pool
sequentially. Random read ahead predicts when pages might be needed based on
the pages in the buffer pool, regardless of the order in which pages are read. The

 configuration parameter controls the
sensitivity of linear read ahead. We can enable random read a heads by setting

 to .

Optimizing MySQL 8 Chapter 12

[394]

 determines the number of pages read into
the buffer pool.
determines the number of pages read into the buffer pool by the read-ahead
background thread that was subsequently evicted without having been accessed
by queries. The determines the
number of random read aheads initiated by .

MyISAM key cache
The storage engine incorporates a strategy that is supported by many database
management systems to minimize the disk I/O. The cache mechanism is employed by

 to keep the most frequently accessed table blocks in memory as follows:

A special structure known as a key cache is maintained for index blocks. The
most used index blocks are placed in the structure containing a number of block
buffers.
MySQL relies on the native operating system filesystem cache for data blocks.

The system variable determines the size of the key cache. If it is set to
zero, no key cache is used. The key cache is also not used if the value is
too small to allocate the minimum order of block buffers. All the block buffers in the key
cache structure are of the same size. This size can be equal to, greater than, or less than the
size of the table index block. In usual cases, one of these two values is a multiple of the
other.

When it is required to access data from any table index block, the server first checks if it is
available in some block buffer of the key cache. If the data is available, the server accesses
data from the key cache rather than on the disk. If the data is not available, the server selects
a cache block buffer that contains a different table index block and replaces the data in it by
copying the required table index block. The index data can be accessed as soon as the new
index block is available in the cache.

The MySQL server follows the Least Recently Used (LRU) strategy. According to it, it
selects the least recently used index block while choosing a block for replacement. The key
cache module contains all used blocks in the LRU chain (a special list). The list is ordered by
the time of use. It is the most recently used when the block is accessed. The block is placed
at the end of the list. Blocks at the beginning of the list are the least recently used when the
blocks need to be replaced. So, the block at the top becomes the first candidate for eviction.

Optimizing MySQL 8 Chapter 12

[395]

The block is considered dirty if the block selected for replacement has been modified. The
block contents are flushed to the table index from which they came prior to replacement.

Based on the following conditions, the threads can access key cache buffers simultaneously:

The buffer which is not being updated can be accessed by multiple sessions
The buffer which is being updated causes sessions that require waiting until the
update is complete to use it
As long as the sessions are independent and do not interfere with each other,
multiple sessions can initiate requests resulting in cache block replacements

In this way, shared access to the key cache improves performance significantly.

Summary
In this chapter, we learned, in detail, the techniques to optimize MySQL 8 components. The
chapter started with the basics of optimization, including hardware and software
optimization guidelines. We also discussed optimization guidelines for the MySQL 8 server
and client, database structure, queries, and tables. We also covered optimization for tables
belonging to different storage engines, such as , , and . We learned
the tools, such as and , needed to understand the query
execution plan. In the later part of the chapter, we learned buffering and caching techniques
to improve performance.

It's time to move on to the next chapter now. The next chapter focuses on techniques to
extend MySQL 8. The chapter will cover in-depth details of MySQL 8 plugins, which help to
extend the default MySQL 8 features. It will also explain the services to call these plugins.
The chapter will discuss adding new functions, debugging, and porting methods. It is going
to be an important chapter for database administrators.

113
Extending MySQL 8

In the previous chapter, we learned how to optimize MySQL 8. We also learned what
configurations need to be done to achieve optimization, and also how to leverage caching
and buffering for optimization. We went through the use case study step by step for
achieving optimization in the following components:

Optimizing MySQL 8 server and client
Optimizing data structures
Optimizing queries
Optimizing tables

In this chapter, we will learn about extending MySQL 8. We will check what MySQL 8
components are allowed to extend, and we will look at how to customize MySQL 8 for
specific business needs. You will learn about the fundamental components prior to
extending MySQL 8 and the features of the MySQL plugin API that will be used to extend
MySQL 8. The following is the list of topics covered in this chapter:

An overview of extending MySQL 8
Extending plugins and using services to call them
Adding new functions
Debugging and porting

Extending MySQL 8 Chapter 13

[397]

An overview of extending MySQL 8
In this section, you will learn about one of the most exciting topics on how to extend
MySQL 8 as per your needs. There are several components of MySQL 8 that you should
understand well prior attempting to extend MySQL 8. Here is a list of the components that
are important for extending MySQL 8:

MySQL 8 internals
MySQL 8 plugin API
MySQL 8 services for components and plugins
Adding new functions to MySQL 8
Debugging and porting MySQL 8

MySQL 8 internals
There are few things you should know before you start working on the MySQL code. To
contribute or track MySQL development you should follow the instructions for the
installation of source code distribution as per your system or operating system platform.
The source code includes internal documentation, which is very important to understand
how MySQL internally works from developer's perspective. You can also subscribe to the
internals mailing list from , which includes people
who work on MySQL code, and you can also discuss topics related to MySQL development
or posting patches:

MySQL 8 threads: MySQL server creates threads such as connection manager
threads, signal threads, read and write threads if using storage engine,
scheduler threads to handle connection, and replication and event processing.
MySQL 8 test suite: MySQL 8 provides the test systems included with Unix
source distribution to help users and developers performing regression testing
with MySQL code. You can also write your own test cases using the test
framework.

Extending MySQL 8 Chapter 13

[398]

MySQL 8 plugin API
MySQL 8 provides support for plugin API by which server components themselves can be
created. The plugins can be loaded during server startup and can also be loaded and
unloaded during runtime; there is no need to restart the server. The API is very generic in
that it does not specify what plugins can do in terms of limitation but instead they are
allowed to do more than build-in components. The API supports interfaces for components
such as storage engines plugins, full-text parser plugins, server extensions and so on.

The plugin interface makes use of the table in the MySQL 8 database to store the
information about installed plugins permanently by using the statement.
During the MySQL 8 installation process the table is created. For single server
invocation the plugins can also be installed using the option, but using
this option does not record the installed plugin to the table.

MySQL 8 also provides support API for client plugins to be used for specific purposes such
as enabling the server connection by client through different authentication methods.

MySQL 8 services for components and plugins
The MySQL 8 server plugins can access and initiate server plugin services; similarly, the
server components can also access and request component services. The MySQL 8 plugin
Services interface complements the API plugin by exposing server functionality, which can
be called by plugins. The following are the plugin service characteristics:

The services enable plugins to access the server code using ordinary function calls
and can also call user-defined functions
The services are portable and can work on multiple platforms
The services provide versioning support that protects against incompatibilities
between plugins and services
The services also provide support for testing plugin services

MySQL provides two services types for plugins and components, listed as follows:

The locking service: The locking service interface is provided at two levels that1.
is, at C level and at SQL level. The interface works on lock namespace, lock name,
and lock mode attributes.
The keyring service: The keyring service provides an interface for securely2.
storing sensitive information for internal server components and plugins to
retrieve later.

Extending MySQL 8 Chapter 13

[399]

Adding new functions to MySQL 8
You can add your own functions to MySQL 8, and this can be done with any one of the
three supported types of function. The new function can be called the same way we invoke
the built-in functions such as , and that is true irrespective of which function type you
have newly added. The following list is of the supported three types of new function in
MySQL 8:

Adding a function through the user-defined function (UDF) interface.1.
Adding a function as native (built-in) MySQL function.2.
Adding a function by creating a stored function.3.

Debugging and porting MySQL 8
Porting MySQL 8 to other operating systems is currently supported by many operating
systems; the list of supported operating systems is provided at

. In case you have added a new port and are
running into problems with the new port, you might use debugging of MySQL 8.

There are different possible ways to start debugging based on where you are running into
the problems they could be in MySQL server or in MySQL client. Depending on the
problem's location, you can start debugging in MySQL server or client respectively and also
get help from the package to trace the program's activities.

Extending plugins and using services to call
them
In this section, you will gain an understanding of how the plugin API, its interface, and the
MySQL services interact with one another and provide extensions in MySQL 8. The plugins
are also considered as components in the MySQL 8 architecture, and therefore you can use
them to provide pluggable features. The plugin API and the plugin services interfaces have
the following differences:

The plugin API enables plugins that will be used by the server. The calling and
invoking of plugins is initiated by the server, so the plugins can extend the
server's functionality or can register themselves in order to receive server
processing notifications.

Extending MySQL 8 Chapter 13

[400]

The plugin services interface allows plugins to call the server code. The calling
and invoking of service functions is initiated by the plugins so that the same
server functionality can be leveraged by many plugins without requiring
individual implementation for the functionality.

Writing plugins
To create a plugin library, providing the required descriptor information is a must, as it
specifies which plugins the library file contains. Writing the interface function for each of
the plugins specified is also necessary.

Every server plugin must have a general descriptor providing information to the plugin
APIs, and a type specific descriptor providing information about the interface for specified
plugin types. The structure for specifying a general descriptor is the same for all the plugin
types, and the type specific descriptor can vary based on the requirements of the plugin's
behavior or function. The server plugin interface allows plugins to expose system variables
and status.

Client-side plugins have a slightly different architecture than that of server side plugins. For
example, each plugin must have descriptor information, but there is no separate division
between general and type specific descriptors.

Plugins can be written in C or C++ or any other language that can use C calling conventions.
Plugins are loaded and unloaded dynamically, hence the operating system must
dynamically support where you have dynamically compiled the calling application.
Specifically, for server plugins this means that must be linked dynamically.

As we cannot be sure of what application will use the plugin, the
dependencies on the symbols of the calling application should be avoided
by the client plugin writers.

The following are the types of supported plugin creations that can implement several
capabilities:

Authentication
Password validation and strength checking
Protocol tracing
Query rewriting

Extending MySQL 8 Chapter 13

[401]

Secure keyring storage and retrieval
Storage engines
Full-text parsers
Daemons

 tables
Semisynchronous replication
Auditing

Component and plugin services
You can identify the component services and functions provided by MySQL by looking into
the and respective directories of the MySQL 8
source distribution.

Similarly, you can identify the plugin services and functions provided by MySQL by
looking into the directory of the MySQL 8 source distribution and the
relevant files as follows:

The file includes the file, which file contains
all the available service-specific header files within it
Service-specific header files will have names in the form of

The following is a list of available component services in MySQL 8:

,
: For registering and unregistering

system variables
, : For log components services

,
: For enabling registration

and unregistration of scalar and aggregate user-defined functions in components
and plugins

: For string service APIs
: For dynamic Performance Schema table manipulation

Extending MySQL 8 Chapter 13

[402]

The following is list of available plugins services in MySQL 8:

: For retrieving system variable settings
: For lock implementation with C language and SQL level

interfaces, having the attributes namespace, name, and mode
: For writing errors messages to logs

: For string formatting to keep the output consistent across
platforms

: For registering the status variable
: For thread scheduler selection

: For keyring storage service
: For password strength and validation checking

: For accessing the component registry and related
services

: For managing thread security contexts
: For memory allocation

: For reporting to sleep or stall

Now, you have a clear understanding of plugin services and component services. MySQL 8
provides the following types of services to support plugins and components services:

The locking service1.
The keyring service2.

The following sections give detailed information on both types of services.

The locking service
The locking service interface is provided at two levels: C level and at SQL level. The
interface works on the lock namespace, lock name, and lock mode attributes. The C
language interface is callable as a plugin service from user-defined functions or server
plugins, and the SQL level interface is used as set of user-defined functions, being mapped
to call the service routines.

Extending MySQL 8 Chapter 13

[403]

The following are the characteristics of the locking interface:

Lock namespace, lock name, and lock mode are three three attributes of locks.
Locks are identified by forming a lock namespace and lock name combination.
Lock mode can be either read or write. Read locks are shared whereas write locks
are exclusive.
Lock names and namespaces can have a maximum of 64 characters and must be
non-NULL and non-empty strings.
Lock names and namespace are treated as binary strings so comparison will be
case-sensitive.
Functions are provided to acquire and release locks and do not require any
special privileges to call the functions.
Detects deadlock during lock acquisition calls in different sessions; a caller is
chosen and terminated for its lock acquisition request and caller sessions holding
read locks are preferred over the sessions holding write locks.
A typical session can request for multiple locks acquisition with a single lock
acquisition call. It provides atomic behavior for the request and succeeds if all
locks are acquired or fails if any of the lock acquisitions fail.
Multiple locks for the same lock identifier can be acquired by the session where
the lock instances can be write locks, read locks, or a mix of both read and write
locks.
Acquired locks are released from the session by explicitly calling the release-lock
function, or implicitly if the session gets terminated.
All locks in the given namespace when released are released together within the
session.

The keyring service
The keyring service provides an interface for securely storing sensitive information for
internal server components and plugins to retrieve later. In the keyring service, the record
from the keystore itself consists of data the key and unique identifier by which the key can
be accessed. The identifier consists of the following two parts:

: The name. or key ID values beginning with are reserved1.
by the MySQL server.

: The stands for an effective per session. It can be2.
 if there is no user context and the value does not necessarily need to be an

actual but depends upon the application.

Extending MySQL 8 Chapter 13

[404]

The following are the common characteristics of the keyring service functions:

Each of the functions returns 1 for failure and 0 for success
A unique combination is formed by the and arguments,
indicating which key is to be used in the keyring
Additional information about the key is provided with the argument
value as its intended use, its encryption method, or other such information
User names, key IDs, types, and values are treated as binary strings in keyring
service functions so the comparisons are case sensitive

The following is the list of keyring service functions that are available:

: As the name suggests, it generates a new random key of
given type and length and is stored in the keyring. The function consists of the
arguments , , , and , as well as the following
function syntax:

 bool my_key_generate(const char *key_id, const char*key_type,
 const char *user_id, size_t key_len)

: Deobfuscates the argument value and retrieves a key from the
keyring and its type. The function consists of the arguments , ,

, , and , as well as the following function syntax:

 bool my_key_fetch(const char *key_id, const char **key_type,
 const char* user_id, void **key, size_t *key_len)

: Removes an associated key from the keyring. The function
consists of the arguments and , as well as the following function
syntax:

 bool my_key_remove(const char *key_id, const char* user_id)

: Obfuscates the argument value and stores a key in the
keyring. The function consists of the
arguments , , , , and , as well as the
following function syntax:

 bool my_key_store(const char *key_id, const char *key_type,
 const char* user_id, void *key, size_t key_len)

Extending MySQL 8 Chapter 13

[405]

Adding new functions
New functions can be added with any of the three supported types in MySQL 8. Each of the
types have their own advantages and disadvantages. Where and which type of function
should be added or implemented depends on the requirements of the function.

The following is the list of the supported three types of new function in MySQL 8, which we
will look at in the following section:

Adding a function through the user-defined function interface.1.
Adding a function as a native (built-in) MySQL function.2.
Adding a function by creating a stored function.3.

Features of a user-defined function interface
A user-defined function interface provides independent capabilities to a user purpose
function.

