
Oracle Database 11g: SQL
Fundamentals I

Electronic Presentation

D49996GC11
Edition 1.1
April 2009

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual
property laws. You may copy and print this document solely for your own use in an Oracle training
course. The document may not be modified or altered in any way. Except where your use constitutes
"fair use" under copyright law, you may not use, share, download, upload, copy, print, display,
perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part
without the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you find any
problems in the document, please report them in writing to: Oracle University, 500 Oracle Parkway,
Redwood Shores, California 94065 USA. This document is not warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the
documentation on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or disclose these
training materials are restricted by the terms of the applicable Oracle license agreement and/or the
applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Authors

Puja Singh

Brian Pottle

Technical Contributors

and Reviewers

Claire Bennett

Tom Best

Purjanti Chang

Ken Cooper

László Czinkóczki

Burt Demchick

Mark Fleming

Gerlinde Frenzen

Nancy Greenberg

Chaitanya Koratamaddi

Wendy Lo

Timothy Mcglue

Alan Paulson

Bryan Roberts

Abhishek Singh

Lori Tritz

Michael Versaci

Lex van der Werff

Editors

Amitha Narayan

Vijayalakshmi Narasimhan

Raj Kumar

Graphic Designer

Satish Bettegowda

Publishers

Sujatha Nagendra

Syed Ali

Copyright © 2009, Oracle. All rights reserved.

Introduction

Copyright © 2009, Oracle. All rights reserved.I - 2

Lesson Objectives

After completing this lesson, you should be able to do the
following:

• Understand the goals of the course

• List the features of Oracle Database 11g

• Discuss the theoretical and physical aspects of a relational
database

• Describe Oracle server’s implementation of RDBMS and
object relational database management system
(ORDBMS)

• Identify the development environments that can be used
for this course

• Describe the database and schema used in this course

Copyright © 2009, Oracle. All rights reserved.I - 3

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 11g and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The HR schema and the tables used in this course

• Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.I - 4

Course Objectives

After completing this course, you should be able to:

• Identify the major components of Oracle Database 11g

• Retrieve row and column data from tables with the SELECT

statement

• Create reports of sorted and restricted data

• Employ SQL functions to generate and retrieve customized
data

• Run complex queries to retrieve data from multiple tables

• Run data manipulation language (DML) statements to
update data in Oracle Database 11g

• Run data definition language (DDL) statements to create
and manage schema objects

Copyright © 2009, Oracle. All rights reserved.I - 5

Course Agenda

• Day 1:

– Introduction

– Retrieving Data Using the SQL SELECT Statement

– Restricting and Sorting Data

– Using Single-Row Functions to Customize Output

– Using Conversion Functions and Conditional Expressions

• Day 2:

– Reporting Aggregated Data Using the Group Functions

– Displaying Data from Multiple Tables

– Using Subqueries to Solve Queries

– Using the Set Operators

Copyright © 2009, Oracle. All rights reserved.I - 6

Course Agenda

• Day 3:

– Manipulating Data

– Using DDL Statements to Create and Manage Tables

– Creating Other Schema Objects

Copyright © 2009, Oracle. All rights reserved.I - 7

Appendixes Used in the Course

• Appendix A: Practice Solutions

• Appendix B: Table Descriptions

• Appendix C: Oracle Join Syntax

• Appendix D: Using SQL*Plus

• Appendix E: Using SQL Developer

• Additional Practices

• Additional Practices Solutions

Copyright © 2009, Oracle. All rights reserved.I - 8

Lesson Agenda

• Course objectives, course agenda, and appendixes used
in this course

• Overview of Oracle Database 11g and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The HR schema and the tables used in this course

• Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.I - 9

Oracle Database 11g: Focus Areas

Infrastructure

Grids
Information

Management

Application

Development

Copyright © 2009, Oracle. All rights reserved.I - 10

Oracle Database 11g

Manageability

High availability

Performance

Security

Information integration

Copyright © 2009, Oracle. All rights reserved.I - 11

Oracle Database 11g

Manageability

High availability

Performance

Security

Information integration

Copyright © 2009, Oracle. All rights reserved.I - 12

Oracle Fusion Middleware

Portfolio of leading, standards-based, and customer-proven
software products that spans a range of tools and services from
J2EE and developer tools, through integration services,
business intelligence, collaboration, and content management

Copyright © 2009, Oracle. All rights reserved.I - 13

Oracle Enterprise Manager Grid Control 10g

• Efficient Oracle Fusion Middleware management

• Simplifying application and infrastructure life cycle
management

• Improved database administration and application
management capabilities

Copyright © 2009, Oracle. All rights reserved.I - 14

Oracle BI Publisher

• Provides a central architecture for authoring, managing,
and delivering information in secure and multiple formats

• Reduces complexity and time to develop, test, and deploy
all kinds of reports

– Financial Reports, Invoices, Sales or Purchase orders, XML,
and EDI/EFT(eText documents)

• Enables flexible customizations

– For example, a Microsoft Word document report can be
generated in multiple formats such as PDF, HTML, Excel,
RTF, and so on.

BI PUBLISHER

PDF

HTML

Excel
Microsoft Word

Copyright © 2009, Oracle. All rights reserved.I - 15

Lesson Agenda

• Course objectives, course agenda, and appendixes used
in this course

• Overview of Oracle Database 11g and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The HR schema and the tables used in this course

• Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.I - 16

Relational and Object Relational
Database Management Systems

• Relational model and object relational model

• User-defined data types and objects

• Fully compatible with relational database

• Supports multimedia and large objects

• High-quality database server features

Copyright © 2009, Oracle. All rights reserved.I - 17

Data Storage on Different Media

Electronic
spreadsheet

Filing cabinet Database

Copyright © 2009, Oracle. All rights reserved.I - 18

Relational Database Concept

• Dr. E. F. Codd proposed the relational model for database
systems in 1970.

• It is the basis for the relational database management
system (RDBMS).

• The relational model consists of the following:

– Collection of objects or relations

– Set of operators to act on the relations

– Data integrity for accuracy and consistency

Copyright © 2009, Oracle. All rights reserved.I - 19

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables.

Oracle
server

Table name: EMPLOYEES Table name: DEPARTMENTS

… …

Copyright © 2009, Oracle. All rights reserved.I - 20

Data Models

Model of
system

in client’s
mind

Entity model of
client’s model

Tables on disk

Oracle
server

Table model
of entity model

Copyright © 2009, Oracle. All rights reserved.I - 21

Entity Relationship Model

• Create an entity relationship diagram from business
specifications or narratives:

• Scenario:

– “. . . Assign one or more employees to a
department . . .”

– “. . . Some departments do not yet have assigned employees
. . .”

EMPLOYEE

#* number
* name
o job title

DEPARTMENT

#* number
* name
o location

assigned to

composed of

Copyright © 2009, Oracle. All rights reserved.I - 23

Entity Relationship
Modeling Conventions

Entity:

• Singular, unique name

• Uppercase

• Soft box

• Synonym in parentheses

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

EMPLOYEE

#* number
* name
o job title

DEPARTMENT

#* number
* name
o location

assigned to

composed of

Attribute:
• Singular name
• Lowercase
• Mandatory marked with “*”
• Optional marked with “o”

Copyright © 2009, Oracle. All rights reserved.I - 25

Relating Multiple Tables

• Each row of data in a table is uniquely identified by a
primary key.

• You can logically relate data from multiple tables using
foreign keys.

Table name: EMPLOYEES

Table name: DEPARTMENTS

Primary key Primary keyForeign key

…

Copyright © 2009, Oracle. All rights reserved.I - 27

Relational Database Terminology

1

2

3

4

6

5

Copyright © 2009, Oracle. All rights reserved.I - 29

Lesson Agenda

• Course objectives, course agenda, and appendixes used
in this course

• Overview of Oracle Database 11g and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The HR schema and the tables used in this course

• Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.I - 30

Using SQL to Query Your Database

Structured query language (SQL) is:

• The ANSI standard language for operating relational
databases

• Efficient, easy to learn, and use

• Functionally complete (With SQL, you can define, retrieve,
and manipulate data in the tables.)

SELECT department_name
FROM departments;

Oracle
server

Copyright © 2009, Oracle. All rights reserved.I - 31

SQL Statements

SELECT
INSERT
UPDATE
DELETE
MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

GRANT
REVOKE

COMMIT
ROLLBACK
SAVEPOINT

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

Copyright © 2009, Oracle. All rights reserved.I - 32

Development Environments for SQL

There are two development environments for this course:

• Primary tool is Oracle SQL Developer

• SQL*Plus command line interface may also be used

SQL Developer SQL *Plus

Copyright © 2009, Oracle. All rights reserved.I - 33

Lesson Agenda

• Course objectives, course agenda, and appendixes used
in this course

• Overview of Oracle Database 11g and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The HR schema and the tables used in this course

• Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.I - 34

The Human Resources (HR) Schema

DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id
JOBS

job_id
job_title

min_salary
max_salary

JOB_HISTORY
employee_id

start_date
end_date

job_id
department_id

Copyright © 2009, Oracle. All rights reserved.I - 35

Tables Used in the Course

EMPLOYEES

DEPARTMENTS JOB_GRADES

Copyright © 2009, Oracle. All rights reserved.I - 36

Lesson Agenda

• Course objectives, course agenda, and appendixes used
in this course

• Overview of Oracle Database 11g and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The HR schema and the tables used in this course

• Oracle Database 11g documentation and additional
resources

Copyright © 2009, Oracle. All rights reserved.I - 37

Oracle Database 11g Documentation

• Oracle Database New Features Guide 11g,

Release 1 (11.1)

• Oracle Database Reference 11g, Release 1 (11.1)

• Oracle Database SQL Language Reference 11g,
Release 1 (11.1)

• Oracle Database Concepts 11g, Release 1 (11.1)

• Oracle Database SQL Developer User's Guide,

Release 1.2

Copyright © 2009, Oracle. All rights reserved.I - 38

Additional Resources

For additional information about the Oracle Database 11g, refer
to the following:

• Oracle Database 11g: New Features eStudies

• Oracle by Example series (OBE): Oracle Database 11g

– http://www.oracle.com/technology/obe/11gr1_db/index.htm

Copyright © 2009, Oracle. All rights reserved.I - 39

Summary

In this lesson, you should have learned that:

• Oracle Database 11g extends:

– The benefits of infrastructure grids

– The existing information management capabilities

– The capabilities to use the major application development
environments such as PL/SQL, Java/JDBC, .NET, XML, and
so on

• The database is based on ORDBMS

• Relational databases are composed of relations, managed
by relational operations, and governed by data integrity
constraints

• With the Oracle server, you can store and manage
information by using SQL

Copyright © 2009, Oracle. All rights reserved.I - 40

Practice I: Overview

This practice covers the following topics:

• Running the Oracle SQL Developer demo

• Starting Oracle SQL Developer, creating a new database
connection, and browsing the HR tables

Copyright © 2009, Oracle. All rights reserved.

Retrieving Data Using
the SQL SELECT Statement

Copyright © 2009, Oracle. All rights reserved.1 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• List the capabilities of SQL SELECT statements

• Execute a basic SELECT statement

Copyright © 2009, Oracle. All rights reserved.1 - 3

Lesson Agenda

• Basic SELECT statement

• Arithmetic expressions and NULL values in the SELECT

statement

• Column aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.1 - 4

Capabilities of SQL SELECT Statements

SelectionProjection

Table 1 Table 2

Table 1Table 1

Join

Copyright © 2009, Oracle. All rights reserved.1 - 5

Basic SELECT Statement

• SELECT identifies the columns to be displayed.