The following features and capabilities are provided by the MySQL interface for user-
defined functions:

Functions can accept arguments of integer, string, or real values and can return
values for the same types
Simple functions can be defined to operate on a single row at a time or it can be
aggregate functions to operate on groups of rows
Functions are given information to enable them so that they can check the types,
names, and numbers of arguments passed
Before passing arguments to the given function, you can also ask MySQL to
coerce arguments
Indications can be made if the function results in any error or returns

Extending MySQL 8 Chapter 13

[406]

Adding a new user-defined function
The UDF functions must be written in C or C++ and the underlying operating system must
support dynamic loading behavior. There is a file, , that defines five
UDF functions and it's included in the MySQL source distributions. Analyzing the file will
let you know how calling conventions work for UDFs. User-defined function related
symbols and data structures are defined in the file and the file is
included in the header file.

Typical code contained in the UDFs gets executed in the running server, so all constraints
are applicable when writing UDF code server code. Currently applicable constraints may
get revised when a server is upgraded, and this can possibly result into the need to rewrite
UDF code, so it is essential to be careful when writing code for the UDF.

In order to use UDF, linking dynamically is a must. For any function to be used in
SQL statements there must be underlying C or C++ functions. The convention for separating
SQL and C/C++ code is followed where in uppercase indicates an SQL function call
whereas with lowercase indicates a C/C++ function call.

Encapsulate your C function as shown in following sentence when you are
using C++: This way it is ensured that your C++
function names are readable in the completed user-defined function.

To write and implement the interface function name , the main function is a
must and additionally requires one or more function to be implemented from the following:

: The main function where the function result is being produced
: The initialization function for the main function , it can be

used for any of the following purposes:
Checking number of arguments to be passed on to
Verifying argument types with a declaration when calling the main
function
Allocating memory to the main function whenever required
Result's maximum length verification
Setting a decimal number limit for maximum in the result
Specifying whether the result can be or not

: Represents deinitialization for the main function and deallocates
memory if any is allocated by the initialization function for the main function

Extending MySQL 8 Chapter 13

[407]

Aggregate UDFs are handled as in the following sequence in MySQL 8:

Call so that it allocates the required memory to store result1.
information.
Sort the table/result as specified by the function.2.
Call so that it reset the current aggregate value for the first row in3.
each new group.
Call that adds the argument to the current aggregate value.4.
Call to get the result of aggregate data on group by changes or after5.
processing the last row.
Repeat steps 3-5 until all specified/resulted rows are processed.6.
Call to free any allocated memory for the UDF.7.

All the functions must be thread-safe, including the main function as well as other
additional functions as required, along with the initialization and deinitialization functions.

Similar to the above sequence, the following are important aspects that need to be taken
care of while adding new user-defined functions:

UDF argument processing
UDF return values and error handling
UDF compiling and installing
UDF security precautions

Adding a new native function
For adding a new native function, source distribution is required in order to compile using
modified source that consists of the new native function. It is also required to repeat this
when you migrate to another MySQL version.

In a case where a new native function is to be referred in the statements and also replicated
to slave servers, ensure that each of the slave servers has the new native function available,
otherwise replication on the slave server will fail when the new native function invocation
is attempted.

Extending MySQL 8 Chapter 13

[408]

The followings are the steps for adding a new native function in the source distribution files
of the directory:

A subclass for the function needs to be added in :1.
In case of a fixed number of arguments, the subclass is to be created
from , , ,
or depending upon the number of arguments
required in your native function. You can refer to
the , , and
classes.
In case of a variable number of arguments, the subclass is to be created
from . You can refer to
the class.

The function name to be referred to in SQL statements needs to be registered2.
in by adding the following line to the array:

:
If required, several names can be registered for the same function. You
can refer to lines for and which are aliases stands for

.
Declaring the class inherited from or is3.
necessary, depending upon if your function return type is a string or a number in
the file.
Adding one of the following declarations is necessary, depending upon if your4.
function defines as a string or numeric function in the file:

 double Item_func_newname::val()
 longlong Item_func_newname::val_int()
 String *Item_func_newname::Str(String *str)

If your object is inherited from any of the standard items then you
probably need to define only one of the preceding functions, as the
parent object will take care other of the function. You can refer to
the class that has defined the function that
executes the function on the returned value of the
function.

Extending MySQL 8 Chapter 13

[409]

If the function is nondeterministic that is, if the returned result varies at5.
different invocations for fixed given arguments - then the following statement
needs to be included in the item constructor, indicating that the function results
should not be cached: .
You probably also need to define the following object function for your native6.
function:

The function should at least include the calculation on the
given arguments
You should also set if your main function cannot
return any values
You can refer to for the
same

Thread safety is a must for all functions. You should not be using any static
or global variables in the functions without being protected by mutexes.

Debugging and porting
Porting MySQL 8 to other operating systems is currently supported by many operating
systems. The list of the latest supported operating systems is provided at

. If you have added or attempted
to add new ports (supported platforms) and are running into problems, you might use
debugging of MySQL 8 to find and fix the problems.

First, you should get the test program to work before
debugging . This makes sure that your thread installation can have
a remote chance to work!

There are different possibilities for starting debugging, based on where you are running
into the problems - it could be in MySQL server or in MySQL client. Depending on the
problem's location you can start debugging in MySQL server or MySQL client respectively,
and for tracing the program's activities you will get help from the package.

Extending MySQL 8 Chapter 13

[410]

The MySQL source code includes internal documentation written
using , which is very helpful in understanding the developer
perspective on how MySQL works.

In this section, you will see detailed information on the following topics:

Debugging MySQL server
Debugging MySQL client
The package

Debugging MySQL server
If you are using some of very new functionality in MySQL and facing some issues let's say
the server is crashing you can try running with the option. This
option tells the MySQL server to disable all new and potentially unsafe functionality.

In cases where is not getting started, verify the files, as they can interfere
with the setup! You can check the arguments in with the

 option and then start with the option to avoid using
them.

In cases where starts to eat up memory or CPU or hangs, you can check
 and find out if a query executed by someone is taking

a long time. In cases where you are facing performance issues or problems and new clients
are not able to connect, you can use process list status.

You can also use the debug command , which dumps information about query
usage, memory usage, and locks in use to the MySQL log file and can solve some problems
for you. This command also works in case you have not compiled MySQL for debugging,
providing some useful information.

In cases where you are facing any issue with the table getting slower, you should try to
optimize the table using or . You should probably check the
slow queries, if there are any, using to find and fix the problem with queries.

Extending MySQL 8 Chapter 13

[411]

The following are the important areas to consider when debugging in MySQL 8:

Compiling MySQL for debugging: In case of very specific problems you can
always try to debug MySQL. To do that you must configure MySQL with the

 option. The debugging configuration automatically enables lots
of extra safety check functions that monitor the health of .
Creating trace files: You can attempt to find the problem by creating a trace file.
To do that you must have compiled with debugging support. You can
then use the option, which will add trace logs in
on Unix and on Windows.
Using WER with PDB to create a Windows crashdump: Program database files
are included in the ZIP archive debug binaries and test suite as a separate
distribution of MySQL. These files provide information on debugging for a
MySQL installation problem. They can be used with WinDbg or Visual Studio to
debug .
Debugging mysqld under gdb: You can use this option when you are facing
issues with threads or when the server hangs prior to

.
Using a stack trace: You can also use this option when dies unexpectedly
and find out the problem.
Using server logs to find causes of errors in : You can use this option by
enabling the general query log - prior to that, you should check all your tables
using the utility and verify if there are any problems from the logs.
Making a test case if you experience table corruption: This option is used when
you are facing an issue with table corruption and is applicable only to
tables.

Debugging MySQL client
In cases where you are facing an issue in MySQL client you can also debug within MySQL
client as well, but in order to do so you must have the integrated debug package. You need
to configure MySQL with to enable debugging in MySQL client.

Prior to running MySQL client, you should set the environment variable as
follows:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

Extending MySQL 8 Chapter 13

[412]

This makes MySQL client generate a trace file in for Unix or
 for Windows.

In cases where you have problems with your own client code, you can attempt to connect to
the server by running your query using the client that is known to work. For doing this you
should run in debugging mode:

shell> mysql --debug=d:t:O,/tmp/client.trace

This trace will provide useful information if you want to mail a bug report for the problem.

In cases where your client crashes at some looking code, you can check that
your header file includes file matches with your MySQL library file. This is one of
the very common mistakes, using an older file from an old MySQL installation
with a new MySQL library, resulting in this issue.

The DBUG package
Fred Fish originally created the package with MySQL server and most of the MySQL
clients. If MySQL is configured for debugging, this package makes it possible to generate a
trace file that has information about what the program is doing.

There are debug options available to be specified in order to get specific information to the
trace files using the package. It can be used in program invocation with the

 option or the option.

Most MySQL programs will use a default value if the or option is specified
without specifying a value. The server default value is

 on Windows and on Unix. The
effect of this default is listed as follows:

: Enables output for all debug macros
: Traces function calls and exits
: Adds to output lines in trace file

, : Sets the debug output file in Unix
and Windows respectively

Extending MySQL 8 Chapter 13

[413]

In most of the cases, use the default value
of for most of the client programs irrespective of
platform works. For Windows, use .

The following are some examples of debug control strings to be specified on the shell
command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

Summary
In this chapter, you learned how to extend MySQL 8 through custom functions and APIs.
You also got to know about writing functions and the associated characteristics of the
plugin services and APIs. You can now create your own function or plugin, cater to specific
business requirements, and also debug if a function does not work as per expectations, and
test whether it does.

In next chapter, you will learn about MySQL 8 best practices and benchmarking in MySQL
8. You will learn about benchmarking and tools used for benchmarking. You will also learn
best practices for some of very important features of MySQL 8, such as memcached,
replication, data partitioning, and indexing.

114
MySQL 8 Best Practices and

Benchmarking
In the previous chapter, you learned how to extend MySQL 8. It covered a lot of interesting
aspects, such as extending plugins and calling them by using services in MySQL 8, adding
and debugging new functions to MySQL 8, and so on. In this chapter, we will go through
the best practices of MySQL 8, which is a much-awaited version that promises to address
many of the shortfalls of the prior versions and has exciting new features. MySQL 8
promises not to be just a standalone database, but it will also play a significant role in
various areas, including big data solutions. We will learn how best practices can be
implemented for optimal use of features in MySQL 8. Benchmarking will enhance our
understanding further.

We will cover the following topics in this chapter:

MySQL benchmarking and tools
Best practices for the memcached
Best practices for replication
Best practices for data partitioning
Best practices for queries and indexing

Due to prominent optimizations and changes, MySQL 8 advanced its version directly from
the release of MySQL 5.7. MySQL 8 will not have the limitation of files, which was
previously restricting the number of databases that you could have. There are many more
exciting features, which we have covered in , Introduction to MySQL 8. MySQL 8
can now store millions of tables in a database. It will also make modifications to tables
swiftly.

MySQL 8 Best Practices and Benchmarking Chapter 14

[415]

I am excited to go through this chapter, as MySQL 8 best practices not only impact your
database performance, scalability, security, and availability, but will also, on the whole,
expose how your system performs for the end user. This is our end goal, isn't it? Let's look
at some benchmarks that have been derived in our test lab, which will raise your eyebrows
for sure:

MySQL benchmarking and tools
We have gone through various new features and improvements in MySQL 8. It makes us
more excited, as performance is always what we crave. With MySQL 8 not being generally
available yet, Oracle hasn't published its benchmark results. We didn't wait for it to do so
and carried out our own analysis in a few areas.

Configuration best practices of MySQL is the cherry on the cake; without the cherry, the
cake seems incomplete. In addition to configurations, benchmarking helps us validate and
find bottlenecks and address them. Let's look at a few specific areas that will help us
understand the best practices for configuration and performance benchmarking.

MySQL 8 Best Practices and Benchmarking Chapter 14

[416]

Resource utilization
IO activity, CPU, and memory usage is something that you should not miss out. These
metrics help us know how the system is performing while doing benchmarking and at the
time of scaling. It also helps us derive impacts per transaction.

Stretching your benchmarking timelines
We may often like to have a quick glance at performance metrics; however, ensuring that
MySQL behaves in the same way for a longer duration of testing is also a key element.
There is some basic stuff that might impact on performance when you stretch your
benchmark timelines, such as memory fragmentation, degradation of IO, impact after data
accumulation, cache management, and so on.

We don't want our database to get restarted just to clean up junk items, correct? Therefore,
it is suggested to run benchmarking for a long duration for stability and performance
validation.

Replicating production settings
Let's benchmark in a production-replicated environment. Wait! Let's disable database
replication in a replica environment until we are done with benchmarking. Gotcha! We
have got some good numbers!

It often happens that we don't simulate everything completely that we are going to
configure in the production environment. It could prove to be costly, as we might
unintentionally be benchmarking something in an environment that might have an adverse
impact when it's in production. Replicate production settings, data, workload, and so on in
your replicated environment while you do benchmarking.

Consistency of throughput and latency
Throughput and latency go hand in hand. It is important to keep your eyes primarily
focused on throughput; however, latency over time might be something to look out for.
Performance dips, slowness, or stalls were noticed in in its earlier days. It has
improved a lot since then, but as there might be other cases depending on your workload, it
is always good to keep an eye on throughput along with latency.

MySQL 8 Best Practices and Benchmarking Chapter 14

[417]

Sysbench can do more
Sysbench is a wonderful tool to simulate your workloads, whether it be thousands of tables,
transaction intensive, data in-memory, and so on. It is a splendid tool to simulate and gives
you nice representation.

Virtualization world
I would like to keep this simple; bare metal as compared to virtualization isn't the same.
Hence, while doing benchmarking, measure your resources according to your environment.
You might be surprised to see the difference in results if you compare both.

Concurrency
Big data is seated on heavy data workload; high concurrency is important. MySQL 8 is
extending its maximum CPU core support in every new release, optimizing concurrency
based on your requirements and hardware resources should be taken care of.

Hidden workloads
Do not miss out factors that run in the background, such as reporting for big data analytics,
backups, and on-the-fly operations while you are benchmarking. The impact of such hidden
workloads or obsolete benchmarking workloads can make your days (and nights)
miserable.

Nerves of your query
Oops! Did we miss the optimizer? Not yet. An optimizer is a powerful tool that will read
the nerves of your query and provide recommendations. It's a tool that I use before making
changes to a query in production. It's a savior when you have complex queries to be
optimized.

These are a few areas that we should look out for. Let's now look at a few benchmarks that
we did on MySQL 8 and compare them with the ones on MySQL 5.7.

MySQL 8 Best Practices and Benchmarking Chapter 14

[418]

Benchmarks
To start with, let's fetch all the column names from all the tables. The following is
the query that we executed:

SELECT t.table_schema, t.table_name, c.column_name
FROM information_schema.tables t,
information_schema.columns c
WHERE t.table_schema = c.table_schema
AND t.table_name = c.table_name
AND t.engine='InnoDB';

The following figure shows how MySQL 8 performed a thousand times faster when having
four instances:

MySQL 8 Best Practices and Benchmarking Chapter 14

[419]

Following this, we also performed a benchmark to find static table metadata. The following
is the query that we executed:

SELECT TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE, ENGINE, ROW_FORMAT
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'chintan%';

The following figure shows how MySQL 8 performed around 30 times faster than MySQL
5.7:

MySQL 8 Best Practices and Benchmarking Chapter 14

[420]

It made us eager to go into a bit more detail. So, we thought of doing one last test to find
dynamic table metadata.