• FROM identifies the table containing those columns.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

Copyright © 2009, Oracle. All rights reserved.1 - 6

Selecting All Columns

SELECT *
FROM departments;

Copyright © 2009, Oracle. All rights reserved.1 - 7

Selecting Specific Columns

SELECT department_id, location_id
FROM departments;

Copyright © 2009, Oracle. All rights reserved.1 - 8

Writing SQL Statements

• SQL statements are not case-sensitive.

• SQL statements can be entered on one or more lines.

• Keywords cannot be abbreviated or split across lines.

• Clauses are usually placed on separate lines.

• Indents are used to enhance readability.

• In SQL Developer, SQL statements can optionally be
terminated by a semicolon (;). Semicolons are required
when you execute multiple SQL statements.

• In SQL*Plus, you are required to end each SQL statement
with a semicolon (;).

Copyright © 2009, Oracle. All rights reserved.1 - 9

Column Heading Defaults

• SQL Developer:

– Default heading alignment: Left-aligned

– Default heading display: Uppercase

• SQL*Plus:

– Character and Date column headings are left-aligned.

– Number column headings are right-aligned.

– Default heading display: Uppercase

Copyright © 2009, Oracle. All rights reserved.1 - 10

Lesson Agenda

• Basic SELECT statement

• Arithmetic expressions and NULL values in the SELECT

statement

• Column Aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.1 - 11

Arithmetic Expressions

Create expressions with number and date data by using
arithmetic operators.

Multiply*

Divide/

Subtract-

Add+

DescriptionOperator

Copyright © 2009, Oracle. All rights reserved.1 - 12

SELECT last_name, salary, salary + 300
FROM employees;

Using Arithmetic Operators

…

Copyright © 2009, Oracle. All rights reserved.1 - 13

SELECT last_name, salary, 12*salary+100
FROM employees;

Operator Precedence

SELECT last_name, salary, 12*(salary+100)
FROM employees;

…

…

1

2

Copyright © 2009, Oracle. All rights reserved.1 - 14

Defining a Null Value

• Null is a value that is unavailable, unassigned, unknown,
or inapplicable.

• Null is not the same as zero or a blank space.

SELECT last_name, job_id, salary, commission_pct
FROM employees;

…

…

Copyright © 2009, Oracle. All rights reserved.1 - 15

SELECT last_name, 12*salary*commission_pct
FROM employees;

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

…

…

Copyright © 2009, Oracle. All rights reserved.1 - 16

Lesson Agenda

• Basic SELECT statement

• Arithmetic expressions and NULL values in the SELECT

statement

• Column aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.1 - 17

Defining a Column Alias

A column alias:

• Renames a column heading

• Is useful with calculations

• Immediately follows the column name (There can also be
the optional AS keyword between the column name and

alias.)

• Requires double quotation marks if it contains spaces or
special characters, or if it is case-sensitive

Copyright © 2009, Oracle. All rights reserved.1 - 18

Using Column Aliases

SELECT last_name "Name" , salary*12 "Annual Salary"
FROM employees;

SELECT last_name AS name, commission_pct comm
FROM employees;

…

…

Copyright © 2009, Oracle. All rights reserved.1 - 19

Lesson Agenda

• Basic SELECT Statement

• Arithmetic Expressions and NULL values in SELECT

statement

• Column Aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.1 - 20

Concatenation Operator

A concatenation operator:

• Links columns or character strings to other columns

• Is represented by two vertical bars (||)

• Creates a resultant column that is a character expression

SELECT last_name||job_id AS "Employees"
FROM employees;

…

Copyright © 2009, Oracle. All rights reserved.1 - 21

Literal Character Strings

• A literal is a character, a number, or a date that is included
in the SELECT statement.

• Date and character literal values must be enclosed within
single quotation marks.

• Each character string is output once for each row returned.

Copyright © 2009, Oracle. All rights reserved.1 - 22

Using Literal Character Strings

…

SELECT last_name ||' is a '||job_id
AS "Employee Details"

FROM employees;

Copyright © 2009, Oracle. All rights reserved.1 - 23

Alternative Quote (q) Operator

• Specify your own quotation mark delimiter.

• Select any delimiter.

• Increase readability and usability.

SELECT department_name || q'[Department's Manager Id:]'
|| manager_id
AS "Department and Manager"

FROM departments;

Copyright © 2009, Oracle. All rights reserved.1 - 24

Duplicate Rows

The default display of queries is all rows, including duplicate
rows.

SELECT department_id
FROM employees;

SELECT DISTINCT department_id
FROM employees;

1

2

…

…

Copyright © 2009, Oracle. All rights reserved.1 - 25

Lesson Agenda

• Basic SELECT statement

• Arithmetic expressions and NULL values in the SELECT

statement

• Column aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

Copyright © 2009, Oracle. All rights reserved.1 - 26

Displaying the Table Structure

• Use the DESCRIBE command to display the structure of a

table.

• Or, select the table in the Connections tree and use the
Columns tab to view the table structure.

DESC[RIBE] tablename

Copyright © 2009, Oracle. All rights reserved.1 - 27

Using the DESCRIBE Command

DESCRIBE employees

Copyright © 2009, Oracle. All rights reserved.1 - 28

Quiz

Identify the SELECT statements that execute successfully.

1.

2.

3.

4.

SELECT first_name, last_name, job_id, salary*12
AS Yearly Sal
FROM employees;

SELECT first_name, last_name, job_id, salary*12
yearly sal
FROM employees;

SELECT first_name, last_name, job_id, salary AS
yearly sal
FROM employees;

SELECT first_name+last_name AS name, job_Id,
salary*12 yearly sal
FROM employees;

Copyright © 2009, Oracle. All rights reserved.1 - 29

Summary

In this lesson, you should have learned how to:

• Write a SELECT statement that:

– Returns all rows and columns from a table

– Returns specified columns from a table

– Uses column aliases to display more descriptive column
headings

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

Copyright © 2009, Oracle. All rights reserved.1 - 30

Practice 1: Overview

This practice covers the following topics:

• Selecting all data from different tables

• Describing the structure of tables

• Performing arithmetic calculations and specifying column
names

Copyright © 2009, Oracle. All rights reserved.

Restricting and Sorting Data

Copyright © 2009, Oracle. All rights reserved.2 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Limit the rows that are retrieved by a query

• Sort the rows that are retrieved by a query

• Use ampersand substitution to restrict and sort output at
run time

Copyright © 2009, Oracle. All rights reserved.2 - 3

Lesson Agenda

• Limiting rows with:

– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL conditions

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression

• Sorting rows using the ORDER BY clause

• Substitution variables

• DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.2 - 4

Limiting Rows Using a Selection

“retrieve all
employees in
department 90”

EMPLOYEES

…

Copyright © 2009, Oracle. All rights reserved.2 - 5

Limiting the Rows That Are Selected

• Restrict the rows that are returned by using the WHERE

clause:

• The WHERE clause follows the FROM clause.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)];

Copyright © 2009, Oracle. All rights reserved.2 - 6

SELECT employee_id, last_name, job_id, department_id
FROM employees
WHERE department_id = 90 ;

Using the WHERE Clause

Copyright © 2009, Oracle. All rights reserved.2 - 7

SELECT last_name, job_id, department_id
FROM employees
WHERE last_name = 'Whalen' ;

Character Strings and Dates

• Character strings and date values are enclosed with single
quotation marks.

• Character values are case-sensitive and date values are
format-sensitive.

• The default date display format is DD-MON-RR.

SELECT last_name
FROM employees
WHERE hire_date = '17-FEB-96' ;

Copyright © 2009, Oracle. All rights reserved.2 - 8

Comparison Operators

Not equal to<>

Between two values (inclusive)BETWEEN

...AND...

Match any of a list of values IN(set)

Match a character pattern LIKE

Is a null value IS NULL

Less than<

Less than or equal to<=

Greater than or equal to>=

Greater than>

Equal to=

MeaningOperator

Copyright © 2009, Oracle. All rights reserved.2 - 9

SELECT last_name, salary
FROM employees
WHERE salary <= 3000 ;

Using Comparison Operators

Copyright © 2009, Oracle. All rights reserved.2 - 10

SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 2500 AND 3500 ;

Range Conditions Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on a range of

values:

Lower limit Upper limit

Copyright © 2009, Oracle. All rights reserved.2 - 11

SELECT employee_id, last_name, salary, manager_id
FROM employees
WHERE manager_id IN (100, 101, 201) ;

Membership Condition Using the IN Operator

Use the IN operator to test for values in a list:

Copyright © 2009, Oracle. All rights reserved.2 - 12

SELECT first_name
FROM employees
WHERE first_name LIKE 'S%' ;

Pattern Matching Using the LIKE Operator

• Use the LIKE operator to perform wildcard searches of

valid search string values.

• Search conditions can contain either literal characters or
numbers:

– % denotes zero or many characters.

– _ denotes one character.

Copyright © 2009, Oracle. All rights reserved.2 - 13

Combining Wildcard Characters

• You can combine the two wildcard characters (%, _) with
literal characters for pattern matching:

• You can use the ESCAPE identifier to search for the actual
% and _ symbols.

SELECT last_name
FROM employees
WHERE last_name LIKE '_o%' ;

Copyright © 2009, Oracle. All rights reserved.2 - 14

SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL ;

Using the NULL Conditions

Test for nulls with the IS NULL operator.

Copyright © 2009, Oracle. All rights reserved.2 - 15

Defining Conditions Using the Logical Operators

Returns TRUE if the condition is falseNOT

Returns TRUE if either component condition

is true

OR

Returns TRUE if both component conditions

are true

AND

MeaningOperator

Copyright © 2009, Oracle. All rights reserved.2 - 16

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
AND job_id LIKE '%MAN%' ;

Using the AND Operator

AND requires both the component conditions to be true:

Copyright © 2009, Oracle. All rights reserved.2 - 17

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%' ;

Using the OR Operator

OR requires either component condition to be true:

Copyright © 2009, Oracle. All rights reserved.2 - 18

SELECT last_name, job_id
FROM employees
WHERE job_id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP') ;

Using the NOT Operator

Copyright © 2009, Oracle. All rights reserved.2 - 19

Lesson Agenda

• Limiting rows with:

– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression

• Sorting rows using the ORDER BY clause

• Substitution variables

• DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.2 - 20

Rules of Precedence

You can use parentheses to override rules of precedence.