The following is the query that we executed:

SELECT TABLE_ROWS
FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA LIKE 'chintan%';

The following figure shows how MySQL 8 performed around 30 times faster than MySQL
5.7:

MySQL 8 Best Practices and Benchmarking Chapter 14

[421]

MySQL 8.0 brings enormous performance improvements to the table. Scaling to one million
tables, which is a need for many big data requirements, is now achievable. We look forward
to many more benchmarks being officially released once MySQL 8 is available for general
purposes.

Let's now look at our next topic, which will make your life easier. It's all about taking things
into consideration for best practices of memcached.

Best practices for memcached
Multiple operations are now possible with the memcached plugin, which will
really help in improving the read performance. Now, multiple key value pairs can be
fetched in a single memcached query. Frequent communication traffic has also been
minimized, as we can get multiple data in a single shot.

The key takeaways that you should consider for memcached configuration best practices
are what we will be going through now.

Resource allocation
Memory allocation for memcached shouldn't be allocated over the available physical
memory or without considering other resources that would be utilizing memory. If we
over-allocate memory, there is a high chance that memcached would have memory
allocated from the swap space. This may lead to delays while inserting or fetching values
because the swap space is stored on the disk, which is slower than in-memory.

Operating system architecture
As the operating system architecture has 32-bits, one needs to be cautious. As we know,
there are limitations to provision resources in a 32-bit operating system architecture.

Similarly, memcached with 4 GB RAM with a 32-bit operating system architecture shouldn't
be set more than 3.5 GB RAM, as it can behave strangely in performance and can also result
in crashes.

MySQL 8 Best Practices and Benchmarking Chapter 14

[422]

Default configurations
Some key default configuration parameters should always be fine-tuned based on your
needs:

Memory allocation: By default, this is 64 MB; instead it should be reconfigured
based on your requirements and testing
Connections: By default, this is 1,024 concurrent connections; instead it should be
reconfigured based on your requirements and testing
Port: By default, this listens on port ; instead it should listen to another port
for security purposes
Network interface: By default, this accepts connections from all network
interfaces; instead it should be limited for security purposes

Max object size
You should look at configuring the maximum object size, which by default is 1 MB.
However, it can be bumped up to 128 MB. It is purely based on what type of data you are
going to store and, accordingly, its maximum object size should be allowed. Allowing
overhead data to be stored in memcached can have an adverse impact, as there may be
much more data to retrieve, which can cause failures.

Backlog queue limit
The backlog queue limit is all about the number of connections to memcached that should
be kept in queue if it reaches the limit of allowed connections. Ideally, your number of
connections allowed should be configured in a way that should suffice for most of your
needs. The backlog queue limit can be helpful when there is an unexpected peak load on
memcached. Ideally, it should not go beyond 20% of the total connections or it could impact
the experience of system fetching information from memcached because of heavy delays.

Large pages support
On systems that support large memory pages, you should enable memcached to leverage
them. Large pages support helps allocate a large data chunk to store data and also reduces
the number of caches missed calls using this.

MySQL 8 Best Practices and Benchmarking Chapter 14

[423]

Sensitive data
Storing sensitive data in memcached could be a security threat, as somebody with access to
memcached could view the sensitive information. You should obviously take precautions to
limit the exposure of memcached. You can also have sensitive information encrypted before
storing it on memcached.

Restricting exposure
Memcached doesn't have many security features built in. One measure involves exposing
memcached access within the required boundaries. If your application server needs to talk
to memcached, it only allows memcached to be accessed from that server with the help of
system firewall rules, such as IP Tables or similar techniques.

Failover
Memcached doesn't have good failover techniques. It is suggested that you have your
application configured in a way to failover to an unavailable node and regenerate data into
another instance. It is good to have at least two memcached configured to avoid failure
owing to the unavailability of the instance.

Namespaces
You can leverage namespaces provided by memcached, which basically adds prefixes to the
data before storing it in memcached. It can help when you have multiple applications
talking to memcached. This is helpful and, using some basic principles of naming
conventions, you can derive a solution. If there is data that is storing first names and last
names, you can use prefixes, such as FN and LN, respectively. This would help you easily
identify and retrieve data from the application.

MySQL 8 Best Practices and Benchmarking Chapter 14

[424]

Caching mechanism
One of the easiest ways to start leveraging caching in memcached is to use a two-column
table; you can leverage namespaces provided by memcached, which basically adds prefixes.
The first columns would be a primary key, and database schema should be the address
requirement of a unique identifier with the help of primary key mapping along with unique
constraints. In case you want to have a single item value by combining multiple column
values, you should make sure you choose appropriate data types.

Queries with a single clause can be mapped easily into memcached lookups while
using or operators in the queries themselves. In cases where multiple clauses
are used or complex operations are parsed, such as , , , and , memcached
would get you through challenges. It is suggested that you have such complex operations
using traditional SQL queries added to your database.

It would be beneficial to cache entire objects in memcached instead of opting to cache
individual rows from MySQL 8. For instance, for a blogging website, you should cache the
entire object of the blog port in memcached.

Memcached general statistics
To help you understand the statistics of memcached better, we will provide an overview of
health and performance. Statistics returned by memcached and their meaning are shown in
the following table:

Terms used to define the value for each of the statistics are:

32u: 32-bit unsigned integer
64u: 64-bit unsigned integer
32u:32u: Two 32-bit unsigned integers separated by a colon
String: Character string

Statistic Datatype Description

32u Process ID of the memcached instance.

32u Uptime (in seconds) for this memcached instance.

32u Current time (as epoch).

string Version string of this instance.

MySQL 8 Best Practices and Benchmarking Chapter 14

[425]

Statistic Datatype Description

string Size of pointers for this host specified in bits (32 or
64).

32u:32u Total user time for this instance
(seconds:microseconds).

32u:32u Total system time for this instance
(seconds:microseconds).

32u Current number of items stored by this instance.

32u Total number of items stored during the life of this
instance.

64u Current number of bytes used by this server to
store items.

32u Current number of open connections.

32u Total number of connections opened since the
server started running.

32u Number of connection structures allocated by the
server.

64u Total number of retrieval requests (
operations).

64u Total number of storage requests (operations).

64u Number of keys that have been requested and
found present.

64u Number of items that have been requested and not
found.

64u Number of keys that have been deleted and found
present.

64u Number of items that have been delete and not
found.

64u Number of keys that have been incremented and
found present.

MySQL 8 Best Practices and Benchmarking Chapter 14

[426]

Statistic Datatype Description

64u Number of items that have been incremented and
not found.

64u Number of keys that have been decremented and
found present.

64u Number of items that have been decremented and
not found.

64u Number of keys that have been compared and
swapped and found present.

64u Number of items that have been compared and
swapped and not found.

64u
Number of keys that have been compared and
swapped, but the comparison (original) value did
not match the supplied value.

64u Number of valid items removed from cache to free
memory for new items.

64u Total number of bytes read by this server from
network.

64u Total number of bytes sent by this server to
network.

32u Number of bytes this server is permitted to use for
storage.

32u Number of worker threads requested.

64u Number of yields for connections (related to the -R
option).

These are a few useful items that should be kept handy for best practices of memcached. It's
now time for us to move ahead and look at best practices for replication.

MySQL 8 Best Practices and Benchmarking Chapter 14

[427]

Best practices for replication
MySQL 8 has made some great improvements on the replication side. MySQL 8 is all about
scalability, performance, and security with the utmost integrity of data, which is expected to
be a game-changer in big data too.

Throughput in group replication
Group replication basically takes care of committing transactions once most of the members
in group replication have acknowledged the transaction received concurrently. This results
in a better throughput if the overall number of writes doesn't exceeding the capacity of the
members in group replication. If there is a case where capacity is not planned appropriately,
you would notice lags on affected members as compared to other members in the group.

Infrastructure sizing
Infrastructure sizing is a common success factor for performance and the best practices
checklist. If infrastructure sizing is not proper or uneven across the nodes in group
replication, it could adversely impact the replication fundamentals topology. Each
component should be considered while considering the throughput required from the
components.

Constant throughput
To achieve constant throughput is a good success factor. What if you start experiencing a
workload that starts affecting the rest of the members in group replication? It might be a
case where your master keeps on accepting additional workload and is lagging behind,
after which it might return to an acceptable level before burning out all the resources.
Additionally, you can implement a queuing methodology that can prevent you from
burning down resources and only allows you to pass on workloads to the members that are
predefined based on capacity.

MySQL 8 Best Practices and Benchmarking Chapter 14

[428]

While considering a queuing methodology, you mustn't allow queues grow exponentially.
This would impact the end user, as there would be a lag in the data being updated.
However, you needs to decide based on your needs and the business requirement to
achieve constant throughput across the system.

Contradictory workloads
Fundamentally, group replication is designed to allow updates from any of the members in
the group. Rollback of transactions based on overlap of rows is checked for each of the
transactions; the rest are committed and sent to be updated to other members in the group.
If several updates on the same row happen frequently, it can result in multiple rollbacks.
You might come across cyclic situations where one server updates, requests others to
update, and, in parallel, another has already updated for the same row. This would result in
rollback.

To prevent such a scenario, you can have the last member of the group apply the update,
after which you proceed to another one. You can have similar updates routed only from the
same node where the earlier one had been executed to prevent the chances of cyclic rollback
conditions.

Write scalability
Distribute your write workload by sharing out write operations, which might result in
better throughput and better scalability on write performance. It would be dependent on
contradictory workloads that you would be expecting in the system. This is helpful when
your peak workload is being executed is one that can share the load. In common cases, if
you have good capacity planning done with write scalability, you would see trivial
improvement.

MySQL 8 Best Practices and Benchmarking Chapter 14

[429]

Refer to the following diagram that depicts this:

You will notice that with the help of multi-masters to distribute, your load has better
throughput. It also considers the group size in multi-master configuration.

MySQL 8 Best Practices and Benchmarking Chapter 14

[430]

Best practices for data partitioning
In general terms, partitioning is logically dividing anything into multiple subgroups so that
each subgroup can be identified independently and can be combined into a single partition.

Let's now learn different partitioning methods and how partitioning can help where there
are large data tables.

For any organization, it is very important to store data in such a way that the database
provides scalability, performance, availability, and security. For instance, in a highly
accessed e-commerce store, there are thousands, or more, of orders placed frequently. So to
maintain day-to-day order delivery showing a dashboard of current orders, what is
required is to query a table showing orders from the past five years; the process will take a
long time to execute with the current data. Here, historical order data is needed for the
analytical purpose of finding user behavior or trends, but this will be required to be
performed on limited datasets.

There are various ways to achieve the best suitable solution for high availability, scalability,
and highly performing architecture; the key ingredient is partitioning. In a database, data in
each table is stored in physical file groups. So by dividing this data table from a single file
group to a multiple file group can reduce the file size and help us create a scalable and high-
performing database.

The following are the key benefits of using partitioning in a database:

Scalability: As data will be shared among more than one partition, servers can be
configured to use multiple nodes and partitions can be configured among
multiple nodes. Doing so will eliminate any hardware limits and allow the
database to scale up to a large extent to accommodate high volume data.
High performance: As data is stored among multiple partitions, each query will
be executed on a small portion of the data. For example, in an e-commerce store
with an order history of more than two years, to get a list of orders placed in the
current month will require checking only a single partition and not the entire
order history, thus reducing the query execution time. To fetch the query on more
than one partition, we can also run this in parallel, thus reducing the overall time
to fetch data from the database.

MySQL 8 Best Practices and Benchmarking Chapter 14

[431]

High availability: In partitioning, data is divided across multiple file groups.
Each file group is logically connected but can be accessed and worked on
independently. So if one of the file groups or partitions gets corrupted or one of
the nodes in the server fails, then we will not lose access to the entire table, but
only a section of the database will not be available, thus eliminating the chances
of system failure and making your system highly available.
Security: It may be that some of the data in tables requires high security
measurements to avoid data theft or data leaks. By partitioning, you can provide
additional security to one or more partitions to avoid any security issues, thus
improving data accessibility with data security.

In general terms, partitioning is logically dividing anything into multiple subgroups so that
each subgroup can be identified independently and can be combined into a single partition.
Let's understand what partitioning means in terms of RDBMS.

Partitioning is generally used to divide data into multiple logical file groups for the purpose
of performance, availability, and manageability. When dealing with big data, the normal
tendency of data is to be in terms of billions of records. So to improve performance of the
database, it is better to divide data among multiple file groups. These file groups can be on
a single machine or shared across multiple machines and identified by a key. These file
groups are known as partitioned data.

Data in the table can be partitioned in two ways:

Horizontal partitioning
Vertical partitioning

Horizontal partitioning
When the number of rows in the table is very large, the table can be divided into multiple
partitions; this is known as horizontal partitioning. When horizontal partitioning is used,
each partition of the table contains the same number of columns. It is possible to access all
partitions at once, or you can access each partition individually.

MySQL 8 Best Practices and Benchmarking Chapter 14

[432]

Vertical partitioning
In vertical partitioning, the columns of the tables are partitioned to achieve performance
and better management of the database. Vertical partitioning can be achieved in two ways.
The first one is by normalizing tables. Instead of having too many columns in the table,
columns can be divided into multiple tables by dividing the data. The second one is by
creating separate physical file groups for defined columns in the table. Vertical partitioning
is currently not supported in MySQL 8.

Let's look at a few of the benefits associated with partitioning:

If a table contains historical data, such as logs of an application, data older than
six months does not provide any significance to the application to be active. If
partitioning is created based on months, you can easily remove one of the
partitions.
In the same preceding case of logs, if we want to filter data between two dates,
the MySQL optimizer can identify the specific partitions, where it can find the
filtered records, which can result in much faster query results, as the number of
rows to check is reduced drastically.
MySQL 8 also supports querying data on particular partitions. It can reduce the
number of records to check when you know the partition that needs to be queried
for the data required.

Pruning partitions in MySQL
Pruning is the selective extraction of data. As we have multiple partitions, it will go through
each partition during retrieval, which is time consuming and impacts on performance.
Some of the partitions will also be included in searching while the requested data is not
available inside that partition, which is an overhead process. Pruning helps here to search
for only those partitions that have the relevant data, which will avoid the unnecessary
inclusion of those partitions during retrieval.

This optimization that avoids the scanning of partitions where there can be no matching
values is known as the pruning of partitions. In partition pruning, the optimizer analyzes

 and clauses in SQL statements to eliminate unneeded partitions, and scans
those database partitions that are relevant to the SQL statement.

MySQL 8 Best Practices and Benchmarking Chapter 14

[433]

Best practices for queries and indexing
It would be difficult to write the best queries for reference and reuse. It will always vary
based on the nature of your application, architecture, design, table structure, and so on.
However, precautions can be taken while writing MySQL queries for better performance,
scalability, and integrity.

Let's go through a few of the best practices that we should keep in mind while designing or
writing MySQL queries.

Data types
A database table could consist of multiple columns with data types, such as numerics or
strings. MySQL 8 provides various data types rather than just limiting to numerics or
strings:

Small is good. As MySQL loads data in memory, a large data size would have an
adverse impact on its performance. Smaller sets can accommodate more data in
memory and reduce overheads of resource utilization.
Fix your length. If you don't fix the data type length, it would have to go and
fetch the required information each time it needs to. So, wherever it's possible,
you can limit the data length by using the char data type.

Not null
Not null data is something that MySQL doesn't like much. Not null columns use more
storage, impact the performance, and require additional processing within MySQL.

Optimizing such queries referring to null data is difficult as well. When a null data column
is indexed, it uses additional bytes for each entry.

Indexing
Indexing is important, as it can improve the performance of your badly designed query and
table structure or it can even turn a well-designed query into a bad one, which can impact
performance too.

MySQL 8 Best Practices and Benchmarking Chapter 14

[434]

Search fields index
Generally, we do indexing on fields that are used as filters in MySQL queries. It obviously
helps reading faster but can adversely impact writes/updates so indexing only what you
need would be a smart decision.

Data types and joins
MySQL can do joins for data types that are different but the performance can be impacted if
MySQL is asked to use different data types for join fields, as it would have to convert from
one to another for each row.

Compound index
If a query is supposed to refer to multiple columns of a table, a composite index for such
columns might be helpful. A compound index refers the columns from the results set by the
first column, second column, and so on.

The order of columns plays a significant role in the performance of the query, so while
designing the table structure and index, you need to use it effectively.

Shortening up primary keys
Small is good for primary keys too. Shortening up primary keys would benefit analogously
to how we discussed datatypes. Because of smaller primary keys, your index size would be
smaller and hence the usage of cache would be less, so it can accommodate more data in
memory.

It is preferred to use numeric types, as these would be much smaller than characters to
achieve the goal of shortening up primary keys. It can be helpful while doing joins, as
generally, primary keys are referred for the joining.

MySQL 8 Best Practices and Benchmarking Chapter 14

[435]

Indexing everything
Indexing everything is a good idea; however, MySQL won't do this. Do you know that
MySQL will do a full table scan if it is supposed to scan an index higher than 30%? Do not
index values that don't need to be indexed.

We need to keep in mind that indexing helps if done correctly in fetching data; however,
while writing/updating data, it is an overhead.

Fetching all data
 - Arrghh! Do not use this unless it is really needed. So far, my experience

hasn't needed this. Fetching all data will slow down the execution time and impact heavily
on resource utilization of the MySQL server. You need to provide a specific column name or
appropriate conditions.

Letting the application do the job
Let the application also do the job for MySQL. You can avoid having clauses such as

 by letting applications do the ordering. Doing ordering in MySQL is much slower than
in applications. You can identify queries that should be planned to be taken care of by
the application.

Existence of data
Checking the existence of data with the help of the clause is much faster. The

 clause will return the output as soon as it fetches the first row from the fetched
data.

Limiting yourself
Limit yourself to the data that you need to fetch. Always ensure that you use appropriate
limits while fetching the data, as unwanted data being fetched wouldn't be useful and
would impact performance. Use the clause in your SQL queries.

MySQL 8 Best Practices and Benchmarking Chapter 14

[436]

Analyzing slow queries
This is a good practice to follow. We might miss out queries to either optimize or realize
having adverse impact as data grows. You might have changes in the requirement of the
data to be fetched where we might miss seeing the impact of the queries. It is good to
always keep a watch on slow queries that can be configured in MySQL and optimize them.

Query cost
What is the cost of your query? Explain is the right answer to this. Use the query
parameter to know what is impacting your query whether it is a full table scan, index
scans, range access, and so on. Use the information provided by explain wisely, to optimize
the query further. It is a wonderful, quick handy tool of MySQL. If you know that you have
done your best, indexing comes as a savior to optimize it further based on your needs.

Best practices while writing a query start with requirements, designs, implementations, and
ongoing maintenance. It's a complete life cycle that we can't diversify. Understanding
schemas, indexes, and analyses plays a significant role. What matters to us is the response
time and optimum resource utilization.

I personally love to deep dive into this much more than we can mention here it's a world
of relations! Your query will meet a row or column of a table or get joined with another
table. On top of this, if you haven't done it right, you are trying to find a relation from a
subset that is not required. How do we forget indexes that are saviors if used appropriately?
All these together would show our relations and would promptly respond to a requested
query.

Summary
I am sure that while reading the chapter, you have kept in mind the things to be taken care
of or recollecting them, if there's anything missing in your MySQL 8 implementation. In
these chapter, we discussed best practices for MySQL 8 which would be helpful at various
stages, such as implementation, usage, management, and troubleshooting and would act as
pointers for best practices of MySQL 8; these might vary based on different use cases.
Proper testing and verification would help affirm the benefits of having best practices
implemented.

MySQL 8 Best Practices and Benchmarking Chapter 14

[437]

We have broadly covered some exciting topics about MySQL 8 benchmarks and a few
configuration parameters along with best practices of memcached. We discussed MySQL
replication best practices, in which we went through a few critical pointers. Lastly, MySQL
queries and indexing pointers were also discussed with best practices for data partitioning.
Anything written in this chapter would be less, but the pointers provided are necessary.

By now, we should have a good understanding of MySQL 8; it's now time to solve
problems.

Let's now move on to the next chapter and look at how we could come across many
common issues, identifying error codes along with real-world scenarios for troubleshooting
MySQL 8.

115
Troubleshooting MySQL 8

In the previous chapter, we learned an important aspect of the MySQL 8 database,
benchmarking, and best practices. Benchmarking helps in comparing the current database
performance against the expected performance matrices. We learned what benchmarking is
and the tools that can be used to find the benchmark performance of a MySQL 8 server. In a
later part of the chapter, we learned about the best practices to be followed for memcached,
replication, partitioning, and indexing. Best practices help ensure the optimum
configuration of the MySQL 8 database.

In this chapter, the focus will be on understanding the common errors that we may
encounter while working with the MySQL 8 database. The errors may be server errors or
client errors. We will look at a way to determine that the problem has occurred. We will
also learn troubleshooting and resolution techniques for errors. In a later part of the chapter,
we will look into real-world scenarios where these techniques are applicable. The following
is the list of topics to be covered:

MySQL 8 common problems
MySQL 8 server errors
MySQL 8 client errors
MySQL 8 troubleshooting approach
Real-world scenario

Troubleshooting MySQL 8 Chapter 15

[439]

MySQL 8 common problems
When troubleshooting is an issue, the first thing to be done is to find out the program or
piece of equipment that is causing it when we run into a problem.

The following are symptoms that indicate a hardware or kernel problem:

The keyboard is not functioning. It can be checked by pressing the Caps Lock key.
If the light on the Caps Lock key does not light up, it is an issue with the keyboard.
Similarly, the mouse not moving indicates an issue with the mouse.

 is an operating system command to check the accessibility of one machine
from another machine. The machine from which the ping command is executed is
called the local machine, whereas the machine pinged is called the remote
machine. If the remote machine does not respond to the local machine's pings, it
indicates a hardware or network related issue.
It may indicate an issue with the operating system kernel program if the
programs other than MySQL are not working correctly.
It may indicate an issue with the operating system or hardware if the system
restarts unexpectedly. In a typical case, a user-level program should never be able
to take the system down.

To troubleshoot the issue, one or more of the following can be done:

Run a diagnostic tool to check hardware
Ensure the relevant library files are up to date
Check for the availability of updates, patches, or service packs for the operating
system
Check all connections

 is an error correcting code memory. It can detect and correct most common
internal data corruption issues. It is advisable to use ECC memory in order to detect the
memory issues at an early stage.

The following instructions may help further identify the issue:

Examining the system log files may help to discover the reason for the problem.
MySQL log files must also be checked in case there appears to be an issue with
MySQL.
Operating system specific commands can be used to check issues with memory,
file descriptors, disk space, or other critical resources.

Troubleshooting MySQL 8 Chapter 15

[440]

A bug can be identified in the operating system kernel if a problematic runaway
process does not die even though we have executed a command to kill it.
If there appears not to be a problem with the hardware, attempts should be made
to identify the program that may be causing the problem. Using operating system
specific commands, such as Task manager on Windows, and on Linux, or
similar programs, we can identify programs that eat up CPU or block system
processes.
It is possible to recover the access to the machine even though the keyboard is
locked up. This can be done by logging on to the system from another machine.
Execute the command upon successful login.

MySQL users can report issues by using one of the multiple channels provided by MySQL.
After having examined all the possible alternatives, if it can be decided that either the
MySQL server or the MySQL client causes the problem, a user can either create a bug report
for the mailing list or contact the MySQL support team. The bug reporter must provide
detailed information about the bug, system information, and behavior and the expected
behavior. The reporter must describe the reason based on why it seems to be a MySQL
bug. It is useful to know the following information if the program fails:

With the help of the command, check if the program in question has taken
up all the CPU time. In such cases, we should allow a program to run for a while
because it is possible that the program may be executing intensive computational
instructions.
Observe the response from the MySQL server when a client program tries to
connect to it. Has it stopped responding? Did the server provide any output?
If it is found that the MySQL server is causing problems in the program,
try to connect using the program to check whether
responds. The or

 commands can be used.
Did the failed program make a segmentation fault?

Most common MySQL errors
This section provides a list of the most common MySQL errors that users encounter very
frequently.

Troubleshooting MySQL 8 Chapter 15

[441]

Access denied
MySQL provides a privilege system that authenticates the user who connects from a host,
and associates the user with access privileges on a database. The privileges include ,

, , and and are able to identify anonymous users and grant
privileges for MySQL specific functions, such as and administrative
operations.

The access denied error may occur because of many causes. In many cases, the problem is
caused because of MySQL accounts that the client programs use to connect with the MySQL
server with permission from the server.

Can't connect to [local] MySQL server
In this section, we will focus on the circumstances in which Can't connect to MySQL server
error is encountered. But before we jump onto error-specific details, it is necessary to
understand how the MySQL client connects to the MySQL server.

On a Unix system, two different ways are available for the MySQL client to connect to the
 server process. The following are the details of these two methods:

TCP/IP connection: The server process listens for client connections on a
specific port. The MySQL clients connects to the server using the specified TCP/IP
port.
Unix socket file: In this mode of connection, a Unix socket file is used to connect
through a file in the filesystem ().

The socket file connection is faster compared to TCP/IP but it can be used when connecting
to a server on the same machine. To use the Unix socket file, we do not specify a hostname
or a special hostname localhost should be specified.

The following are the ways for the MySQL client to connect to the MySQL server on
Windows:

TCP/IP connection: As described previously for the Unix systems, the TCP/IP
connection runs on a specified port number. The MySQL client connects to the
port on which the MySQL server is listening.

Troubleshooting MySQL 8 Chapter 15

[442]

Named pipe connection: The MySQL server can be started with the
 option. If the client is running on the host on which the server is

running, the client can connect with named pipes. MySQL is the default name of
the named pipe. If no hostname is provided while connecting to the
server process, MySQL first tries to connect to the default named pipe. If it is
unable to connect to the named pipe, it tries to connect to the TCP/IP port. The
use of named pipes can be forced on Windows by using as the hostname.

MySQL errors are identified by predefined unique error codes. The same error can have
different error codes associated with it. The Can't connect to MySQL server error with the
error code indicates one of three problems. It can be that the MySQL server is not
running on the system, or the Unix socket filename provided is incorrect, or the TCP/IP port
number provided to connect to the server is incorrect. The TCP/IP port may be blocked by
the firewall or the port blocking service.

The error code also associates with can't connect to MySQL server. It indicates refusal
of the network connection by the server. It should be checked if the MySQL server has
network connections enabled, the MySQL server is running, and the specified network port
is configured on the server.

The following command can be used to ensure that the server process is running:

> ps xa | grep mysqld

If the server process is not running, we should start the server. If the server is
already running, the following commands should be used:

> mysqladmin version
> mysqladmin variables
> mysqladmin -h `hostname` version variables
> mysqladmin -h `hostname` --port=3306 version
> mysqladmin -h host_ip version
> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

In the preceding commands, is the hostname of the machine on which the
MySQL server is running. is the IP address of the server machine.

Troubleshooting MySQL 8 Chapter 15

[443]

Lost connection to MySQL server
The lost connection to MySQL server error can occur because of one of the three likely
causes explained in this section.

One of the potential reasons for the error is that the network connectivity is troublesome.
Network conditions should be checked if this is a frequent error. If the during
query message is part of the error message, it is certain that the error has occurred because
of network connection issues.

The system variable defines the number of seconds that the
server waits for a connection packet before connection timeout response. Infrequently, this
error may occur when a client is trying for the initial connection to the server and the

 value is set to a few seconds. In this case, the problem can be
resolved by increasing the value based on the the distance and
connection speed. and can be used to
determine if we are experiencing this more frequently. It can be certainly said that
increasing the value is the solution if the error message contains
reading authorization packet.

It is possible that the problem may be faced because of larger Binary Large OBject (BLOB)
values than . This can cause a lost connection to the MySQL server
error with clients. If the error is observed, it confirms that the

 value should be increased.

Password fails when entered incorrectly
MySQL clients ask for a password when the client program is invoked with the

 or option without the password value. The following is the command:

> mysql -u user_name -p
Enter password:

On a few systems, it may happen that the password works fine when specified in an option
file or on the command line. But it does not work when entered interactively on the
Command Prompt at the prompt. It occurs because the system-
provided library to read the passwords limits the password values to a small number of
characters (usually eight). It is an issue with the system library and not with MySQL. As a
workaround to this, change the MySQL password to a value that is eight or fewer
characters or store the password in the option file.

Troubleshooting MySQL 8 Chapter 15

[444]

Host host_name is blocked
If the server receives too many connection requests from the host that is interrupted
in the middle, the following error occurs:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The system variable determines the number of successive
interrupted connection requests that are allowed. Once there are
failed requests without a successful connection, assumes that something is wrong
and blocks the host from further connections until the statement or

 command is issued.

 blocks a host after 100 connection errors as a default. It can be adjusted by setting
the value on the server startup, as follows:

> mysqld_safe --max_connect_errors=10000

This value can also be set up at runtime, as follows:

mysql> SET GLOBAL max_connect_errors=10000;

It should be checked first that there is nothing wrong with TCP/IP connections from the
host if the is blocked error is received for a particular host. Increasing the value
of the variable does not help if the network has problems.

Too many connections
This error indicates that all available connection are in use for other client connections. The

 is the system variable that controls the number of connections to the
server. The default value for the maximum number of connections is 151. We can set a
larger value than 151 for the system variable to support more
connections than 151.

The server process actually allows one more than
() value clients to connect. The additional one connection is kept
reserved for accounts with or the privilege. The privilege can be
granted to the administrators with access to the privilege. With this access, the
administrator can connect to the server using the reserved connection. They can execute
the command to diagnose the problems even though the maximum
number of client connections is exhausted.

Troubleshooting MySQL 8 Chapter 15

[445]

Out of memory
If the does not have enough memory to store the entire request of the query issued
by the MySQL client program, the server throws the following error:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

In order to fix the problem, we must first check if the query is correct. Do we expect the
query to return so many rows? If not, we should correct the query and execute it again. If
the query is correct and needs no correction, we can connect with the
option. Using the option results in the C API function for
fetching the result set. The function adds more load on the server and less load on the client.