Not equal to6

NOT logical condition7

AND logical condition8

OR logical condition9

IS [NOT] NULL, LIKE, [NOT] IN4

[NOT] BETWEEN5

Comparison conditions3

Concatenation operator2

Arithmetic operators1

MeaningOperator

Copyright © 2009, Oracle. All rights reserved.2 - 21

SELECT last_name, job_id, salary
FROM employees
WHERE job_id = 'SA_REP'
OR job_id = 'AD_PRES'
AND salary > 15000;

Rules of Precedence

SELECT last_name, job_id, salary
FROM employees
WHERE (job_id = 'SA_REP'
OR job_id = 'AD_PRES')
AND salary > 15000;

1

2

Copyright © 2009, Oracle. All rights reserved.2 - 22

Lesson Agenda

• Limiting rows with:

– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression

• Sorting rows using the ORDER BY clause

• Substitution variables

• DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.2 - 23

Using the ORDER BY Clause

• Sort retrieved rows with the ORDER BY clause:

– ASC: Ascending order, default

– DESC: Descending order

• The ORDER BY clause comes last in the SELECT

statement:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date ;

…

Copyright © 2009, Oracle. All rights reserved.2 - 24

Sorting

• Sorting in descending order:

• Sorting by column alias:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date DESC ; 1

SELECT employee_id, last_name, salary*12 annsal
FROM employees
ORDER BY annsal ;

2

Copyright © 2009, Oracle. All rights reserved.2 - 25

Sorting

• Sorting by using the column’s numeric position:

• Sorting by multiple columns:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY 3; 3

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC;

4

Copyright © 2009, Oracle. All rights reserved.2 - 26

Lesson Agenda

• Limiting rows with:

– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression

• Sorting rows using the ORDER BY clause

• Substitution variables

• DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.2 - 27

Substitution Variables

... salary = ? …
… department_id = ? …
... last_name = ? ...

I want
to query
different
values.

Copyright © 2009, Oracle. All rights reserved.2 - 28

Substitution Variables

• Use substitution variables to:

– Temporarily store values with single-ampersand (&) and
double-ampersand (&&) substitution

• Use substitution variables to supplement the following:

– WHERE conditions

– ORDER BY clauses

– Column expressions

– Table names

– Entire SELECT statements

Copyright © 2009, Oracle. All rights reserved.2 - 29

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

Using the Single-Ampersand Substitution
Variable

Use a variable prefixed with an ampersand (&) to prompt the

user for a value:

Copyright © 2009, Oracle. All rights reserved.2 - 30

Using the Single-Ampersand Substitution
Variable

Copyright © 2009, Oracle. All rights reserved.2 - 31

SELECT last_name, department_id, salary*12
FROM employees
WHERE job_id = '&job_title' ;

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character values:

Copyright © 2009, Oracle. All rights reserved.2 - 32

Specifying Column Names,
Expressions, and Text

SELECT employee_id, last_name, job_id,&column_name
FROM employees
WHERE &condition
ORDER BY &order_column ;

Copyright © 2009, Oracle. All rights reserved.2 - 33

SELECT employee_id, last_name, job_id, &&column_name
FROM employees
ORDER BY &column_name ;

…

Using the Double-Ampersand
Substitution Variable

Use double ampersand (&&) if you want to reuse the variable

value without prompting the user each time:

Copyright © 2009, Oracle. All rights reserved.2 - 34

Lesson Agenda

• Limiting rows with:

– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression

• Sorting rows using the ORDER BY clause

• Substitution variables

• DEFINE and VERIFY commands

Copyright © 2009, Oracle. All rights reserved.2 - 35

Using the DEFINE Command

• Use the DEFINE command to create and assign a value to

a variable.

• Use the UNDEFINE command to remove a variable.

DEFINE employee_num = 200

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

UNDEFINE employee_num

Copyright © 2009, Oracle. All rights reserved.2 - 36

SET VERIFY ON
SELECT employee_id, last_name, salary
FROM employees
WHERE employee_id = &employee_num;

Using the VERIFY Command

Use the VERIFY command to toggle the display of the

substitution variable, both before and after SQL Developer
replaces substitution variables with values:

Copyright © 2009, Oracle. All rights reserved.2 - 37

Quiz

Which of the following are valid operators for the WHERE

clause?

1. >=

2. IS NULL

3. !=

4. IS LIKE

5. IN BETWEEN

6. <>

Copyright © 2009, Oracle. All rights reserved.2 - 38

In this lesson, you should have learned how to:

• Use the WHERE clause to restrict rows of output:

– Use the comparison conditions

– Use the BETWEEN, IN, LIKE, and NULL operators

– Apply the logical AND, OR, and NOT operators

• Use the ORDER BY clause to sort rows of output:

• Use ampersand substitution to restrict and sort output at
run time

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]] ;

Summary

Copyright © 2009, Oracle. All rights reserved.2 - 39

Practice 2: Overview

This practice covers the following topics:

• Selecting data and changing the order of the rows
that are displayed

• Restricting rows by using the WHERE clause

• Sorting rows by using the ORDER BY clause

• Using substitution variables to add flexibility to your
SQL SELECT statements

Copyright © 2009, Oracle. All rights reserved.

Using Single-Row Functions to
Customize Output

Copyright © 2009, Oracle. All rights reserved.3 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Describe various types of functions available in SQL

• Use character, number, and date functions in SELECT

statements

Copyright © 2009, Oracle. All rights reserved.3 - 3

Lesson Agenda

• Single-row SQL functions

• Character functions

• Number functions

• Working with dates

• Date functions

Copyright © 2009, Oracle. All rights reserved.3 - 4

SQL Functions

Function

Input

arg 1

arg 2

arg n

Function performs
action

Output

Result
value

Copyright © 2009, Oracle. All rights reserved.3 - 5

Two Types of SQL Functions

Single-row
functions

Multiple-row
functions

Return one result
per row

Return one result
per set of rows

Functions

Copyright © 2009, Oracle. All rights reserved.3 - 6

Single-Row Functions

Single-row functions:

• Manipulate data items

• Accept arguments and return one value

• Act on each row that is returned

• Return one result per row

• May modify the data type

• Can be nested

• Accept arguments that can be a column or an expression

function_name [(arg1, arg2,...)]

Copyright © 2009, Oracle. All rights reserved.3 - 7

Single-Row Functions

Conversion

Character

Number

Date

General
Single-row
functions

Copyright © 2009, Oracle. All rights reserved.3 - 8

Lesson Agenda

• Single-row SQL functions

• Character functions

• Number functions

• Working with dates

• Date functions

Copyright © 2009, Oracle. All rights reserved.3 - 9

Character Functions

Character
functions

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH

INSTR

LPAD | RPAD

TRIM

REPLACE

Case-conversion
functions

Character-manipulation
functions

Copyright © 2009, Oracle. All rights reserved.3 - 11

Case-Conversion Functions

These functions convert the case for character strings:

sql courseLOWER('SQL Course')

Sql CourseINITCAP('SQL Course')

SQL COURSEUPPER('SQL Course')

ResultFunction

Copyright © 2009, Oracle. All rights reserved.3 - 12

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';

Using Case-Conversion Functions

Display the employee number, name, and department number
for employee Higgins:

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';

Copyright © 2009, Oracle. All rights reserved.3 - 13

Character-Manipulation Functions

These functions manipulate character strings:

BLACK and BLUE REPLACE
('JACK and JUE','J','BL')

10LENGTH('HelloWorld')

6INSTR('HelloWorld', 'W')

*****24000LPAD(salary,10,'*')

24000*****RPAD(salary, 10, '*')

HelloWorldCONCAT('Hello', 'World')

elloWorldTRIM('H' FROM 'HelloWorld')

HelloSUBSTR('HelloWorld',1,5)

ResultFunction

Copyright © 2009, Oracle. All rights reserved.3 - 14

SELECT employee_id, CONCAT(first_name, last_name) NAME,

job_id, LENGTH (last_name),

INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(job_id, 4) = 'REP';

Using the Character-Manipulation Functions

2

31 2

1

3

Copyright © 2009, Oracle. All rights reserved.3 - 15

Lesson Agenda

• Single-row SQL functions

• Character functions

• Number functions

• Working with dates

• Date Functions

Copyright © 2009, Oracle. All rights reserved.3 - 16

Number Functions

• ROUND: Rounds value to a specified decimal

• TRUNC: Truncates value to a specified decimal

• MOD: Returns remainder of division

100MOD(1600, 300)

45.93ROUND(45.926, 2)

45.92TRUNC(45.926, 2)

ResultFunction

Copyright © 2009, Oracle. All rights reserved.3 - 17

SELECT ROUND(45.923,2), ROUND(45.923,0),
ROUND(45.923,-1)

FROM DUAL;

Using the ROUND Function

DUAL is a dummy table that you can use to view results
from functions and calculations.

3

31 2

1 2

Copyright © 2009, Oracle. All rights reserved.3 - 18

Using the TRUNC Function

SELECT TRUNC(45.923,2), TRUNC(45.923),
TRUNC(45.923,-1)

FROM DUAL;
3

31 2

1 2

Copyright © 2009, Oracle. All rights reserved.3 - 19

SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';

Using the MOD Function

For all employees with the job title of Sales Representative,
calculate the remainder of the salary after it is divided by 5,000.

Copyright © 2009, Oracle. All rights reserved.3 - 20

Lesson Agenda

• Single-row SQL functions

• Character functions

• Number functions

• Working with dates

• Date functions

Copyright © 2009, Oracle. All rights reserved.3 - 21

SELECT last_name, hire_date
FROM employees
WHERE hire_date < ''01-FEB-88';';

Working with Dates

• The Oracle database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

• The default date display format is DD-MON-RR.

– Enables you to store 21st-century dates in the 20th century
by specifying only the last two digits of the year

– Enables you to store 20th-century dates in the
21st century in the same way

Copyright © 2009, Oracle. All rights reserved.3 - 22

RR Date Format

Current Year

1995

1995

2001

2001

27-OCT-95

27-OCT-17

27-OCT-17

27-OCT-95

1995

2017

2017

1995

1995

1917

2017

2095

If two digits
of the
current
year are:

0–49

0–49 50–99

50–99

The return date is in
the current century

The return date is in
the century after
the current one

The return date is in
the century before
the current one

The return date is in
the current century

If the specified two-digit year is:

YY FormatRR FormatSpecified DateCurrent Year

Copyright © 2009, Oracle. All rights reserved.3 - 24

Using the SYSDATE Function

SYSDATE is a function that returns:

• Date

• Time

SELECT sysdate
FROM dual;;

Copyright © 2009, Oracle. All rights reserved.3 - 25

Arithmetic with Dates

• Add or subtract a number to or from a date for a resultant
date value.

• Subtract two dates to find the number of days between
those dates.

• Add hours to a date by dividing the number of hours by 24.

Copyright © 2009, Oracle. All rights reserved.3 - 26

SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;

Using Arithmetic Operators
with Dates

Copyright © 2009, Oracle. All rights reserved.3 - 27

Lesson Agenda

• Single-row SQL functions

• Character functions

• Number functions

• Working with dates

• Date functions

Copyright © 2009, Oracle. All rights reserved.3 - 28

Date-Manipulation Functions

Next day of the date specifiedNEXT_DAY

Last day of the monthLAST_DAY

Round dateROUND

Truncate dateTRUNC

Number of months between two datesMONTHS_BETWEEN

Add calendar months to dateADD_MONTHS

ResultFunction

Copyright © 2009, Oracle. All rights reserved.3 - 29

Using Date Functions

'08-SEP-95'NEXT_DAY ('01-SEP-95','FRIDAY')

'28-FEB-95'LAST_DAY ('01-FEB-95')

19.6774194MONTHS_BETWEEN

('01-SEP-95','11-JAN-94')

‘29-FEB-96'ADD_MONTHS (‘31-JAN-96',1)

ResultFunction

Copyright © 2009, Oracle. All rights reserved.3 - 30

Using ROUND and TRUNC Functions with Dates

Assume SYSDATE = '25-JUL-03':

01-JUL-03TRUNC(SYSDATE ,'MONTH')

01-JAN-03TRUNC(SYSDATE ,'YEAR')

01-AUG-03ROUND(SYSDATE,'MONTH')

01-JAN-04ROUND(SYSDATE ,'YEAR')

ResultFunction

Copyright © 2009, Oracle. All rights reserved.3 - 31

Quiz

Which of the following statements are true about single-row
functions?