Packet too large
The communication packet is one of the following:

A single SQL statement that the MySQL client sends to the MySQL server
A single row that is sent to the MySQL client from the MySQL server
A binary log event that is sent from a replication master server to the replication
slave

A 1 GB packet size is the largest possible packet size that can be transmitted to or from the
MySQL 8 server or client. The MySQL server or client issues an

 error and closes the connection if it receives a packet bigger
than bytes.

The default size is 16 MB for the MySQL client program. The
following command can be used to set a larger value:

> mysql --max_allowed_packet=32M

The default value for the MySQL server is 64 MB. It should be noted that there is no harm in
setting a larger value for this system variable, as the additional memory is allocated as
needed.

Troubleshooting MySQL 8 Chapter 15

[446]

The table is full
The table-full error occurs in one of the following conditions:

The disk is full
The table has reached the maximum size

The actual maximum table size in the MySQL database can be determined by the
constraints imposed by the operating system on the file sizes.

Can't create/write to file
This indicates that MySQL is unable to create a temporary file in the temporary directory
for the result set if we get the following error while executing a query:

Can't create/write to file '\\sqla3fe_0.ism'.

The possible workaround for the error is to start the server with the
option. The following is the command:

> mysqld --tmpdir C:/temp

As an alternative, it can be specified in the section of the MySQL configuration
file, as follows:

[mysqld]
tmpdir=C:/temp

Commands out of sync
If the client functions are called in the wrong order, the commands out of sync error is
received. It means that the command cannot be executed in the client code. As an example,
if we execute and try to execute another query before executing

, this error may occur. It may also happen if we execute two queries
that return a result set without calling the or

 functions in between.

Troubleshooting MySQL 8 Chapter 15

[447]

Ignoring user
The following error is received when an account in the user table is found with an invalid
password upon the server startup or when the server reloads the grant tables:

Found wrong password for user 'some_user'@'some_host'; ignoring user

The account is ignored by the MySQL permission system as a result. To fix the problem, we
should assign a new valid password for the account.

Table tbl_name doesn't exist
The following error indicates that a specified table does not exist in the default database:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, the user may be referring to the table incorrectly. It is possible because the
MySQL server uses directories and files for storing database tables. Depending upon the
operating system file management, the database and table names can be case sensitive.

For non case-sensitive filesystems, such as Windows, the references to a specified table used
within a query must use the same letter case.

MySQL 8 server errors
This section focuses on MySQL 8 server errors. The section describes the errors related to
MySQL server administration, table definitions, and known issues in the MySQL 8 server.

Issues with file permissions
If the or environment variables are set incorrectly upon server startup,
we may have problems with file permissions. The MySQL server may issue following error
message upon table creation:

ERROR: Can't find file: 'path/with/file_name' (Errcode: 13)

Troubleshooting MySQL 8 Chapter 15

[448]

The default values for and system variables are 0640 and 0750,
respectively. If the value of these environment variables starts with zero, it indicates to the
MySQL server that the values are in octal. For example, the default values 0640 and 0750 in
octal are equivalent to 415 and 488, respectively, in decimal.

In order to change the default value, we should start , as follows:

> UMASK=384 # = 600 in octal
> export UMASK
> mysqld_safe

The MySQL server creates database directories with a default access permission value of
. We can set the variable to modify this behavior. If this value is set, new

directories are created with access permission values as a combination of the and
 values.

The following is an example of providing group access to all new directories:

> UMASK_DIR=504 # = 770 in octal
> export UMASK_DIR
> mysqld_safe &

Resetting the root password
The MySQL server does not need a password for connecting as a root user if the root
password is never set in MySQL. If the password was assigned earlier has been forgotten, it
can be reset.

The following are the instructions to reset the account password on the
Windows system:

Log in to the system using system administrator credentials.1.
If the MySQL server is already running, stop the server. If the MySQL server is2.
running as a Windows service, go to Services by following Start menu | Control
panel | Administrative tools | Services. In the services, find the MySQL service
and stop it. If the MySQL server is not running as a Windows service, kill the
MySQL server process by using Windows Task Manager.
Once the MySQL server is stopped, create a text file that has a single line of the3.
password assignment statement, as follows:

 ALTER USER 'root'@'localhost' IDENTIFIED BY 'NewPassword';

Troubleshooting MySQL 8 Chapter 15

[449]

Save the file. For example, the file is saved as .4.
Open the Windows Command Prompt by following Start menu | Run | cmd.5.
In the Command Prompt, start the MySQL server with the option,6.
as follows:

 C:\> cd "C:\Program Files\MySQL\MySQL Server 8.0\bin"
 C:\> mysqld --init-file=C:\\mysql-root-reset.txt

Once the MySQL server is restarted, delete the file.7.

The following are the instructions to reset the root user password on Unix-like systems:

Log on to the system with the same user the the MySQL server runs by. Usually,1.
it is user.
If the MySQL server is already running, stop the server. To accomplish this, find2.
the file containing the process ID of the MySQL server. Depending on the
Unix distribution, the actual location and name of the file may differ. The usual
locations are , , and

. Usually, the filename begins with either or
the hostname of the system and has an extension of . The MySQL server can
be stopped by sending a normal kill command to the server process. The
following command can be used with actual path name of the file:

 > kill 'cat /mysql-data-directory/host_name.pid'

Once the MySQL server is stopped, create a text file that has a single line of the3.
password assignment statement, as follows:

 ALTER USER 'root'@'localhost' IDENTIFIED BY 'NewPassword';

 Save the file. It is assumed that the file is stored at 4.
. As the file contains the password for the root user, it should be ensured

that other users are not able to read it. If we are not logged in with the
appropriate user, we should make sure that the user has permission to read the
file.
Start the MySQL server with the option, as follows:5.

 > mysqld --init-file=/home/me/mysql-reset-root &

Once the server is started, delete the file at .6.

Troubleshooting MySQL 8 Chapter 15

[450]

The following are the generic instructions to reset the root user password:

If the MySQL server is running, stop the server. Once it is stopped, restart the1.
MySQL server with the privilege. Along with

, the option is automatically enabled so as
to prevent remote connections.
Connect to the MySQL server using the client program. As the server is2.
started with , no password is necessary:

 > mysql

In the MySQL client itself, ask the server to reload the grant tables. This will3.
enable account management statements:

 mysql> FLUSH PRIVILEGES;

Change the account password by using following4.
command:

 mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY
 'NewPassword';

Restart the server and log in with the root user and newly set password.5.

MySQL crashes prevention
As a standard release practice, every MySQL version is verified on different platforms
before its release. It is assumed that MySQL may have a few hard to find bugs. As we
encounter an issue with MySQL, it is helpful if we try to find out the cause for the system
crash. The first thing to identify is if the server process crashes or the issue is with
the MySQL client program. It can be checked how long the MySQL server was up for by
executing the command. The following is an example output:

C:\Program Files\MySQL\MySQL Server 8.0\bin>mysqladmin version -u root -p
Enter password: *****
mysqladmin Ver 8.0.3-rc for Win64 on x86_64 (MySQL Community Server (GPL))
Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights
reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Troubleshooting MySQL 8 Chapter 15

[451]

Server version 8.0.3-rc-log
Protocol version 10
Connection localhost via TCP/IP
TCP port 3306
Uptime: 9 days 4 hours 4 min 52 sec

Threads: 2 Questions: 4 Slow queries: 0 Opens: 93 Flush tables: 2 Open
tables: 69 Queries per second avg: 0.000

The is a utility program that resolves a numeric stack dump to
symbols. To analyze the root cause of where the server process died, we find in the
stack trace error logs. It can be resolved with the program. It must
be noted that it is possible that variable values found in the error logs may not be accurate.

Corrupted data or index files can cause the MySQL server to crash. These files are updated
on the disk using the system called upon the execution of each SQL statement and
before the client is notified about the result. It means that the contents in the data files are
safe even in the event of a crash. The writing of the unflushed data on the disk is
taken care of by the operating system. The option can be used with to
force MySQL to flush everything to disk after every SQL statement execution.

One of the following can be the reason for MySQL corrupted tables:

If the data file or index file crashes then it contains corrupted data.
A bug in the MySQL server process caused the server to die in the middle of an
update.
An external program manipulated the data and index files at the same time as

 without table locking.
In the middle of an update, the MySQL server process was killed.
Many servers are running on the system. The servers use the same data
directory. The system does not have good filesystem locks or the external locking
is disabled.
It is possible that a bug is found in the data storage code. We can try to change
the storage engine by using on the repaired copy of the table.

Troubleshooting MySQL 8 Chapter 15

[452]

Handling MySQL full disk
This section focuses on the response from MySQL to disk-full errors and quota-exceeded
errors. It is more relevant to writes in tables. It can be applied to writes in binary
log files and an index file. It excludes the references to rows and records that should be
considered an event.

MySQL performs the following when a disk-full condition occurs:

MySQL ensures that there is enough space available to write the current row.
The MySQL server writes an entry in the log file every 10 minutes. It warns about
the disk-full condition.

The following actions should be taken to remedy the problem:

The disk space should be freed to make sure enough space is available to insert
all records.
We can execute the command to abort the thread. The next
time it checks the disk, the thread is aborted.
It may happen that a few threads are waiting for the table that caused the disk-
full situation. Out of several locked threads, killing the thread that is waiting on
the disk-full condition will enable other threads to continue.
The or statements are exceptions to the
preceding condition. Other exceptions include indexes created in a batch after
the or statements. These SQL statements can
create temporary files with large volumes. This may create big problems for the
rest of the system.

MySQL temporary files storage
The value of the environment variable is used by MySQL on the Unix as the path
name of the directory to store temporary files. MySQL uses a system default, such as ,

, or if the is not set.

The values of the , , and environment variables are checked by MySQL on
Windows. If MySQL finds one set, it uses that value and does not check for remaining
values. If none of these three variables are set, MySQL uses the system default, which is

.

Troubleshooting MySQL 8 Chapter 15

[453]

If the temporary file directory in the filesystem is too small, we can use the
 option to specify a directory on the filesystem with enough space. For the

replication, on slave machines, we can use and specify the
directory for holding temporary files during the replication of
statements. It is possible to set a list of several paths used in a round-robin fashion with
the option. On the Unix system, the paths can be separated by the colon
character(:), whereas on Windows, the semicolon character(;) can be used to separate the
paths.

To effectively distribute the load, multiple temporary directory paths
should belong to different physical disks and not the different partitions of
the same disk.

For the MySQL server working as a replication slave, we must take care of setting the
 option so as not to point to a directory in the memory-based

filesystem or to a directory that is cleared upon server or server host restarts. To replicate
the temporary tables or operations, the replication slave requires its
temporary files on the machine restart. The replication fails if the files in the temporary file
directory are lost.

MySQL takes care of removing the temporary files when the server process is
terminated. On Unix-like platforms, it can be done by unlinking a file after opening it. One
of the major disadvantage of this is that the name does not appear in directory listings. It
also happens that we cannot see a big file that occupies the filesystem.

 is the name of the table space file that the storage engine uses to store
temporary tables. The file is located in the data directory of MySQL. If we want to specify a
different filename and location, the option can be used on
the server startup.

If the technique is used by the operation on the
table, the storage engine creates a temporary copy of the original table in the same
directory. The temporary table filenames start with the prefix. They only appear
briefly while the operation is being performed.

If the table is rebuilt by the SQL statement using the
 method, the storage engine creates an intermediate copy of

the original table in the same directory as that of the original table. The intermediate table
filenames start with the prefix. They only appear briefly while the
operation is being performed.

Troubleshooting MySQL 8 Chapter 15

[454]

The option cannot be applied to intermediate table files. These
intermediate files are always created and stored in the same directory as that of the original
table.

The SQL statements that rebuild the table with the
 method create temporary sort files in the default MySQL temporary

directory. The default temporary directory is denoted by on Unix, on
Windows, or the directory mentioned by the option. may need to be
reconfigured if the temporary directory is not large enough to store such files. As an
alternative, we can define another temporary directory for online
statements using the option. The option can be
configured at runtime, using the or statements.

Replicating an configuration should be considered in replication
environments if all the servers have the same operating system environment. In other cases,
an setting replication can result in a failed replication while executing
online operations. It is recommended to configure for each
server separately if the operating environments are different.

MySQL Unix socket file
The MySQL server uses as a default location for Unix socket files for
communication with local clients. It may be different based on the distribution formats,
such as for RPMs.

On several Unix versions, it is possible to delete files stored in the directory and
similar other directories used to store temporary files. It may cause problems if the socket
file is stored in such a directory on the filesystem.

It is possible to protect the directory so as to ensure that the files can only be deleted
by the owners or the root superuser. This is possible on almost every version of Unix. This
can be done by setting the sticky bit on the directory while logged in as a root user.
The following is the command to do the same:

chmod +t /tmp

Using the command, it can also be checked if the sticky bit is set. The bit is
set if the last permission character is . A sticky bit is used to define the file permissions in
Unix systems.

Troubleshooting MySQL 8 Chapter 15

[455]

An alternative approach is also possible in which we should change the place of the Unix
socket file. If we change the location of the Unix socket file, we must ensure that the client
programs also know the new location of the file. The following are the ways to do it:

The path can be set in the global or local option file, as follows:

 [mysqld]
 socket=/path/to/socket

 [client]
 socket=/path/to/socket

We can also specify a option to on the
command line and also when we run client programs.
The environment variable can be set to the path
of the Unix socket file.
The MySQL can also be recompiled from source so as to use a
different Unix socket file location as a default.

Using the following command, it can be ensured that the new socket location works:

mysqladmin --socket=/path/to/socket version

Time zone problems
The MySQL server must be told the user's current time zone if we have problem with

 returning a value in UTC instead of the user's current time zone. It is also
applicable if returns a wrong value. It should be done for the
environment running the server; for example, or .

We can also set the server time zone by using the option
with . It can also be set by assigning the value to the environment variable
before the is started.

The allowed list of values for or depends on the system.

Troubleshooting MySQL 8 Chapter 15

[456]

MySQL 8 client errors
This section focuses on errors that occur on the MySQL 8 client. The job of a MySQL client is
to connect to the MySQL server so as to execute the SQL queries and get the results from the
MySQL 8 database. This section lists errors related to execution of the queries.

Case sensitivity in string searches
The string searches use the logical sequence of comparison operands for non-binary strings,
such as , , and . The comparisons of binary strings, such as ,

, and use the numeric values of the bytes in the operands. It essentially
means that the comparison will be case sensitive for the alphabetic characters.

The comparison of a non-binary string with a binary string will be treated as a comparison
between binary strings.

The comparison operations such as , , , , , and depend on the
sort value of each character. The characters with a similar sort value are considered the
same character. Consider an example of e and . These characters have the same sort value
in the provided logical sequence. These are considered equal.

 and are the default character set and collation,
respectively. As a default, the non-binary string comparisons are case insensitive. This
means that we will get all the column values starting with A or a if we search with

. To make it case sensitive, we have to ensure that one of the
operands has a binary or case sensitive collation. For example, if a column is compared to a
string and both have the character set, the operator can be used to cause
either operand to have the or collation. The following
is an example:

col_name COLLATE utf8mb4_0900_as_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE utf8mb4_0900_as_cs
col_name COLLATE utf8mb4_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE utf8mb4_bin

Troubleshooting MySQL 8 Chapter 15

[457]

In order to change the non-binary case-sensitive strings comparison to be case insensitive,
we should use to name a case-insensitive collation. The following is an example of
how changes the comparison to be case sensitive:

mysql> SET NAMES 'utf8mb4';
mysql> SET @s1 = 'MySQL' COLLATE utf8mb4_bin, @s2 = 'mysql' COLLATE
utf8mb4_bin; mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE utf8mb4_0900_ai_ci = @s2;
+--------------------------------------+
| @s1 COLLATE utf8mb4_0900_ai_ci = @s2 |
+--------------------------------------+
| 1 |
+--------------------------------------+

Problems with DATE columns
In MySQL, the default format of a value is . Standard SQL does not
permit any other format. This is the format that should be used in the expressions
and in the clause in a statement. The following is an example of the date
format:

SELECT * FROM table_name WHERE date_col >= '2011-06-02';

When a constant string is compared to , , , or using , , ,
, , or operators, MySQL converts the string into an internal long integer value.

MySQL does this so as to achieve a faster comparison. However, the following exceptions
are applicable to this conversion:

Comparing two columns
Comparing a , , , or column to an expression
Use of a comparison method other than those just listed, such as or

The comparison is done by converting the objects into string values and performing a string
comparison in case of these exceptions.

Troubleshooting MySQL 8 Chapter 15

[458]

Problems with NULL values
A value is often a point of confusion for new programmers. The value is by
mistake interpreted as an empty string in the case of strings. This is not correct. The
following is an example of completely different statements:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

In the preceding example, both statements insert the value in the same column (phone
column). The first statement inserts a value, whereas the second statement inserts an
empty string. The first value can be considered as the phone number is not known, whereas
the second value indicates the person is known to have no phone, and thus no phone
number.

When a value is compared to any other value, it always evaluates to be false. The
expression containing the value always results in a value. The following
example returns a value:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

If the purpose of an SQL statement is to search for column values, we cannot use
. The following is an example that returns no rows, as

 is always false:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To make a value comparison, should be used. The following example
demonstrates the use of :

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

MySQL 8 troubleshooting approach
In this section of the chapter, we will focus on the MySQL 8 troubleshooting approach. Why
do we need to troubleshoot MySQL 8? The reasons for troubleshooting are as follows:

Faster execution of SQL queries
Performance enhancement
Efficient use of resources

Troubleshooting MySQL 8 Chapter 15

[459]

The primary set of resources include CPU, disk IO, memory, and network. There are two
approaches to measure MySQL performance:

In a query focused approach, it is important to measure how fast the queries get
executed
 In resource focused approach, it is important that the queries use fewer
resources.

Let us take a deeper look at ways to troubleshoot MySQL problems.

Analyzing queries
 is the SQL statement that provides information for the way MySQL executes the

SQL statements. The statement works with , , , ,
and statements. The output of the statement is a row of information for
each table mentioned or used in the statement. The output lists the tables in the
order of MySQL's reading these tables while executing the statement. All joins are resolved
using the nested-loop join method. In the nested-loop join method, MySQL reads a row
from the first table in the list and then finds the matching row in the second table in the list,
then the third table, and so on. Once all the tables in the list are processed, MySQL
processes the results of the selected columns and backtracks them through the list of tables
until it finds a table with more matching rows. It reads the next row from this table. This
way the process continues.

The following are the columns from the output:

: This denotes the sequential number of within a query. It is also
known as the identifier. It is possible that the value can be when the
row belongs to union result of other rows. The output shows in the
table column. It means that the row refers to union of ID values and .

: This output column indicates the type of statement. The
possible list of values include , , , ,

, , , , ,
, and .

: This column indicates the name of the table referred in the output. It can
have values such as , , and .

: This identifies the partitions from which the query matches the
records. For non-partitioned tables, the value is .

Troubleshooting MySQL 8 Chapter 15

[460]

: This indicates the type of .
: This output column indicates possible indexes that MySQL

may choose to fetch the rows in the table. If there are no matching indexes, the
return value would be .

: This output column indicates the key index that MySQL actually uses to
fetch the rows from a table.

: The output column indicates the columns or constants used to compare
with the index mentioned in the key output column to select table rows.

: The rows output column indicates the number of rows to be examined in
order to successfully execute the query.

The following are the types of joins in :

: This means that the table has only one row. It is a special case of
join type.

: This means that the table has at least one matching row. The row is read
at the beginning of the query. As only one matching row is found, the rest of the
optimizer regards the values from the column in this row as constants. As const
tables are read only once, it is very fast. The const is used when all parts of a

 or index are compared to constant values. The following is
an example where is used as a const table:

 mysql> SELECT * FROM tbl_name WHERE primary_key=1;
 mysql> SELECT * FROM tbl_name WHERE primary_key_part1=1 AND
primary_key_part2=2;

: For each combination of rows from the earlier tables, all rows with matching
index values are read from the table. If the join uses only the leftmost prefix
of the key, the is used.

Real-world scenario
MySQL query optimization is referred to as improving the time of query execution. For
example, when a query is not performing well means that the query is taking a longer time
than expected for execution. The time of the query execution is important but there are
other matrices as well that are used to measure performance. This section explains what
should be measured and how it should be done as precisely as possible.

Troubleshooting MySQL 8 Chapter 15

[461]

The following question arises: why should we optimize the query? Does it really require
optimization if it only takes a hundredth of a second? Yes, it does require optimization
unless the query is executed rarely. We should optimize the queries that are most
expensive.

Let's discuss a real-time example. In one of the applications, we had a report that was
generated based on a complex query and was taking too much time. The execution time
was in minutes. To optimize such a complex query, we considered the following approach:

Analyze the query plan using : MySQL provides two ways to analyze1.
the performance of a query. One is the method, which we have already
learned about in the preceding section of this chapter. Another tool is

. Usually, we should prefer to use to understand the query plan
of a query. In the case of the report query, we convert a few of the non-
 queries to queries. This helps us in understanding the query
execution plan for non- queries as well. For example, rewriting an

 query to can be done by using the clause in the
query, which is passed on to the query. We could also find few missing
indexes on the tables.

: The statement outputs the internal counters for2.
MySQL. The counters are incremented by MySQL upon every query execution.
With the help of these counters, we could understand the types of operations
performed by the server in aggregate. It also helps in indicating the work done by
each individual query.

The following are the measurements performed for MySQL server variables:

: This counter is incremented whenever a query is
executed. This counter can also be used to identify if a table scan is performed.

: This variable provides additional information on the usage of the key
index.

: This value indicates how expensive the last executed query
was.

Troubleshooting MySQL 8 Chapter 15

[462]

The following are the steps to perform query optimization:

Query the execution a few times to ensure it returns the same result.1.
Execute . The output should be saved.2.
Execute the query.3.
Execute to observe the differences from the previous execution.4.
Execute if required.5.

The following parameters should be analyzed for query performance optimization:

Table index
Sorting
Overall performance
Row level operations
Disk I/O operations

Summary
In this last chapter of the book, we learned an important aspect of any database:
troubleshooting errors that we may encounter using the MySQL server or client. We started
the discussion by understanding what troubleshooting is. We discussed different ways for
initial diagnostics of the error. We understood common MySQL errors and what the error
messages mean. We also learned about the ways to fix these errors. We also learned about
the MySQL server and client errors and fixes for these errors. In the later part of the chapter,
we learned about the MySQL troubleshooting approach and looked at a real-world
scenario. Pretty important stuff for the last chapter, huh? That's it for the book.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

MySQL 8 for Big Data
Shabbir Challawala, Jaydip Lakhatariya, Chintan Mehta, Kandarp Patel

ISBN: 978-1-78839-718-6

Explore the features of MySQL 8 and how they can be leveraged to handle Big
Data
Unlock the new features of MySQL 8 for managing structured and unstructured
Big Data
Integrate MySQL 8 and Hadoop for efficient data processing
Perform aggregation using MySQL 8 for optimum data utilization
Explore different kinds of join and union in MySQL 8 to process Big Data
efficiently
Accelerate Big Data processing with Memcached
Integrate MySQL with the NoSQL API
Implement replication to build highly available solutions for Big Data

Other Books You May Enjoy

[464]

MySQL 8 Cookbook
Karthik Appigatla

ISBN: 978-1-78839-580-9

Install and configure your MySQL 8 instance without any hassle
Get to grips with new features of MySQL 8 like CTE, Window functions and
many more
Perform backup tasks, recover data and set up various replication topologies for
your database
Maximize performance by using new features of MySQL 8 like descending
indexes, controlling query optimizer and resource groups
Learn how to use general table space to suit the SaaS or multi-tenant applications
Analyze slow queries using performance schema, sys schema and third party
tools
Manage and monitor your MySQL instance and implement efficient
performance-tuning tasks

Other Books You May Enjoy

[465]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Access Control Lists (ACLs)
access control stages verification
 about
 connection verification
 request verification
access control, MySQL 8
 about
 grant tables
 privileges ,
administrative programs, MySQL 8
 ibdsdi
 innochecksum ,
 myisam_ftdump ,
 myisamchk ,
 myisamlog ,
 myisampack ,
 mysql_config_editor ,
 mysqlbinlog ,
 mysqldumpslow ,
advanced custom storage engine
 reference
advantages, MySQL replication
 analytics
 data security
 long distance data distribution
 scale out solutions
American National Standard Institute (ANSI)
Application Programming Interface (APIs)
ARCHIVE storage engine
archive storage engine
authentication plugins
 about
 client-side cleartext pluggable authentication
 no-login pluggable authentication
 SHA-2 pluggable authentication

 socket peer-credential pluggable authentication

 test pluggable authentication

B
B-Tree index ,
Basic Multilingual Plane (BMP)
benefits, MySQL 8
 about
 cross-platform capabilities
 high availability
 high performance
 open source relational database management

system
 scalability
 security
best practices, data partitioning
 about
 horizontal partitioning
 pruning of partitions
 vertical partitioning
best practices, for queries and indexing
 about
 compound index
 data existence
 data types ,
 data, fetching
 indexing ,
 job, performing
 joins
 limiting
 not null
 primary keys, shortening up
 query cost
 search fields index
 slow queries, analyzing

[467]

best practices, memcached
 about
 backlog queue limit
 caching mechanism
 default configurations
 exposure, restricting
 failover
 large pages support
 max object size
 memcached general statistics
 namespaces
 operating system architecture
 resource allocation
 sensitive data
best practices, MySQL benchmarking and tools
 about
 benchmarking timelines, stretching
 benchmarks , ,
 hidden workloads
 latency, consistency
 production settings, replicating
 query
 resource utilization
 sysbench
 throughput, consistency
 virtualization
best practices, replication
 constant throughput
 contradictory workloads
 infrastructure sizing
 throughput, in group replication
 write scalability
BINARY data type
Binary Large Object (BLOB)
binary log
binary log file based replication ,
binlog dump thread
bit value type
 about
 implementations
 literals
BLACKHOLE storage engine ,
BLOB data types
 about
 optimization guidelines

bucket

C
caching techniques
Certificate Authority (CA)
challenges, in scaling MySQL 8
 about
 business type
 change request management
 cross node transaction
 database security
 flexibility
 growing team, for development
 maintenance
 master server failure
 read-write operation limit ,
 scale-out
 scale-up
 server workload
 synchronization
CHAR data type ,
character sets
 about
 adding
 configuring
 support
client programs, MySQL 8
 mysql ,
 mysql logging
 mysql server-side help
 mysqladmin ,
 mysqlcheck ,
 mysqldump ,
 mysqlimport ,
 mysqlpump , ,
 mysqlsh ,
 mysqlshow , ,
 mysqlslap ,
client-side cleartext pluggable authentication
client-side configuration
 for encrypted connections
cluster architecture
 about
 application node
 client node

[468]

 data node
 management node
cluster
 used, for scaling MySQL 8
clustered index
collation
 reference
column indexes
 about
 FULLTEXT indexes
 index prefixes ,
 spatial indexes
column-level indexing
COLUMNS partitioning
 about
 LIST COLUMN partitioning
 RANGE COLUMN partitioning ,
comma separated values (CSV) engine
command line
 MySQL 8 programs, executing from
command options
 for encrypted connections
commands, related to role configuration
 CREATE ROLE
 DROP ROLE
 GRANT
 REVOKE
 SET DEFAULT ROLE
 SET ROLE
 SHOW GRANTS
comp_err ,
component services
components
 managing
composite index
connection-control plugins
CONNECTION_CONTROL plugin
 about
 installing ,
 variables
core features, MySQL
 database storage engines
 database storage types
 structured database
CREATE ROLE command

CSV storage engine
custom storage engine
 basic table scanning implementation
 creating
 engine-specific parameters, adding ,
 engine-specific variables, adding ,
 filename extensions, defining
 handler installation, handling
 handlerton, creating
 storage engine source files, creating
 table, closing
 table, opening
 tables, creating ,

D
data directory
data nodes
 benefits ,
data partitioning
 best practices
data size optimization
 about
 indexes
 joins
 normalization
 row format
 table columns
data type
 selecting, for column
data types, storage requisites ,
database storage engines
 archive
 BLACKHOLE
 CSV
 federated
 InnoDB
 memory
 merge
 MyISAM
 NDB cluster
database structure
 optimizing
date and time data types
 about
 DATE type ,

[469]

 DATETIME type ,
 MySQL DATETIME functions
 time functions
 TIME type
 TIMESTAMP type ,
 YEAR type
 YEAR(2), migrating to YEAR(4)
DBUG package
DDL log
Debian package
 used, for installing MySQL 8
debugging
descending index , ,
Development Milestone Release (DMR)
disk I/O
 optimizing
Drop index command
DROP ROLE command

E
encryption
 in MySQL 8
ENUM data type ,
environment variables, MySQL 8
 about ,
 MYSQL_DEBUG
 MYSQL_PWD
 MYSQL_TCP_PORT
 MYSQL_UNIX_PORT
 TMPDIR
error log
 about
 component configuration
 default error log destination configuration
 default error log destination, on Unix
 default error log destination, on Unix-Like

systems
 default error log destination, on Windows
EXAMPLE storage engine
EXPLAIN statement

F
federated storage engine
FEDERATED storage engine ,

fixed point types
floating point types
 about
 problems
FULLTEXT indexes
functions
 adding
 adding, to MySQL 8

G
General Availability (GA)
General Public License (GNU)
general query log
global transaction identifier (GTID)
Global transaction identifiers (GTID)
 about
 benefits
global transaction identifiers based replication ,

,
globalization
 about
 character sets
 language selection
 locale support
 time zone settings, for MySQL 8
GRANT command
grant tables
Group Communication System (GCS)
group replication, MySQL 8
 limitations
group replication
 about
 configuring ,
 use cases ,
 versus primary-secondary replication
GUI tools, MySQL
 MySQL Notifier
 MySQL Workbench

H
hash function
hash index
HASH partition management
HASH partitioning

[470]

 about
 LINEAR HASH partitioning
high availability, purpose
 about
 competitive market
 data availability
 data backup
 data security
 data synchronization
 performance
 solution selection
 system updates
high availability
 achieving
 advantages ,
 overview ,