1. Manipulate data items

2. Accept arguments and return one value per argument

3. Act on each row that is returned

4. Return one result per set of rows

5. May not modify the data type

6. Can be nested

7. Accept arguments that can be a column or an expression

Copyright © 2009, Oracle. All rights reserved.3 - 32

Summary

In this lesson, you should have learned how to:

• Perform calculations on data using functions

• Modify individual data items using functions

Copyright © 2009, Oracle. All rights reserved.3 - 33

Practice 3: Overview

This practice covers the following topics:

• Writing a query that displays the current date

• Creating queries that require the use of numeric,
character, and date functions

• Performing calculations of years and months of service for
an employee

Copyright © 2009, Oracle. All rights reserved.

Using Conversion Functions and
Conditional Expressions

Copyright © 2009, Oracle. All rights reserved.4 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Describe various types of conversion functions that are
available in SQL

• Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion

functions

• Apply conditional expressions in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.4 - 3

Lesson Agenda

• Implicit and explicit data type conversion

• TO_CHAR, TO_DATE, TO_NUMBER functions

• Nesting functions

• General functions:

– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:

– CASE

– DECODE

Copyright © 2009, Oracle. All rights reserved.4 - 4

Conversion Functions

Implicit data type
conversion

Explicit data type
conversion

Data type
conversion

Copyright © 2009, Oracle. All rights reserved.4 - 5

Implicit Data Type Conversion

In expressions, the Oracle server can automatically convert the
following:

NUMBERVARCHAR2 or CHAR

DATEVARCHAR2 or CHAR

ToFrom

Copyright © 2009, Oracle. All rights reserved.4 - 6

Implicit Data Type Conversion

For expression evaluation, the Oracle server can automatically
convert the following:

VARCHAR2 or CHARNUMBER

VARCHAR2 or CHARDATE

ToFrom

Copyright © 2009, Oracle. All rights reserved.4 - 7

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Copyright © 2009, Oracle. All rights reserved.4 - 8

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Copyright © 2009, Oracle. All rights reserved.4 - 10

Lesson Agenda

• Implicit and explicit data type conversion

• TO_CHAR, TO_DATE, TO_NUMBER functions

• Nesting functions

• General functions:

– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:

– CASE

– DECODE

Copyright © 2009, Oracle. All rights reserved.4 - 11

Using the TO_CHAR Function with Dates

The format model:

• Must be enclosed with single quotation marks

• Is case-sensitive

• Can include any valid date format element

• Has an fm element to remove padded blanks or suppress

leading zeros

• Is separated from the date value by a comma

TO_CHAR(date, 'format_model')

Copyright © 2009, Oracle. All rights reserved.4 - 12

Elements of the Date Format Model

Three-letter abbreviation of the day of the weekDY

Full name of the day of the weekDAY

Two-digit value for the monthMM

Full name of the monthMONTH

Three-letter abbreviation of the monthMON

Numeric day of the monthDD

Full year in numbersYYYY

Year spelled out (in English)YEAR

ResultElement

Copyright © 2009, Oracle. All rights reserved.4 - 14

Elements of the Date Format Model

• Time elements format the time portion of the date:

• Add character strings by enclosing them with double
quotation marks:

• Number suffixes spell out numbers:

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

HH24:MI:SS AM 15:45:32 PM

Copyright © 2009, Oracle. All rights reserved.4 - 16

SELECT last_name,
TO_CHAR(hire_date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

Using the TO_CHAR Function with Dates

…

Copyright © 2009, Oracle. All rights reserved.4 - 17

Using the TO_CHAR Function with Numbers

These are some of the format elements that you can use with
the TO_CHAR function to display a number value as a

character:

Prints a decimal point.

Prints a comma as a thousands indicator,

Places a floating dollar sign$

Uses the floating local currency symbolL

Represents a number9

Forces a zero to be displayed0

ResultElement

TO_CHAR(number, 'format_model')

Copyright © 2009, Oracle. All rights reserved.4 - 19

SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';

Using the TO_CHAR Function with Numbers

Copyright © 2009, Oracle. All rights reserved.4 - 20

Using the TO_NUMBER and TO_DATE Functions

• Convert a character string to a number format using the
TO_NUMBER function:

• Convert a character string to a date format using the
TO_DATE function:

• These functions have an fx modifier. This modifier

specifies the exact match for the character argument and
date format model of a TO_DATE function.

TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])

Copyright © 2009, Oracle. All rights reserved.4 - 22

Using the TO_CHAR and TO_DATE Function
with RR Date Format

To find employees hired before 1990, use the RR date format,

which produces the same results whether the command is run
in 1999 or now:

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90','DD-Mon-RR');

Copyright © 2009, Oracle. All rights reserved.4 - 23

Lesson Agenda

• Implicit and explicit data type conversion

• TO_CHAR, TO_DATE, TO_NUMBER functions

• Nesting functions

• General functions:

– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:

– CASE

– DECODE

Copyright © 2009, Oracle. All rights reserved.4 - 24

Nesting Functions

• Single-row functions can be nested to any level.

• Nested functions are evaluated from the deepest level to
the least deep level.

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

Copyright © 2009, Oracle. All rights reserved.4 - 25

SELECT last_name,
UPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), '_US'))

FROM employees
WHERE department_id = 60;

Nesting Functions

Copyright © 2009, Oracle. All rights reserved.4 - 26

Lesson Agenda

• Implicit and explicit data type conversion

• TO_CHAR, TO_DATE, TO_NUMBER functions

• Nesting functions

• General functions:

– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:

– CASE

– DECODE

Copyright © 2009, Oracle. All rights reserved.4 - 27

General Functions

The following functions work with any data type and pertain to
using nulls:

• NVL (expr1, expr2)

• NVL2 (expr1, expr2, expr3)

• NULLIF (expr1, expr2)

• COALESCE (expr1, expr2, ..., exprn)

Copyright © 2009, Oracle. All rights reserved.4 - 28

NVL Function

Converts a null value to an actual value:

• Data types that can be used are date, character, and
number.

• Data types must match:

– NVL(commission_pct,0)

– NVL(hire_date,'01-JAN-97')

– NVL(job_id,'No Job Yet')

Copyright © 2009, Oracle. All rights reserved.4 - 29

SELECT last_name, salary, NVL(commission_pct, 0),
(salary*12) + (salary*12*NVL(commission_pct, 0)) AN_SAL

FROM employees;

Using the NVL Function

…

1

1 2

2

Copyright © 2009, Oracle. All rights reserved.4 - 30

SELECT last_name, salary, commission_pct,
NVL2(commission_pct,

'SAL+COMM', 'SAL') income
FROM employees WHERE department_id IN (50, 80);

Using the NVL2 Function

1 2

2

1

Copyright © 2009, Oracle. All rights reserved.4 - 31

SELECT first_name, LENGTH(first_name) "expr1",
last_name, LENGTH(last_name) "expr2",
NULLIF(LENGTH(first_name), LENGTH(last_name)) result

FROM employees;

Using the NULLIF Function

…

1

2
3

1 2 3

Copyright © 2009, Oracle. All rights reserved.4 - 32

Using the COALESCE Function

• The advantage of the COALESCE function over the NVL
function is that the COALESCE function can take multiple

alternate values.

• If the first expression is not null, the COALESCE function
returns that expression; otherwise, it does a COALESCE of

the remaining expressions.

Copyright © 2009, Oracle. All rights reserved.4 - 33

SELECT last_name, employee_id,
COALESCE(TO_CHAR(commission_pct),TO_CHAR(manager_id),

'No commission and no manager')
FROM employees;

Using the COALESCE Function

…

…

Copyright © 2009, Oracle. All rights reserved.4 - 35

Lesson Agenda

• Implicit and explicit data type conversion

• TO_CHAR, TO_DATE, TO_NUMBER functions

• Nesting functions

• General functions:

– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:

– CASE

– DECODE

Copyright © 2009, Oracle. All rights reserved.4 - 36

Conditional Expressions

• Provide the use of the IF-THEN-ELSE logic within a SQL

statement

• Use two methods:

– CASE expression

– DECODE function

Copyright © 2009, Oracle. All rights reserved.4 - 37

CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2

WHEN comparison_exprn THEN return_exprn

ELSE else_expr]
END

Copyright © 2009, Oracle. All rights reserved.4 - 38

SELECT last_name, job_id, salary,
CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary
WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"
FROM employees;

Using the CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

…

…

…

Copyright © 2009, Oracle. All rights reserved.4 - 39

DECODE Function

Facilitates conditional inquiries by doing the work of a CASE
expression or an IF-THEN-ELSE statement:

DECODE(col|expression, search1, result1
[, search2, result2,...,]
[, default])

Copyright © 2009, Oracle. All rights reserved.4 - 40

SELECT last_name, job_id, salary,
DECODE(job_id, 'IT_PROG', 1.10*salary,

'ST_CLERK', 1.15*salary,
'SA_REP', 1.20*salary,

salary)
REVISED_SALARY

FROM employees;

Using the DECODE Function

…

…

…

Copyright © 2009, Oracle. All rights reserved.4 - 41

SELECT last_name, salary,
DECODE (TRUNC(salary/2000, 0),

0, 0.00,
1, 0.09,
2, 0.20,
3, 0.30,
4, 0.40,
5, 0.42,
6, 0.44,

0.45) TAX_RATE
FROM employees
WHERE department_id = 80;

Using the DECODE Function

Display the applicable tax rate for each employee in
department 80:

Copyright © 2009, Oracle. All rights reserved.4 - 42

Quiz

The TO_NUMBER function converts either character strings or

date values to a number in the format specified by the optional
format model.

1. True

2. False

Copyright © 2009, Oracle. All rights reserved.4 - 43

Summary

In this lesson, you should have learned how to:

• Alter date formats for display using functions

• Convert column data types using functions

• Use NVL functions

• Use IF-THEN-ELSE logic and other conditional
expressions in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.4 - 44

Practice 4: Overview

This practice covers the following topics:

• Creating queries that use TO_CHAR, TO_DATE, and other
DATE functions

• Creating queries that use conditional expressions such as
DECODE and CASE

Copyright © 2009, Oracle. All rights reserved.

Reporting Aggregated Data
Using the Group Functions

Copyright © 2009, Oracle. All rights reserved.5 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Identify the available group functions

• Describe the use of group functions

• Group data by using the GROUP BY clause

• Include or exclude grouped rows by using the HAVING

clause

Copyright © 2009, Oracle. All rights reserved.5 - 3

Lesson Agenda

• Group functions:

– Types and syntax

– Use AVG, SUM, MIN, MAX, COUNT

– Use DISTINCT keyword within group functions

– NULL values in a group function

• Grouping rows:

– GROUP BY clause

– HAVING clause

• Nesting group functions

Copyright © 2009, Oracle. All rights reserved.5 - 4

What Are Group Functions?

Group functions operate on sets of rows to give one result per
group.