I
ibdsdi
IGNORE keyword
 about
 reference
improved features, MySQL 8
 cloud
 default character set
 descending indexes
 expanded GIS support
 extended bit-wise operations
 InnoDB auto increment
 InnoDB Memcached
 invisible indexes
 JSON
 NOWAIT
 resource management
 roles
 SET PERSIST variant
 SKIP LOCKED
 transactional data dictionary
INDEX command
 creating
index extension , ,
indexes
 benefits
 clustered index
 non-clustered index

 optimizer, using for
 optimizing
indexing
 overview
innochecksum ,
InnoDB architecture
 components
InnoDB buffer pool optimization
InnoDB index statistics collection
InnoDB storage engine
 about ,
 ACID model
 configuration
 indexes ,
 INFORMATION_SCHEMA tables ,
 limitations
 locking model
 memcached plugin ,
 multiversioning
 overview
 restrictions
 tables ,
 tablespaces
 transactional model
InnoDB tables
 optimizing
installation/upgradation programs, MySQL 8
 about
 comp_err ,
 mysql_secure_installation ,
 mysql_ssl_rsa_setup ,
 mysql_tzinfo_to_sql ,
 mysql_upgrade ,
instances
 executing, on single machine
 multiple data directories, setting up
 MySQL instances, executing on Windows
integer types
internal temporary table
 usage, in MySQL
Internet Assigned Numbers Authority (IANA)
invisible index ,

[471]

J
JavaScript Object Notation (JSON)
JSON data type
 about ,
 partial updates

K
KEY partition management
KEY partitioning
keyring plugin
 about
 installing
 variables
keyring service ,

L
Least Recently Used (LRU)
limitations, MySQL 8
 data dictionary
 group replication
 InnoDB storage engine
 joins
 number of databases
 number of tables
 partitioning
 row size
 table column count
 table size
 Windows platform
LINEAR HASH partitioning
Linux Apache MySQL PHP (LAMP)
Linux
 MySQL 8, installing on
LIST COLUMN partitioning
LIST partition management ,
LIST partitioning , ,
lock types, InnoDB storage engine
 AUTO-INC locks
 exclusive lock
 gap locks
 insertion intention locks
 intention locks
 next-key locks
 predicate locks

 record locks
 shared locks
locking operations
 optimizing , ,
locking service
logging

M
memcached
 best practices
 used, for scaling MySQL 8
memory storage engine
MEMORY storage engine
 about , ,
 indexes
MEMORY tables
 optimizing
MERGE storage engine
merge storage engine
metadata
Microsoft Windows
 MySQL 8, installing on
mixed-format replication
multiple tables
 optimizing ,
multiple-column indexes
My SQL 8
 absence of suffix
 Release Candidate (rc)
MyISAM
MyISAM index statistics collection
MyISAM key cache
MyISAM storage engine , ,
MyISAM tables
 optimizing
myisam_ftdump ,
myisamchk ,
myisamlog ,
myisampack ,
MySQL 5.7
 upgrade prerequisites ,
MySQL 8 client errors
 about
 case sensitivity, in string searches
 DATE columns issue

[472]

 NULL values issue
MySQL 8 clients
 optimizing
MySQL 8 installer
 about
 Commercial Edition
 Community Edition
 console
 dashboard
 initial setup information ,
 InnoDB cluster sandbox test setup
 installation workflow
 product catalog
 server configuration ,
MySQL 8 internals
 about
 reference
MySQL 8 optimization
 database optimization ,
 hardware optimization
MySQL 8 plugin API
MySQL 8 privilege system
 limitations
MySQL 8 programs
 administrative programs
 client programs
 command-line options, affecting option file

handling
 connecting, to MySQL server
 environment variables , ,
 environment variables, setting
 executing
 executing, from command line
 group
 include directives
 installation/upgradation programs , ,
 opt_name
 opt_name=value
 options, modifying
 options, modifying with files ,
 options, on command line
 options, specifying for
 overview ,
 program variables, setting with options
 startup programs ,

MySQL 8 server errors
 about
 disk-full condition
 file permissions issue
 MySQL crashes prevention
 root password reset ,
 temporary files storage
 time zone issues
 Unix socket file
MySQL 8 servers
 optimizing
MySQL 8 test suite
MySQL 8 threads
MySQL 8 troubleshooting approach
 about
 queries, analyzing
MySQL 8
 access control
 account management
 administrative programs
 benefits
 binary distribution
 challenges, in scaling
 client programs
 command-line programs
 common issues ,
 data types, overview
 debugging
 Development Milestone Release (dmr)
 development release
 downgrade methods
 downgrading
 downloading
 encryption
 extending
 functions, adding
 general installation guide
 general release
 improved features
 in-place upgrade
 installation layout
 installation process
 installer distributions
 installing, Debian package used
 installing, on Linux

[473]

 installing, on Microsoft Windows
 installing, RPM package used
 installing, Yum repository used ,
 installing, ZIP file used , , ,
 keyring service
 license requisites
 limitations
 locking service
 logical downgrade ,
 logical upgrade
 manual changes, before downgrading
 package integrity, verifying
 package integrity, verifying with cryptographic

signatures
 package integrity, verifying with MD5 checksums

 porting
 post-installation setup
 right installation package, selecting
 scaling
 scaling, cluster used
 scaling, memcached used
 securing, against attackers
 security guidelines, for client programming ,

 security options
 source distribution
 upgrading
 upgrading methods
 Windows-specific considerations
MySQL benchmarking and tools
 best practices
MySQL client
 debugging
MySQL data types
 optimizing
MySQL errors
 about
 access denied
 can't connect to MySQL server
 can't create/write to file
 commands out of sync
 host host_name is blocked
 ignoring user
 lost connection to MySQL server

 out of memory
 packet too large
 password fails when entered incorrectly
 table tbl_name doesn't exist
 table-full error
 too many connections
MySQL memory
 optimizing , , ,
MySQL multi-source replication ,
MySQL Notifier
 about
 usage
MySQL optimization
MySQL queries
 best practices
MySQL query optimization
 real-world scenario
MySQL replication
 about , ,
 advantages ,
mysql server-side help
MySQL server
 debugging
MySQL storage engine
 architecture
MySQL Workbench
 about ,
 data migration
 data modeling
 MySQL Enterprise support
 server administration
 SQL development
mysql.8.1.2-rc
mysql.server ,
mysql
 about ,
MySQL
 about
 as relational database management system
mysql
 commands ,
MySQL
 core features
mysql
 logging

[474]

MySQL
 Network File System (NFS), using with
mysql
 options
MySQL
 overview
 platform compatibility
 releases
 reliability
 scalability
 use cases
mysql_config_editor ,
mysql_secure_installation ,
mysql_ssl_rsa_setup ,
mysql_tzinfo_to_sql ,
mysql_upgrade ,
mysqladmin ,
mysqlbinlog ,
mysqlcheck ,
mysqld
 about ,
 options ,
mysqld_multi ,
mysqld_safe , ,
mysqldump
 about ,
 performance
 scalability
mysqldumpslow ,
mysqlimport ,
mysqlpump , ,
mysqlsh ,
mysqlshow , ,
mysqlslap ,

N
native function
 adding
NDB cluster
 overview
Network File System (NFS)
 using, with MySQL
network usage
 optimizing ,
no-login pluggable authentication

non-clustered index
non-spatial index
 characteristics , ,
NoSQL APIs
NULL
 handling, in partitioning
numeric data types
 about
 bit value type
 fixed point types
 floating point types
 integer types
 type attributes

O
optimizer
 using, for indexes

P
partition information
 obtaining
partition maintenance ,
partition management
 about ,
 HASH partition management
 KEY partition management
 LIST partition management ,
 RANGE partition management ,
partition pruning , , ,
partition selection , ,
partitioning, limitations
 constructs prohibition
 operators
 tables
partitioning
 advantages
 COLUMNS partitioning
 HASH partitioning
 KEY partitioning
 limitations , , ,
 LIST partitioning , ,
 NULL, handling
 overview
 RANGE partitioning ,

[475]

 types ,
password management ,
password validation plugin
 about
 installing
 variables ,
passwords
performance benchmarking
pluggable storage engine architecture
plugin management
 about
 installed plugins information, obtaining
 plugin, activating
 plugin, uninstalling
 plugins, installing
 server plugins
plugin services
plugins services
plugins
 extending
 writing
porting
post-installation setup, MySQL 8
 about
 data directory initialization
 initial MySQL account, securing
 MySQL 8 services, starting
 MySQL 8 services, troubleshooting
primary-secondary replication
 versus group replication
privileges, MySQL 8
 administrative privileges
 database object's privileges
 database privilege
 dynamic privileges
 static privileges
privileges
 URL

Q
queries
 optimizing
query execution plan
 determining ,

R
RANGE COLUMN partitioning ,
RANGE partition management ,
RANGE partitioning ,
Redundant Array of Independent Drives (RAID)

relational database management system (RDBMS)

repertoire
replication channels , ,
replication filtering rules
 evaluating
replication master
 configuration
 configuring ,
replication slave
 configuring ,
replication
 about
 administration tasks ,
 best practices
 binary log file based replication ,
 configuring
 formats ,
 global transaction identifiers based replication

, ,
 group replication
 implementation details , ,
 implementing
 master info log
 MySQL multi-source replication ,
 MySQL replication , ,
 relay log
 relay log info log
 slaves, adding to
 solutions ,
REVOKE command
roles
row-based replication
 versus statement-based replication
RPM package
 used, for installing MySQL 8

[476]

S
scalability
 overview , ,
scaling, with replication
 about ,
 asynchronous data replication
 backup and recovery
 geographical data distribution
 Global transaction identifiers (GTID) ,
 load distribution
 performance
 single server dependency
 ZFS replication
secure password
 guidelines
 guidelines, for administrators
 guidelines, for end users ,
security plugins
 about
 authentication plugins
 connection-control plugins
 keyring plugin
 password validation plugin
security
 general guidelines ,
 issues
 overview ,
 with roles
server administration
 about
 IPv6 support
 server options
 server shutdown process
 server side help
 Server SQL, modes
 variable, types
server log
 about
 binary log
 DDL log
 error log
 general query log
 maintenance
 reference

 slow query log
server option
 reference
server shutdown process
Server SQL, modes
 ALLOW_INVALID_DATES
 ANSI
 ANSI_QUOTES
 combination SQL modes
 ERROR_FOR_DIVISON_BY_ZERO
 HIGH_NOT_PRECEDENCE
 IGNORE keyword
 IGNORE_SPACE
 NO_AUTO_CREATE_USER
 NO_AUTO_VALUE_ON_ZERO
 NO_BACKSLASH_ESCAPES
 NO_DIR_IN_CREATE
 NO_ENGINE_SUBSTITUTION
 NO_FIELD_OPTIONS
 NO_KEY_OPTIONS
 NO_TABLE_OPTIONS
 NO_UNSIGNED_SUBTRACTION
 NO_ZERO_DATE
 NO_ZERO_IN_DATE
 ONLY_FULL_GROUP_BY
 PAD_CHAR_TO_FULL_LENGTH
 PIPES_AS_CONCAT
 REAL_AS_FLOAT
 SQL mode, setting
 strict SQL mode
 STRICT_ALL_TABLES
 STRICT_TRANS_TABLES
 TIME_TRUNCATE_FRACTIONAL
 TRADITIONAL
Server status variable
 reference
Server System variable
 reference
server-side configuration
 for encrypted connections ,
services
 used, for calling plugins
SET data type
SET DEFAULT ROLE command
SET ROLE command

[477]

SHA-2 pluggable authentication
SHOW GRANTS command ,
slave I/O thread
slave server SQL thread
 states
slave SQL thread
slaves
 adding, to replication
slow query log
socket peer-credential pluggable authentication

Software as a Service (SaaS)
solutions, MySQL 8 for high availability
 MySQL cluster
 MySQL replication
 MySQL, with Solaris cluster
 Oracle MySQL cloud service
spatial index
 characteristics
 creating
 optimizing
spatial reference identifier (SRID)
Spatial Reference System (SRS) ,
SQL statements
 optimizing ,
sql
 executing, from text files
SSH
 used, for connecting remotely with MySQL 8
startup programs, MySQL 8
 about
 mysql.server ,
 mysqld ,
 mysqld_multi ,
 mysqld_safe , ,
statement-based replication
 about
 versus row-based replication
storage engines
 ARCHIVE storage engine
 BLACKHOLE storage engine
 CSV storage engine
 custom storage engine ,
 database server layer
 EXAMPLE storage engine

 FEDERATED storage engine ,
 InnoDB storage engine ,
 MEMORY storage engine , ,
 MERGE storage engine
 MyISAM storage engine , ,
 MySQL storage engine
 overview ,
 pluggable storage engine architecture
 setting
 types , ,
strict mode
string data types
 about
 BINARY data type
 BLOB data types
 CHAR data type ,
 ENUM data type ,
 SET data type
 TEXT data types
 VARBINARY data types
 VARCHAR data type
 VARCHAR data types
structured database
Structured Query Language (SQL)
subpartitioning
system database
 about
 data dictionary tables
 log system tables
 miscellaneous system tables
 object information system tables
 optimizer system tables
 replication system tables
 server-side help system tables
 time zone system tables

T
tables
 optimizing
test pluggable authentication
thread information
 examining , ,
 executing
type attributes
 about

 overflow, handling

U
use cases, MySQL
 business mapping
 e-commerce
 entertainment
 fraud detection
 government
 media
 social media
user account
 creating ,
 removing
user-defined function interface
 features
user-defined function

 adding ,

V
VARBINARY data type
VARCHAR data type ,

W
Windows
 MySQL instances, executing

Y
Yum repository
 used, for installing MySQL 8 ,

Z
ZIP file
 used, for installing MySQL 8 , , ,

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: An Introduction to MYSQL 8
	Overview of MySQL
	MySQL as a relational database management system
	License requirements of MySQL8
	Reliability and scalability
	Platform compatibility
	Releases

	Core features in MySQL
	Structured database
	Database storage engines and types
	Overview of InnoDB
	Overview of MyISAM
	Overview of memory
	Overview of archive
	Overview of BLACKHOLE as a storage engine
	Overview of CSV
	Overview of merge
	Overview of federated
	Overview of the NDB cluster

	Improved features in MySQL 8
	Transactional data dictionary
	Roles
	InnoDB auto increment
	Invisible indexes
	Improving descending indexes
	The SET PERSIST variant
	Expanded GIS support
	Default character set
	Extended bit-wise operations
	InnoDB Memcached
	NOWAIT and SKIP LOCKED
	JSON
	Cloud
	Resource management

	Benefits of using MySQL 8
	Security
	Scalability
	An open source relational database management system
	High performance
	High availability
	Cross-platform capabilities

	Limitations of MySQL 8
	Number of tables or databases
	Table size
	Joins
	Windows platform
	Table column count
	Row size
	InnoDB storage engine
	Limitations of InnoDB storage engine
	Restrictions

	Data dictionary
	Limitations of group replication in MySQL8
	Limitations of partitioning
	Constructs prohibition
	Operators
	Tables

	Use cases of MySQL
	Social media
	Government
	Media and entertainment
	Fraud detection
	Business mapping
	E-commerce

	Summary

	Chapter 2: Installing and Upgrading MySQL 8
	The MySQL 8 installation process
	General installation guide
	Downloading MySQL 8
	Verifying the package integrity
	Using MD5 checksums
	Using cryptographic signatures

	Installing MySQL 8 on Microsoft Windows
	Windows-specific considerations
	MySQL 8 installation layout
	Choosing the right installation package
	The MySQL 8 installer
	Initial setup information
	Installation workflow
	InnoDB cluster sandbox test setup
	Server configuration
	MySQL installer product catalog and dashboard
	MySQL installer console

	MySQL 8 installation using a ZIP file

	Installing MySQL 8 on Linux
	Installation using the Yum repository
	Installation using the RPM package
	Installation using the Debian package

	Post-installation setup for MySQL 8
	Data directory initialization
	Securing the initial MySQL account
	Starting and troubleshooting MySQL 8 services
	Executing commands to test the server

	Upgrading MySQL 8
	Upgrading methods
	In-place upgrade of MySQL
	Logical upgrade for MySQL 8

	Upgrading prerequisites for MySQL 5.7

	MySQL 8 downgrading
	Downgrading methods
	Logical downgrade

	Manual changes required before downgrading

	Summary

	Chapter 3: MySQL 8 – Using Programs and Utilities
	Overview of MySQL 8 programs
	MySQL programs in brief
	Startup programs
	Installation/upgradation programs
	Client programs
	Administrative and utilities programs
	Environment variables
	MySQL GUI tool

	MySQL 8 command-line programs
	Executing programs from the command line
	Executing MySQL programs
	Connecting to the MySQL server
	Specifying options for programs
	Options on the command line
	Modifying program options
	Modifying options with files
	group
	opt_name
	opt_name=value
	Include directives

	Command-line options affecting option file handling
	Setting program variables with options
	Setting environment variables

	Server and server-startup programs
	mysqld - the MySQL server program
	Options

	mysqld_safe - MySQL server startup script
	mysql.server - MySQL Server startup script
	mysqld_multi - managing multiple MySQL servers

	Installation programs
	comp_err - compiling the MySQL error msg file
	mysql_secure_installation - improving MySQL installation security
	mysql_ssl_rsa_setup - creating SSL/RSA files
	mysql_tzinfo_to_sql - loading the timezone tables
	mysql_upgrade - checking and upgrading MySQL tables

	MySQL 8 client programs
	mysql - the command-line tool
	mysql options
	mysql commands
	help [arg], \h [arg],\? [arg], ? [arg]
	charset charset_name, \C charset_name
	clear, \c
	connect [db_name host_name], \r [db_name host_name]
	edit, \e
	exit, \q
	prompt [str], \R [str]
	quit, \q
	status, \s
	use db_name, \u db_name

	mysql logging
	mysql server-side help
	Executing sql from text files
	mysqladmin - client for administering a MySQL server
	mysqlcheck - a table maintenance program
	mysqldump - a database backup program
	Performance and scalability

	mysqlimport - a data import program
	mysqlpump - a database backup program
	mysqlsh - the MySQL Shell
	mysqlshow - showing database, table, and column information
	mysqlslap - load emulation client

	MySQL 8 administrative programs
	ibdsdi - InnoDB tablespace SDI extraction utility
	innochecksum - offline InnoDB file checksum utility
	myisam_ftdump - displaying full-text index utility
	myisamchk - MyISAM table-maintenance utility
	myisamlog - displaying MyISAM log file content
	myisampack - generating compressed, read-only MyISAM tables
	mysql_config_editor - MySQL configuration utility
	mysqlbinlog - utility for processing binary log files
	mysqldumpslow - summarizing slow query log files.

	MySQL 8 environment variables
	MySQL GUI tools
	MySQL Workbench
	MySQL Notifier
	MySQL Notifier usage

	Summary

	Chapter 4: MySQL 8 Data Types
	Overview of MySQL 8 data types
	Numeric data types
	Integer types
	Fixed point types
	Floating point types
	Problems with floating point values

	Bit value type
	Bit value literals
	Practical uses of BIT

	Type attributes
	Overflow handling

	Date and time data types
	DATE, DATETIME, and TIMESTAMP types
	MySQL DATETIME functions

	TIME type
	Time functions

	YEAR type
	Migrating YEAR(2) to YEAR(4)

	String data types
	CHAR and VARCHAR data types
	BINARY and VARBINARY data types
	BLOB and TEXT data types
	ENUM data type
	SET data type

	JSON data type
	Partial updates of JSON values

	Storage requirements for data types
	Choosing the right data type for column
	Summary

	Chapter 5: MySQL 8 Database Management
	MySQL 8 server administration
	Server options and different types of variables
	Server SQL modes
	Setting the SQL mode
	The available SQL modes
	Combination SQL modes
	Strict SQL mode
	The IGNORE keyword

	IPv6 support
	Server side help
	The server shutdown process

	Data directory
	The system database
	Data dictionary tables
	Grant system tables
	Object information system tables
	Log system tables
	The server-side help system tables
	Time zone system tables
	Replication system tables
	Optimizer system tables
	Other miscellaneous system tables

	Running multiple instances on a single machine
	Setting up multiple data directories
	Running multiple MySQL instances on Windows

	Components and plugin management
	MySQL 8 server plugins
	Installing the plugins
	Activate plugin
	Uninstall plugin
	Getting information about the installed plugins

	Roles and permissions
	Caching techniques
	Globalization
	Character sets
	Character set support
	Adding the character set
	Configuring the character sets

	Language selection
	Time zone settings for MySQL8
	Locale support

	MySQL 8 server logs
	The error log
	Component configuration
	Default error log destination configuration
	Default error log destination on Windows
	Default error log destination on Unix and Unix-Like systems

	The general query log
	The binary log
	The slow query log
	The DDL log
	Server log maintenance

	Summary

	Chapter 6: MySQL 8 Storage Engines
	Overview of storage engines
	MySQL storage engine architecture
	Several types of storage engine
	Overview of the InnoDB storage engine
	Custom storage engine

	Several types of storage engines
	Pluggable storage engine architecture
	The common database server layer
	Setting the storage engine
	The MyISAM storage engine
	The MEMORY storage engine
	The CSV storage engine
	The ARCHIVE storage engine
	The BLACKHOLE storage engine
	The MERGE storage engine
	The FEDERATED storage engine
	The EXAMPLE storage engine

	The InnoDB storage engine
	ACID model
	Multiversioning
	Architecture
	Locking and transaction model
	Configuration
	Tablespaces
	Tables and indexes
	INFORMATION_SCHEMA tables
	Memcached plugin

	Creating a custom storage engine
	Creating storage engine source files
	Adding engine-specific variables and parameters
	Creating the handlerton
	Handling handler installation
	Defining filename extensions
	Creating tables
	Opening a table
	Implementing basic table scanning
	Closing a table
	Reference for advanced custom storage engine

	Summary

	Chapter 7: Indexing in MySQL 8
	An overview on indexing
	Uses of indexes in MySQL 8
	SQL commands related to indexes
	Creating an INDEX command
	Spatial index characteristics
	Non-spatial index characteristics

	Drop index command

	SPATIAL index creation and optimization
	InnoDB and MyISAM index statistics collection

	Column-level indexing
	Column indexes
	Index prefixes
	FULLTEXT indexes
	Spatial Indexes
	Indexes in the MEMORY storage engine

	Multiple-column indexes

	B-Tree index
	Hash index
	Index extension
	Using an optimizer for indexes
	Invisible and descending indexes
	Invisible index
	Descending index

	Summary

	Chapter 8: Replication in MySQL 8
	Overview of replication
	What is MySQL replication?
	Advantages of MySQL replication

	Configuring replication
	Binary log file based replication
	Replication master configuration
	REPLICATION SLAVE configuration
	Adding slaves to replication

	Global transaction identifiers based replication
	MySQL multi-source replication
	Replication administration tasks

	Implementing replication
	Replication formats
	Statement-based versus row-based replication

	Replication implementation details
	Replication channels
	Replication relay and status logs
	Evaluating replication filtering rules

	Group replication
	Primary-secondary replication versus group replication
	Group replication configuration
	Group replication use cases

	Replication solutions
	Summary

	Chapter 9: Partitioning in MySQL 8
	Overview of partitioning
	Types of partitioning
	Partitioning management
	Partition selection and pruning
	Restrictions and limitations in partitioning

	Types of partitioning
	RANGE partitioning
	LIST partitioning
	COLUMNS partitioning
	RANGE COLUMN partitioning
	LIST COLUMN partitioning

	HASH partitioning
	LINEAR HASH partitioning

	KEY partitioning
	Subpartitioning
	Handling NULL in partitioning

	Partition management
	RANGE and LIST partition management
	HASH and KEY partition management
	Partition maintenance
	Obtain partition information

	Partition selection and pruning
	Partition pruning
	Partition selection

	Restrictions and limitations in partitioning
	Partitioning keys, primary keys, and unique keys
	Partitioning limitations relating to storage engines
	Partitioning limitations relating to functions

	Summary

	Chapter 10: MySQL 8 – Scalability and High Availability
	Overview of scalability and high availability in MySQL 8
	MySQL replication
	MySQL cluster
	Oracle MySQL cloud service
	MySQL with the Solaris cluster

	Scaling MySQL 8
	Scaling using cluster
	Client node
	Application node
	Management node
	Data node
	Data storage and management of disk-based and in-memory data
	Automatic and user-defined partitioning of tables or sharding of tables
	Synchronous data replication between data nodes
	Data retrieval and transactions
	Automatic fail over
	Automatic re-synchronization for self-healing after failure

	Scaling using memcached in MySQL 8
	NoSQL APIs
	Scaling using replication
	Single server dependancy
	Performance
	Backup and recovery
	Load distribution
	Asynchronous data replication
	Geographical data distribution
	GTID replication
	ZFS replication

	Challenges in scaling MySQL 8
	Business type and flexibility
	Understand server workload
	Read-write operation limit
	Maintenance
	Master server failure
	Synchronization
	Database security
	Cross node transaction
	Growing team for development
	Manage change request
	Scale-up and scale-out

	Achieving high availability
	Purpose of high availability
	Data availability
	Security of data
	Synchronization of data
	Backup of the data
	Competitive market
	Performance
	Updates in the system
	Choosing the solution

	Advantages of high availability

	Summary

	Chapter 11: MySQL 8 – Security
	Overview of security for MySQL 8
	Common security issues
	General guidelines
	 Guidelines for a secure password
	Guidelines for end users
	Guidelines for administrators
	Password and logging

	Secure MYSQL 8 against attackers
	Security options and variables provided by MySQL 8
	Security guidelines for client programming

	Access control in MySQL 8
	Privileges provided by MySQL 8
	Grant tables
	Verification of access control stages
	Stage 1 - Connection verification
	Stage 2 - Request verification

	Account management in MySQL 8
	Add and remove user accounts
	Security using roles
	SET ROLE
	CREATE ROLE
	DROP ROLE
	GRANT
	REVOKE
	SET DEFAULT ROLE
	SHOW GRANTS

	Password management

	Encryption in MySQL 8
	Configuring MySQL 8 to use encrypted connections
	Server-side configuration for encrypted connections
	Client-side configuration for encrypted connections
	Command options for encrypted connections

	Connect with MySQL 8 remotely from Windows with SSH

	Security plugins
	Authentication plugins
	SHA-2 pluggable authentication
	Client-side cleartext pluggable authentication
	No-login pluggable authentication
	Socket peer-credential pluggable authentication
	Test pluggable authentication

	The connection-control plugins
	CONNECTION_CONTROL
	Plugin installation
	Variables related to CONNECTION-CONTROL

	The password validation plugin
	Install password validation plugin
	Variables and options related to the password validation plugin

	MySQL 8 keyring
	Install keyring plugin
	System variables related to keyring plugin

	Summary

	Chapter 12: Optimizing MySQL 8
	Overview of MySQL 8 optimization
	Optimizing the database
	Optimizing the hardware

	Optimizing MySQL 8 servers and clients
	Optimizing disk I/O
	Using NFS with MySQL

	Optimizing the use of memory
	Optimizing use of the network
	Optimizing locking operations
	Performance benchmarking
	Examining thread information

	Optimizing database structure
	Optimizing data size
	Table columns
	Row format
	Indexes
	Joins
	Normalization

	Optimizing MySQL data types
	Optimizing for many tables
	Use of an internal temporary table in MySQL

	Optimizing queries
	Optimizing SQL statements
	Optimizing indexes
	Query execution plan

	Optimizing tables
	Optimization for InnoDB tables
	Optimization for MyISAM tables
	Optimization for MEMORY tables

	Leveraging buffering and caching
	InnoDB buffer pool optimization
	MyISAM key cache

	Summary

	Chapter 13: Extending MySQL 8
	An overview of extending MySQL 8
	MySQL 8 internals
	MySQL 8 plugin API
	MySQL 8 services for components and plugins
	Adding new functions to MySQL 8
	Debugging and porting MySQL 8

	Extending plugins and using services to call them
	Writing plugins
	Component and plugin services
	The locking service
	The keyring service

	Adding new functions
	Features of a user-defined function interface
	Adding a new user-defined function
	Adding a new native function

	Debugging and porting
	Debugging MySQL server
	Debugging MySQL client
	The DBUG package

	Summary

	Chapter 14: MySQL 8 Best Practices and Benchmarking
	MySQL benchmarking and tools
	Resource utilization
	Stretching your benchmarking timelines
	Replicating production settings
	Consistency of throughput and latency
	Sysbench can do more
	Virtualization world
	Concurrency
	Hidden workloads
	Nerves of your query
	Benchmarks

	Best practices for memcached
	Resource allocation
	Operating system architecture
	Default configurations
	Max object size
	Backlog queue limit
	Large pages support
	Sensitive data
	Restricting exposure
	Failover
	Namespaces
	Caching mechanism
	Memcached general statistics

	Best practices for replication
	Throughput in group replication
	Infrastructure sizing
	Constant throughput
	Contradictory workloads
	Write scalability

	Best practices for data partitioning
	Horizontal partitioning
	Vertical partitioning
	Pruning partitions in MySQL

	Best practices for queries and indexing
	Data types
	Not null
	Indexing
	Search fields index
	Data types and joins
	Compound index
	Shortening up primary keys
	Indexing everything
	Fetching all data
	Letting the application do the job
	Existence of data
	Limiting yourself
	Analyzing slow queries
	Query cost

	Summary

	Chapter 15: Troubleshooting MySQL 8
	MySQL 8 common problems
	Most common MySQL errors
	Access denied
	Can't connect to [local] MySQL server
	Lost connection to MySQL server
	Password fails when entered incorrectly
	Host host_name is blocked
	Too many connections
	Out of memory
	Packet too large
	The table is full
	Can't create/write to file
	Commands out of sync
	Ignoring user
	Table tbl_name doesn't exist

	MySQL 8 server errors
	Issues with file permissions
	Resetting the root password
	MySQL crashes prevention
	Handling MySQL full disk
	MySQL temporary files storage
	MySQL Unix socket file
	Time zone problems

	MySQL 8 client errors
	Case sensitivity in string searches
	Problems with DATE columns
	Problems with NULL values

	MySQL 8 troubleshooting approach
	Analyzing queries

	Real-world scenario
	Summary

	Other Books You May Enjoy
	Index