EMPLOYEES

Maximum salary in

EMPLOYEES table

…

Copyright © 2009, Oracle. All rights reserved.5 - 5

Types of Group Functions

• AVG

• COUNT

• MAX

• MIN

• STDDEV

• SUM

• VARIANCE

Group
functions

Copyright © 2009, Oracle. All rights reserved.5 - 6

SELECT group_function(column), ...
FROM table
[WHERE condition]
[ORDER BY column];

Group Functions: Syntax

Copyright © 2009, Oracle. All rights reserved.5 - 7

SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)

FROM employees
WHERE job_id LIKE '%REP%';

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

Copyright © 2009, Oracle. All rights reserved.5 - 8

SELECT MIN(hire_date), MAX(hire_date)
FROM employees;

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and date

data types.

Copyright © 2009, Oracle. All rights reserved.5 - 9

Using the COUNT Function

COUNT(*) returns the number of rows in a table:

COUNT(expr) returns the number of rows with non-null values
for expr:

SELECT COUNT(commission_pct)
FROM employees
WHERE department_id = 80;

SELECT COUNT(*)
FROM employees
WHERE department_id = 50;

1

2

Copyright © 2009, Oracle. All rights reserved.5 - 10

SELECT COUNT(DISTINCT department_id)
FROM employees;

Using the DISTINCT Keyword

• COUNT(DISTINCT expr) returns the number of distinct
non-null values of expr.

• To display the number of distinct department values in the
EMPLOYEES table:

Copyright © 2009, Oracle. All rights reserved.5 - 11

Group Functions and Null Values

Group functions ignore null values in the column:

The NVL function forces group functions to include null values:

SELECT AVG(commission_pct)
FROM employees;

SELECT AVG(NVL(commission_pct, 0))
FROM employees;

1

2

Copyright © 2009, Oracle. All rights reserved.5 - 12

Lesson Agenda

• Group functions:

– Types and syntax

– Use AVG, SUM, MIN, MAX, COUNT

– Use DISTINCT keyword within group functions

– NULL values in a group function

• Grouping rows:

– GROUP BY clause

– HAVING clause

• Nesting group functions

Copyright © 2009, Oracle. All rights reserved.5 - 13

Creating Groups of Data

EMPLOYEES

…

4400

9500

3500

6400

10033

Average salary in
EMPLOYEES table for

each department

Copyright © 2009, Oracle. All rights reserved.5 - 14

Creating Groups of Data:
GROUP BY Clause Syntax

You can divide rows in a table into smaller groups by using the
GROUP BY clause.

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

Copyright © 2009, Oracle. All rights reserved.5 - 15

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id ;

Using the GROUP BY Clause

All columns in the SELECT list that are not in group functions
must be in the GROUP BY clause.

Copyright © 2009, Oracle. All rights reserved.5 - 16

Using the GROUP BY Clause

The GROUP BY column does not have to be in the SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id ;

Copyright © 2009, Oracle. All rights reserved.5 - 17

Grouping by More than One Column

EMPLOYEES Add the salaries in the EMPLOYEES

table for each job, grouped by
department.

…

Copyright © 2009, Oracle. All rights reserved.5 - 18

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id > 40
GROUP BY department_id, job_id
ORDER BY department_id;

Using the GROUP BY Clause

on Multiple Columns

Copyright © 2009, Oracle. All rights reserved.5 - 19

Illegal Queries
Using Group Functions

Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause:

SELECT department_id, COUNT(last_name)
FROM employees;

SELECT department_id, job_id, COUNT(last_name)
FROM employees
GROUP BY department_id;

A GROUP BY clause must be added to
count the last names for each
department_id.

Either add job_id in the GROUP BY or
remove the job_id column from the
SELECT list.

Copyright © 2009, Oracle. All rights reserved.5 - 20

Illegal Queries
Using Group Functions

• You cannot use the WHERE clause to restrict groups.

• You use the HAVING clause to restrict groups.

• You cannot use group functions in the WHERE clause.

SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

Cannot use the
WHERE clause to

restrict groups

Copyright © 2009, Oracle. All rights reserved.5 - 21

Restricting Group Results

EMPLOYEES

…

The maximum salary per
department when it is
greater than $10,000

Copyright © 2009, Oracle. All rights reserved.5 - 22

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Restricting Group Results
with the HAVING Clause

When you use the HAVING clause, the Oracle server restricts

groups as follows:

1. Rows are grouped.

2. The group function is applied.

3. Groups matching the HAVING clause are displayed.

Copyright © 2009, Oracle. All rights reserved.5 - 23

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;

Using the HAVING Clause

Copyright © 2009, Oracle. All rights reserved.5 - 24

SELECT job_id, SUM(salary) PAYROLL
FROM employees
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);

Using the HAVING Clause

Copyright © 2009, Oracle. All rights reserved.5 - 25

Lesson Agenda

• Group functions:

– Types and syntax

– Use AVG, SUM, MIN, MAX, COUNT

– Use DISTINCT keyword within group functions

– NULL values in a group function

• Grouping rows:

– GROUP BY clause

– HAVING clause

• Nesting group functions

Copyright © 2009, Oracle. All rights reserved.5 - 26

SELECT MAX(AVG(salary))
FROM employees
GROUP BY department_id;

Nesting Group Functions

Display the maximum average salary:

Copyright © 2009, Oracle. All rights reserved.5 - 27

Quiz

Identify the guidelines for group functions and the GROUP BY

clause.

1. You cannot use a column alias in the GROUP BY clause.

2. The GROUP BY column must be in the SELECT clause.

3. By using a WHERE clause, you can exclude rows before

dividing them into groups.

4. The GROUP BY clause groups rows and ensures order of

the result set.

5. If you include a group function in a SELECT clause, you

cannot select individual results as well.

Copyright © 2009, Oracle. All rights reserved.5 - 28

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Summary

In this lesson, you should have learned how to:

• Use the group functions COUNT, MAX, MIN, SUM, and AVG

• Write queries that use the GROUP BY clause

• Write queries that use the HAVING clause

Copyright © 2009, Oracle. All rights reserved.5 - 29

Practice 5: Overview

This practice covers the following topics:

• Writing queries that use the group functions

• Grouping by rows to achieve more than one result

• Restricting groups by using the HAVING clause

Copyright © 2009, Oracle. All rights reserved.

Displaying Data
from Multiple Tables

Copyright © 2009, Oracle. All rights reserved.6 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Write SELECT statements to access data from more than

one table using equijoins and nonequijoins

• Join a table to itself by using a self-join

• View data that generally does not meet a join condition by
using OUTER joins

• Generate a Cartesian product of all rows from two or more
tables

Copyright © 2009, Oracle. All rights reserved.6 - 3

Lesson Agenda

• Types of JOINS and its syntax

• Natural join:

– USING clause

– ON clause

• Self-join

• Nonequijoins

• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product

– Cross join

Copyright © 2009, Oracle. All rights reserved.6 - 4

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

…

…

Copyright © 2009, Oracle. All rights reserved.6 - 5

Types of Joins

Joins that are compliant with the SQL:1999 standard include
the following:

• Natural joins:

– NATURAL JOIN clause

– USING clause

– ON clause

• OUTER joins:

– LEFT OUTER JOIN

– RIGHT OUTER JOIN

– FULL OUTER JOIN

• Cross joins

Copyright © 2009, Oracle. All rights reserved.6 - 6

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT table1.column, table2.column
FROM table1
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2
ON (table1.column_name = table2.column_name)]|

[LEFT|RIGHT|FULL OUTER JOIN table2
ON (table1.column_name = table2.column_name)]|

[CROSS JOIN table2];

Copyright © 2009, Oracle. All rights reserved.6 - 7

Qualifying Ambiguous
Column Names

• Use table prefixes to qualify column names that are in
multiple tables.

• Use table prefixes to improve performance.

• Instead of full table name prefixes, use table aliases.

• Table alias gives a table a shorter name:

– Keeps SQL code smaller, uses less memory

• Use column aliases to distinguish columns that have
identical names, but reside in different tables.

Copyright © 2009, Oracle. All rights reserved.6 - 8

Lesson Agenda

• Types of JOINS and its syntax

• Natural join:

– USING clause

– ON clause

• Self-join

• Nonequijoins

• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product

– Cross join

Copyright © 2009, Oracle. All rights reserved.6 - 9

Creating Natural Joins

• The NATURAL JOIN clause is based on all columns in the

two tables that have the same name.

• It selects rows from the two tables that have equal values
in all matched columns.

• If the columns having the same names have different data
types, an error is returned.

Copyright © 2009, Oracle. All rights reserved.6 - 10

SELECT department_id, department_name,
location_id, city

FROM departments
NATURAL JOIN locations ;

Retrieving Records with Natural Joins

Copyright © 2009, Oracle. All rights reserved.6 - 11

Creating Joins with the USING Clause

• If several columns have the same names but the data
types do not match, use the USING clause to specify the

columns for the equijoin.

• Use the USING clause to match only one column when

more than one column matches.

• The NATURAL JOIN and USING clauses are mutually

exclusive.

Copyright © 2009, Oracle. All rights reserved.6 - 12

Joining Column Names

EMPLOYEES DEPARTMENTS

Foreign key

Primary key

…

Copyright © 2009, Oracle. All rights reserved.6 - 13

SELECT employee_id, last_name,
location_id, department_id

FROM employees JOIN departments
USING (department_id) ;

Retrieving Records with the USING Clause

…

Copyright © 2009, Oracle. All rights reserved.6 - 14

SELECT l.city, d.department_name
FROM locations l JOIN departments d
USING (location_id)
WHERE d.location_id = 1400;

Using Table Aliases with the USING Clause

• Do not qualify a column that is used in the USING clause.

• If the same column is used elsewhere in the SQL
statement, do not alias it.

Copyright © 2009, Oracle. All rights reserved.6 - 15

Creating Joins with the ON Clause

• The join condition for the natural join is basically an
equijoin of all columns with the same name.

• Use the ON clause to specify arbitrary conditions or specify

columns to join.

• The join condition is separated from other search
conditions.

• The ON clause makes code easy to understand.

Copyright © 2009, Oracle. All rights reserved.6 - 16

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id);

Retrieving Records with the ON Clause

…

Copyright © 2009, Oracle. All rights reserved.6 - 17

SELECT employee_id, city, department_name
FROM employees e
JOIN departments d
ON d.department_id = e.department_id
JOIN locations l
ON d.location_id = l.location_id;

Creating Three-Way Joins with
the ON Clause

…

Copyright © 2009, Oracle. All rights reserved.6 - 18

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
AND e.manager_id = 149 ;

Applying Additional Conditions
to a Join

Use the AND clause or the WHERE clause to apply additional

conditions:

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
WHERE e.manager_id = 149 ;

Or

Copyright © 2009, Oracle. All rights reserved.6 - 19

Lesson Agenda

• Types of JOINS and its syntax

• Natural join:

– USING clause

– ON clause

• Self-join

• Nonequijoins

• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product

– Cross join

Copyright © 2009, Oracle. All rights reserved.6 - 20

Joining a Table to Itself

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

… …

Copyright © 2009, Oracle. All rights reserved.6 - 21

Self-Joins Using the ON Clause

SELECT worker.last_name emp, manager.last_name mgr
FROM employees worker JOIN employees manager
ON (worker.manager_id = manager.employee_id);

…

Copyright © 2009, Oracle. All rights reserved.6 - 22

Lesson Agenda

• Types of JOINS and its syntax

• Natural join:

– USING clause

– ON clause

• Self-join

• Nonequijoins

• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product

– Cross join

Copyright © 2009, Oracle. All rights reserved.6 - 23

Nonequijoins

EMPLOYEES JOB_GRADES

…
JOB_GRADES table defines the
LOWEST_SAL and HIGHEST_SAL range
of values for each GRADE_LEVEL.
Hence, the GRADE_LEVEL column can

be used to assign grades to each
employee.

Copyright © 2009, Oracle. All rights reserved.6 - 24

SELECT e.last_name, e.salary, j.grade_level
FROM employees e JOIN job_grades j
ON e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records
with Nonequijoins

…

Copyright © 2009, Oracle. All rights reserved.6 - 25

Lesson Agenda

• Types of JOINS and its syntax

• Natural join:

– USING clause

– ON clause

• Self-join

• Nonequijouijoins

• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product

– Cross join

Copyright © 2009, Oracle. All rights reserved.6 - 26

Returning Records with No Direct Match
Using OUTER Joins

Equijoin with EMPLOYEESDEPARTMENTS

There are no employees
in department 190.

Employee “Grant” has
not been assigned a
department ID.

…

Copyright © 2009, Oracle. All rights reserved.6 - 27

INNER Versus OUTER Joins

• In SQL:1999, the join of two tables returning only matched
rows is called an INNER join.

• A join between two tables that returns the results of the
INNER join as well as the unmatched rows from the left (or
right) table is called a left (or right) OUTER join.

• A join between two tables that returns the results of an
INNER join as well as the results of a left and right join is a
full OUTER join.

Copyright © 2009, Oracle. All rights reserved.6 - 28

SELECT e.last_name, e.department_id, d.department_name
FROM employees e LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

LEFT OUTER JOIN

…

Copyright © 2009, Oracle. All rights reserved.6 - 29

SELECT e.last_name, d.department_id, d.department_name
FROM employees e RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

RIGHT OUTER JOIN

…

Copyright © 2009, Oracle. All rights reserved.6 - 30

SELECT e.last_name, d.department_id, d.department_name
FROM employees e FULL OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

FULL OUTER JOIN

…

Copyright © 2009, Oracle. All rights reserved.6 - 31

Lesson Agenda

• Types of JOINS and its syntax

• Natural join:

– USING clause

– ON clause

• Self-join

• Nonequiijoin

• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product

– Cross join

Copyright © 2009, Oracle. All rights reserved.6 - 32

Cartesian Products

• A Cartesian product is formed when:

– A join condition is omitted

– A join condition is invalid

– All rows in the first table are joined to all rows in the second
table

• To avoid a Cartesian product, always include a valid join
condition.

Copyright © 2009, Oracle. All rights reserved.6 - 33

Generating a Cartesian Product

Cartesian product:

20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

Copyright © 2009, Oracle. All rights reserved.6 - 34

SELECT last_name, department_name
FROM employees
CROSS JOIN departments ;

Creating Cross Joins

• The CROSS JOIN clause produces the cross-product of

two tables.

• This is also called a Cartesian product between the two
tables.

…

Copyright © 2009, Oracle. All rights reserved.6 - 35

Quiz

The SQL:1999 standard join syntax supports the following
types of joins. Which of these join types does Oracle join syntax
support?

1. Equijoins

2. Nonequijoins

3. Left OUTER join

4. Right OUTER join

5. Full OUTER join

6. Self joins

7. Natural joins

8. Cartesian products

Copyright © 2009, Oracle. All rights reserved.6 - 36

Summary

In this lesson, you should have learned how to use joins to
display data from multiple tables by using:

• Equijoins

• Nonequijoins

• OUTER joins

• Self-joins

• Cross joins

• Natural joins

• Full (or two-sided) OUTER joins

Copyright © 2009, Oracle. All rights reserved.6 - 37

Practice 6: Overview

This practice covers the following topics:

• Joining tables using an equijoin

• Performing outer and self-joins

• Adding conditions

Copyright © 2009, Oracle. All rights reserved.

Using Subqueries to Solve Queries

Copyright © 2009, Oracle. All rights reserved.7 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Define subqueries

• Describe the types of problems that the subqueries can
solve

• List the types of subqueries

• Write single-row and multiple-row subqueries

Copyright © 2009, Oracle. All rights reserved.7 - 3

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:

– Group functions in a subquery

– HAVING clause with subqueries

• Multiple-row subqueries

– Use ALL or ANY operator.

• Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.7 - 4

Using a Subquery to Solve a Problem

Who has a salary greater than Abel’s?

Which employees have salaries greater than Abel’s
salary?

Main query:

What is Abel’s salary?

Subquery:

Copyright © 2009, Oracle. All rights reserved.7 - 5

Subquery Syntax

• The subquery (inner query) executes before the main
query (outer query).

• The result of the subquery is used by the main query.

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Copyright © 2009, Oracle. All rights reserved.7 - 6

SELECT last_name, salary
FROM employees
WHERE salary >

(SELECT salary
FROM employees
WHERE last_name = 'Abel');

Using a Subquery

11000

Copyright © 2009, Oracle. All rights reserved.7 - 7

Guidelines for Using Subqueries

• Enclose subqueries in parentheses.

• Place subqueries on the right side of the comparison
condition for readability (However, the subquery can
appear on either side of the comparison operator.).

• Use single-row operators with single-row subqueries and
multiple-row operators with multiple-row subqueries.

Copyright © 2009, Oracle. All rights reserved.7 - 8

Types of Subqueries

• Single-row subquery

• Multiple-row subquery

Main query

Subquery
returns

ST_CLERK

ST_CLERK
SA_MAN

Main query

Subquery
returns

Copyright © 2009, Oracle. All rights reserved.7 - 9

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:

– Group functions in a subquery

– HAVING clause with subqueries

• Multiple-row subqueries

– Use ALL or ANY operator

• Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.7 - 10

Single-Row Subqueries

• Return only one row

• Use single-row comparison operators

Greater than or equal to >=

Less than <

Less than or equal to<=

Equal to=

Not equal to<>

Greater than >

MeaningOperator

Copyright © 2009, Oracle. All rights reserved.7 - 11

SELECT last_name, job_id, salary
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = ‘Taylor’)

AND salary >
(SELECT salary
FROM employees
WHERE last_name = ‘Taylor’);

Executing Single-Row Subqueries

SA_REP

8600

Copyright © 2009, Oracle. All rights reserved.7 - 12

SELECT last_name, job_id, salary
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees);

Using Group Functions in a Subquery

2500

Copyright © 2009, Oracle. All rights reserved.7 - 13

SELECT department_id, MIN(salary)
FROM employees
GROUP BY department_id
HAVING MIN(salary) >

(SELECT MIN(salary)
FROM employees
WHERE department_id = 50);

The HAVING Clause with Subqueries

• The Oracle server executes the subqueries first.

• The Oracle server returns results into the HAVING clause

of the main query.

2500

…

Copyright © 2009, Oracle. All rights reserved.7 - 14

SELECT employee_id, last_name
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees
GROUP BY department_id);

What Is Wrong with This Statement?

Single-row operator
with multiple-row

subquery

Copyright © 2009, Oracle. All rights reserved.7 - 15

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = 'Haas');

No Rows Returned by the Inner Query

Subquery returns no rows because there is no
employee named “Haas.”

Copyright © 2009, Oracle. All rights reserved.7 - 16

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:

– Group functions in a subquery

– HAVING clause with subqueries

• Multiple-row subqueries

– Use ALL or ANY operator

• Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.7 - 17

Multiple-Row Subqueries

• Return more than one row

• Use multiple-row comparison operators

Must be preceded by =, !=, >, <, <=, >=.

Compares a value to every value in a list or

returned by a query. Evaluates to TRUE if the

query returns no rows.

ALL

Equal to any member in the listIN

Must be preceded by =, !=, >, <, <=, >=.

Compares a value to each value in a list or

returned by a query. Evaluates to FALSE if the

query returns no rows.

ANY

MeaningOperator

Copyright © 2009, Oracle. All rights reserved.7 - 18

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ANY

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ANY Operator

in Multiple-Row Subqueries

9000, 6000, 4200

…

Copyright © 2009, Oracle. All rights reserved.7 - 19

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ALL

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ALL Operator

in Multiple-Row Subqueries

9000, 6000, 4200

Copyright © 2009, Oracle. All rights reserved.7 - 20

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:

– Group functions in a subquery

– HAVING clause with subqueries

• Multiple-row subqueries

– Use ALL or ANY operator

• Null values in a subquery

Copyright © 2009, Oracle. All rights reserved.7 - 21

SELECT emp.last_name
FROM employees emp
WHERE emp.employee_id NOT IN

(SELECT mgr.manager_id
FROM employees mgr);

Null Values in a Subquery

Copyright © 2009, Oracle. All rights reserved.7 - 23

Quiz

Using a subquery is equivalent to performing two sequential
queries and using the result of the first query as the search
value(s) in the second query.

1. True

2. False

Copyright © 2009, Oracle. All rights reserved.7 - 24

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Summary

In this lesson, you should have learned how to:

• Identify when a subquery can help solve a problem

• Write subqueries when a query is based on unknown
values

Copyright © 2009, Oracle. All rights reserved.7 - 25

Practice 7: Overview

This practice covers the following topics:

• Creating subqueries to query values based on unknown
criteria

• Using subqueries to find out the values that exist in one set
of data and not in another

Copyright © 2009, Oracle. All rights reserved.

Using the Set Operators

Copyright © 2009, Oracle. All rights reserved.8 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Describe set operators

• Use a set operator to combine multiple queries into a
single query

• Control the order of rows returned

Copyright © 2009, Oracle. All rights reserved.8 - 3

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 4

Set Operators

UNION/UNION ALL

A B A B

A B

INTERSECT

A B

MINUS

Copyright © 2009, Oracle. All rights reserved.8 - 5

Set Operator Guidelines

• The expressions in the SELECT lists must match in

number.

• The data type of each column in the second query must
match the data type of its corresponding column in the first
query.

• Parentheses can be used to alter the sequence of
execution.

• ORDER BY clause can appear only at the very end of the

statement.

Copyright © 2009, Oracle. All rights reserved.8 - 6

The Oracle Server and Set Operators

• Duplicate rows are automatically eliminated except in
UNION ALL.

• Column names from the first query appear in the result.

• The output is sorted in ascending order by default except
in UNION ALL.

Copyright © 2009, Oracle. All rights reserved.8 - 7

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 8

Tables Used in This Lesson

The tables used in this lesson are:

• EMPLOYEES: Provides details regarding all current

employees

• JOB_HISTORY: Records the details of the start date and

end date of the former job, and the job identification
number and department when an employee switches jobs

Copyright © 2009, Oracle. All rights reserved.8 - 12

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 13

UNION Operator

A B

The UNION operator returns rows from both queries after eliminating
duplications.

Copyright © 2009, Oracle. All rights reserved.8 - 14

Using the UNION Operator

Display the current and previous job details of all employees.
Display each employee only once.

SELECT employee_id, job_id
FROM employees
UNION
SELECT employee_id, job_id
FROM job_history;

…

…

Copyright © 2009, Oracle. All rights reserved.8 - 16

UNION ALL Operator

The UNION ALL operator returns rows from both queries, including all
duplications.

A B

Copyright © 2009, Oracle. All rights reserved.8 - 17

Using the UNION ALL Operator

Display the current and previous departments of all employees.

SELECT employee_id, job_id, department_id
FROM employees
UNION ALL
SELECT employee_id, job_id, department_id
FROM job_history
ORDER BY employee_id;

…

…

Copyright © 2009, Oracle. All rights reserved.8 - 18

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 19

INTERSECT Operator

A B

The INTERSECT operator returns rows that are common to both queries.

Copyright © 2009, Oracle. All rights reserved.8 - 20

Using the INTERSECT Operator

Display the employee IDs and job IDs of those employees who
currently have a job title that is the same as their previous one
(that is, they changed jobs but have now gone back to doing
the same job they did previously).

SELECT employee_id, job_id
FROM employees
INTERSECT
SELECT employee_id, job_id
FROM job_history;

Copyright © 2009, Oracle. All rights reserved.8 - 21

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 22

MINUS Operator

A B

The MINUS operator returns all the distinct rows selected by the first
query, but not present in the second query result set.

Copyright © 2009, Oracle. All rights reserved.8 - 23

Using the MINUS Operator

Display the employee IDs of those employees who have not
changed their jobs even once.

SELECT employee_id
FROM employees
MINUS
SELECT employee_id
FROM job_history;

…

Copyright © 2009, Oracle. All rights reserved.8 - 24

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 25

Matching the SELECT Statements

• Using the UNION operator, display the location ID,

department name, and the state where it is located.

• You must match the data type (using the TO_CHAR

function or any other conversion functions) when columns
do not exist in one or the other table.

SELECT location_id, department_name "Department",
TO_CHAR(NULL) "Warehouse location"

FROM departments
UNION
SELECT location_id, TO_CHAR(NULL) "Department",

state_province
FROM locations;

Copyright © 2009, Oracle. All rights reserved.8 - 26

Matching the SELECT Statement: Example

Using the UNION operator, display the employee ID, job ID, and

salary of all employees.

SELECT employee_id, job_id,salary
FROM employees
UNION
SELECT employee_id, job_id,0
FROM job_history;

…

Copyright © 2009, Oracle. All rights reserved.8 - 27

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson

• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

Copyright © 2009, Oracle. All rights reserved.8 - 28

Using the ORDER BY Clause in Set Operations

• The ORDER BY clause can appear only once at the end of

the compound query.

• Component queries cannot have individual ORDER BY

clauses.

• ORDER BY clause recognizes only the columns of the first
SELECT query.

• By default, the first column of the first SELECT query is

used to sort the output in an ascending order.

Copyright © 2009, Oracle. All rights reserved.8 - 29

Quiz

Identify the set operator guidelines.

1. The expressions in the SELECT lists must match in

number.

2. Parentheses may not be used to alter the sequence of
execution.

3. The data type of each column in the second query must
match the data type of its corresponding column in the first
query.

4. The ORDER BY clause can be used only once in a
compound query, unless a UNION ALL operator is used.

Copyright © 2009, Oracle. All rights reserved.8 - 30

Summary

In this lesson, you should have learned how to use:

• UNION to return all distinct rows

• UNION ALL to return all rows, including duplicates

• INTERSECT to return all rows that are shared by both

queries

• MINUS to return all distinct rows that are selected by the

first query, but not by the second

• ORDER BY only at the very end of the statement

Copyright © 2009, Oracle. All rights reserved.8 - 31

Practice 8: Overview

In this practice, you create reports by using:

• The UNION operator

• The INTERSECTION operator

• The MINUS operator

Copyright © 2009, Oracle. All rights reserved.

Manipulating Data

Copyright © 2009, Oracle. All rights reserved.9 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Describe each data manipulation language (DML)
statement

• Insert rows into a table

• Update rows in a table

• Delete rows from a table

• Control transactions

Copyright © 2009, Oracle. All rights reserved.9 - 3

Lesson Agenda

• Adding new rows in a table

– INSERT statement

• Changing data in a table

– UPDATE statement

• Removing rows from a table:

– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency

• FOR UPDATE clause in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.9 - 4

Data Manipulation Language

• A DML statement is executed when you:

– Add new rows to a table

– Modify existing rows in a table

– Remove existing rows from a table

• A transaction consists of a collection of DML statements
that form a logical unit of work.

Copyright © 2009, Oracle. All rights reserved.9 - 5

Adding a New Row to a Table

DEPARTMENTS
New
row

Insert new row
into the

DEPARTMENTS table.

Copyright © 2009, Oracle. All rights reserved.9 - 6

INSERT Statement Syntax

• Add new rows to a table by using the INSERT statement:

• With this syntax, only one row is inserted at a time.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

Copyright © 2009, Oracle. All rights reserved.9 - 7

Inserting New Rows

• Insert a new row containing values for each column.

• List values in the default order of the columns in the table.

• Optionally, list the columns in the INSERT clause.

• Enclose character and date values within single quotation
marks.

INSERT INTO departments(department_id,
department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

Copyright © 2009, Oracle. All rights reserved.9 - 8

• Implicit method: Omit the column from the
column list.

• Explicit method: Specify the NULL keyword in the VALUES

clause.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);

INSERT INTO departments (department_id,
department_name)

VALUES (30, 'Purchasing');

Inserting Rows with Null Values

Copyright © 2009, Oracle. All rights reserved.9 - 9

INSERT INTO employees (employee_id,
first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
'Louis', 'Popp',
'LPOPP', '515.124.4567',
SYSDATE, 'AC_ACCOUNT', 6900,
NULL, 205, 110);

Inserting Special Values

The SYSDATE function records the current date and time.

Copyright © 2009, Oracle. All rights reserved.9 - 10

Inserting Specific Date and Time Values

• Add a new employee.

• Verify your addition.

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),
'SA_REP', 11000, 0.2, 100, 60);

Copyright © 2009, Oracle. All rights reserved.9 - 11

INSERT INTO departments

(department_id, department_name, location_id)

VALUES (&department_id, '&department_name',&location);

Creating a Script

• Use & substitution in a SQL statement to prompt for

values.

• & is a placeholder for the variable value.

Copyright © 2009, Oracle. All rights reserved.9 - 12

Copying Rows
from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.

• Match the number of columns in the INSERT clause to

those in the subquery.

• Inserts all the rows returned by the subquery in the table,
sales_reps.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

Copyright © 2009, Oracle. All rights reserved.9 - 13

Lesson Agenda

• Adding new rows in a table

– INSERT statement

• Changing data in a table

– UPDATE statement

• Removing rows from a table:

– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency

• FOR UPDATE clause in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.9 - 14

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:

Copyright © 2009, Oracle. All rights reserved.9 - 15

UPDATE Statement Syntax

• Modify existing values in a table with the UPDATE

statement:

• Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

Copyright © 2009, Oracle. All rights reserved.9 - 16

Updating Rows in a Table

• Values for a specific row or rows are modified if you
specify the WHERE clause:

• Values for all the rows in the table are modified if you omit
the WHERE clause:

• Specify SET column_name= NULL to update a column
value to NULL.

UPDATE employees
SET department_id = 50
WHERE employee_id = 113;

UPDATE copy_emp
SET department_id = 110;

Copyright © 2009, Oracle. All rights reserved.9 - 17

UPDATE employees
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_id = 113;

Updating Two Columns with a Subquery

Update employee 113’s job and salary to match those of
employee 205.

Copyright © 2009, Oracle. All rights reserved.9 - 18

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

Updating Rows Based
on Another Table

Use the subqueries in the UPDATE statements to update row

values in a table based on values from another table:

Copyright © 2009, Oracle. All rights reserved.9 - 19

Lesson Agenda

• Adding new rows in a table

– INSERT statement

• Changing data in a table

– UPDATE statement

• Removing rows from a table:

– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency

• FOR UPDATE clause in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.9 - 20

Delete a row from the DEPARTMENTS table:

Removing a Row from a Table

DEPARTMENTS

Copyright © 2009, Oracle. All rights reserved.9 - 21

DELETE Statement

You can remove existing rows from a table by using the
DELETE statement:

DELETE [FROM] table
[WHERE condition];

Copyright © 2009, Oracle. All rights reserved.9 - 22

Deleting Rows from a Table

• Specific rows are deleted if you specify the WHERE clause:

• All rows in the table are deleted if you omit the WHERE

clause:

DELETE FROM departments
WHERE department_name = ‘Finance';

DELETE FROM copy_emp;

Copyright © 2009, Oracle. All rights reserved.9 - 23

Deleting Rows Based
on Another Table

Use the subqueries in the DELETE statements to remove rows

from a table based on values from another table:

DELETE FROM employees
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name

LIKE '%Public%');

Copyright © 2009, Oracle. All rights reserved.9 - 24

TRUNCATE Statement

• Removes all rows from a table, leaving the table empty
and the table structure intact

• Is a data definition language (DDL) statement rather than a
DML statement; cannot easily be undone

• Syntax:

• Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;

Copyright © 2009, Oracle. All rights reserved.9 - 25

Lesson Agenda

• Adding new rows in a table

– INSERT statement

• Changing data in a table

– UPDATE statement

• Removing rows from a table:

– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency

• FOR UPDATE clause in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.9 - 26

Database Transactions

A database transaction consists of one of the following:

• DML statements that constitute one consistent change to
the data

• One DDL statement

• One data control language (DCL) statement

Copyright © 2009, Oracle. All rights reserved.9 - 27

Database Transactions: Start and End

• Begin when the first DML SQL statement is executed.

• End with one of the following events:

– A COMMIT or ROLLBACK statement is issued.

– A DDL or DCL statement executes (automatic commit).

– The user exits SQL Developer or SQL*Plus.

– The system crashes.

Copyright © 2009, Oracle. All rights reserved.9 - 28

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

• Ensure data consistency

• Preview data changes before making changes permanent

• Group logically-related operations

Copyright © 2009, Oracle. All rights reserved.9 - 29

Explicit Transaction Control Statements

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK
to SAVEPOINT B

ROLLBACK
to SAVEPOINT A

ROLLBACK

Copyright © 2009, Oracle. All rights reserved.9 - 30

UPDATE...
SAVEPOINT update_done;

INSERT...
ROLLBACK TO update_done;

Rolling Back Changes to a Marker

• Create a marker in the current transaction by using the
SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK TO
SAVEPOINT statement.

Copyright © 2009, Oracle. All rights reserved.9 - 31

Implicit Transaction Processing

• An automatic commit occurs in the following
circumstances:

– A DDL statement is issued

– A DCL statement is issued

– Normal exit from SQL Developer or SQL*Plus, without
explicitly issuing COMMIT or ROLLBACK statements

• An automatic rollback occurs when there is an abnormal
termination of SQL Developer or SQL*Plus or a system
failure.

Copyright © 2009, Oracle. All rights reserved.9 - 33

State of the Data
Before COMMIT or ROLLBACK

• The previous state of the data can be recovered.

• The current user can review the results of the DML
operations by using the SELECT statement.

• Other users cannot view the results of the DML statements
issued by the current user.

• The affected rows are locked; other users cannot change
the data in the affected rows.

Copyright © 2009, Oracle. All rights reserved.9 - 34

State of the Data After COMMIT

• Data changes are saved in the database.

• The previous state of the data is overwritten.

• All users can view the results.

• Locks on the affected rows are released; those rows are
available for other users to manipulate.

• All savepoints are erased.

Copyright © 2009, Oracle. All rights reserved.9 - 35

COMMIT;

Committing Data

• Make the changes:

• Commit the changes:

DELETE FROM employees
WHERE employee_id = 99999;

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);

Copyright © 2009, Oracle. All rights reserved.9 - 36

DELETE FROM copy_emp;
ROLLBACK ;

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK

statement:

• Data changes are undone.

• Previous state of the data is restored.

• Locks on the affected rows are released.

Copyright © 2009, Oracle. All rights reserved.9 - 37

State of the Data After ROLLBACK: Example

DELETE FROM test;
25,000 rows deleted.

ROLLBACK;
Rollback complete.

DELETE FROM test WHERE id = 100;
1 row deleted.

SELECT * FROM test WHERE id = 100;
No rows selected.

COMMIT;
Commit complete.

Copyright © 2009, Oracle. All rights reserved.9 - 38

Statement-Level Rollback

• If a single DML statement fails during execution, only that
statement is rolled back.

• The Oracle server implements an implicit savepoint.

• All other changes are retained.

• The user should terminate transactions explicitly by
executing a COMMIT or ROLLBACK statement.

Copyright © 2009, Oracle. All rights reserved.9 - 39

Lesson Agenda

• Adding new rows in a table

– INSERT statement

• Changing data in a table

– UPDATE statement

• Removing rows from a table:

– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency

• FOR UPDATE clause in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.9 - 40

Read Consistency

• Read consistency guarantees a consistent view of the data
at all times.

• Changes made by one user do not conflict with the
changes made by another user.

• Read consistency ensures that, on the same data:

– Readers do not wait for writers

– Writers do not wait for readers

– Writers wait for writers

Copyright © 2009, Oracle. All rights reserved.9 - 41

Implementing Read Consistency

SELECT *
FROM userA.employees;

UPDATE employees
SET salary = 7000
WHERE last_name = 'Grant';

Data
blocks

Undo
segments

Changed
and
unchanged
data

Before
change
(“old” data)

User A

User B

Read-
consistent
image

Copyright © 2009, Oracle. All rights reserved.9 - 42

Lesson Agenda

• Adding new rows in a table

– INSERT statement

• Changing data in a table

– UPDATE statement

• Removing rows from a table:

– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency

• FOR UPDATE clause in a SELECT statement

Copyright © 2009, Oracle. All rights reserved.9 - 43

FOR UPDATE Clause in a SELECT Statement

• Locks the rows in the EMPLOYEES table where job_id is
SA_REP.

• Lock is released only when you issue a ROLLBACK or a
COMMIT.

• If the SELECT statement attempts to lock a row that is

locked by another user, then the database waits until the
row is available, and then returns the results of the
SELECT statement.

SELECT employee_id, salary, commission_pct, job_id
FROM employees
WHERE job_id = 'SA_REP'
FOR UPDATE
ORDER BY employee_id;

Copyright © 2009, Oracle. All rights reserved.9 - 44

FOR UPDATE Clause: Examples

• You can use the FOR UPDATE clause in a SELECT

statement against multiple tables.

• Rows from both the EMPLOYEES and DEPARTMENTS tables

are locked.

• Use FOR UPDATE OF column_name to qualify the column

you intend to change, then only the rows from that specific
table are locked.

SELECT e.employee_id, e.salary, e.commission_pct
FROM employees e JOIN departments d
USING (department_id)
WHERE job_id = 'ST_CLERK‘
AND location_id = 1500
FOR UPDATE
ORDER BY e.employee_id;

Copyright © 2009, Oracle. All rights reserved.9 - 46

Quiz

The following statements produce the same results:

1. True

2. False

DELETE FROM copy_emp;

TRUNCATE TABLE copy_emp;

Copyright © 2009, Oracle. All rights reserved.9 - 47

Summary

In this lesson, you should have learned how to use the
following statements:

Locks rows identified by the SELECT queryFOR UPDATE clause

in SELECT

Removes all rows from a tableTRUNCATE

Adds a new row to the tableINSERT

Modifies existing rows in the tableUPDATE

Removes existing rows from the tableDELETE

Makes all pending changes permanentCOMMIT

Discards all pending data changesROLLBACK

Is used to roll back to the savepoint markerSAVEPOINT

DescriptionFunction

Copyright © 2009, Oracle. All rights reserved.9 - 48

Practice 9: Overview

This practice covers the following topics:

• Inserting rows into the tables

• Updating and deleting rows in the table

• Controlling transactions

Copyright © 2009, Oracle. All rights reserved.

Using DDL Statements
to Create and Manage Tables

Copyright © 2009, Oracle. All rights reserved.10 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Explain how constraints are created at the time of table
creation

• Describe how schema objects work

Copyright © 2009, Oracle. All rights reserved.10 - 3

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 4

Database Objects

Logically represents subsets of data from one or
more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative name to an objectSynonym

Improves the performance of some queriesIndex

DescriptionObject

Copyright © 2009, Oracle. All rights reserved.10 - 5

Naming Rules

Table names and column names:

• Must begin with a letter

• Must be 1–30 characters long

• Must contain only A–Z, a–z, 0–9, _, $, and #

• Must not duplicate the name of another object owned by
the same user

• Must not be an Oracle server–reserved word

Copyright © 2009, Oracle. All rights reserved.10 - 6

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 7

CREATE TABLE Statement

• You must have:

– CREATE TABLE privilege

– A storage area

• You specify:

– Table name

– Column name, column data type, and column size

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

Copyright © 2009, Oracle. All rights reserved.10 - 8

Referencing Another User’s Tables

• Tables belonging to other users are not in the user’s
schema.

• You should use the owner’s name as a prefix to those
tables.

USERBUSERA

SELECT *
FROM userB.employees;

SELECT *
FROM userA.employees;

Copyright © 2009, Oracle. All rights reserved.10 - 9

DEFAULT Option

• Specify a default value for a column during an insert.

• Literal values, expressions, or SQL functions are legal
values.

• Another column’s name or a pseudocolumn are illegal
values.

• The default data type must match the column data type.

... hire_date DATE DEFAULT SYSDATE, ...

CREATE TABLE hire_dates
(id NUMBER(8),
hire_date DATE DEFAULT SYSDATE);

Copyright © 2009, Oracle. All rights reserved.10 - 10

Creating Tables

• Create the table:

• Confirm table creation:

DESCRIBE dept

CREATE TABLE dept
(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),
create_date DATE DEFAULT SYSDATE);

Copyright © 2009, Oracle. All rights reserved.10 - 11

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 12

Data Types

Raw binary dataRAW and LONG

RAW

Binary data (up to 4 GB)BLOB

Binary data stored in an external file (up to 4 GB)BFILE

Date and time valuesDATE

Variable-length character data (up to 2 GB)LONG

Character data (up to 4 GB)CLOB

A base-64 number system representing the unique
address of a row in its table

ROWID

Fixed-length character dataCHAR(size)

Variable-length numeric dataNUMBER(p,s)

Variable-length character dataVARCHAR2(size)

DescriptionData Type

Copyright © 2009, Oracle. All rights reserved.10 - 14

Datetime Data Types

You can use several datetime data types:

Stored as an interval of years
and months

INTERVAL YEAR TO
MONTH

Stored as an interval of days, hours, minutes,
and seconds

INTERVAL DAY TO
SECOND

Date with fractional secondsTIMESTAMP

DescriptionData Type

Copyright © 2009, Oracle. All rights reserved.10 - 15

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 16

Including Constraints

• Constraints enforce rules at the table level.

• Constraints prevent the deletion of a table if there
are dependencies.

• The following constraint types are valid:

– NOT NULL

– UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

Copyright © 2009, Oracle. All rights reserved.10 - 17

Constraint Guidelines

• You can name a constraint, or the Oracle server generates
a name by using the SYS_Cn format.

• Create a constraint at either of the following times:

– At the same time as the creation of the table

– After the creation of the table

• Define a constraint at the column or table level.

• View a constraint in the data dictionary.

Copyright © 2009, Oracle. All rights reserved.10 - 18

Defining Constraints

• Syntax:

• Column-level constraint syntax:

• Table-level constraint syntax:

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

column [CONSTRAINT constraint_name] constraint_type,

Copyright © 2009, Oracle. All rights reserved.10 - 19

Defining Constraints

• Example of a column-level constraint:

• Example of a table-level constraint:

CREATE TABLE employees(
employee_id NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY,

first_name VARCHAR2(20),
...);

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));

1

2

Copyright © 2009, Oracle. All rights reserved.10 - 20

NOT NULL Constraint

Ensures that null values are not permitted for the column:

NOT NULL constraint
(Primary Key enforces
NOT NULL constraint.)

Absence of NOT NULL
constraint (Any row can
contain a null value for
this column.)

NOT NULL
constraint

…

Copyright © 2009, Oracle. All rights reserved.10 - 21

UNIQUE Constraint

EMPLOYEES
UNIQUE constraint

INSERT INTO

Not allowed:
already exists

Allowed

…

Copyright © 2009, Oracle. All rights reserved.10 - 22

UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
CONSTRAINT emp_email_uk UNIQUE(email));

Copyright © 2009, Oracle. All rights reserved.10 - 23

PRIMARY KEY Constraint

DEPARTMENTS PRIMARY KEY

INSERT INTONot allowed
(null value)

Not allowed
(50 already exists)

Copyright © 2009, Oracle. All rights reserved.10 - 24

FOREIGN KEY Constraint

DEPARTMENTS

EMPLOYEES

FOREIGN
KEY

INSERT INTO Not allowed
(9 does not

exist)
Allowed

PRIMARY
KEY

…

…

Copyright © 2009, Oracle. All rights reserved.10 - 25

FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
department_id NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)

REFERENCES departments(department_id),
CONSTRAINT emp_email_uk UNIQUE(email));

Copyright © 2009, Oracle. All rights reserved.10 - 26

FOREIGN KEY Constraint:

Keywords

• FOREIGN KEY: Defines the column in the child table at the

table-constraint level

• REFERENCES: Identifies the table and column in the parent

table

• ON DELETE CASCADE: Deletes the dependent rows in the

child table when a row in the parent table is deleted

• ON DELETE SET NULL: Converts dependent foreign key

values to null

Copyright © 2009, Oracle. All rights reserved.10 - 27

CHECK Constraint

• Defines a condition that each row must satisfy

• The following expressions are not allowed:

– References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM

pseudocolumns

– Calls to SYSDATE, UID, USER, and USERENV functions

– Queries that refer to other values in other rows

..., salary NUMBER(2)
CONSTRAINT emp_salary_min

CHECK (salary > 0),...

Copyright © 2009, Oracle. All rights reserved.10 - 28

CREATE TABLE: Example

CREATE TABLE employees
(employee_id NUMBER(6)

CONSTRAINT emp_employee_id PRIMARY KEY
, first_name VARCHAR2(20)
, last_name VARCHAR2(25)

CONSTRAINT emp_last_name_nn NOT NULL
, email VARCHAR2(25)

CONSTRAINT emp_email_nn NOT NULL
CONSTRAINT emp_email_uk UNIQUE

, phone_number VARCHAR2(20)
, hire_date DATE

CONSTRAINT emp_hire_date_nn NOT NULL
, job_id VARCHAR2(10)

CONSTRAINT emp_job_nn NOT NULL
, salary NUMBER(8,2)

CONSTRAINT emp_salary_ck CHECK (salary>0)
, commission_pct NUMBER(2,2)
, manager_id NUMBER(6)

CONSTRAINT emp_manager_fk REFERENCES
employees (employee_id)

, department_id NUMBER(4)
CONSTRAINT emp_dept_fk REFERENCES

departments (department_id));

Copyright © 2009, Oracle. All rights reserved.10 - 29

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

Violating Constraints

Department 55 does not exist.

Copyright © 2009, Oracle. All rights reserved.10 - 30

Violating Constraints

You cannot delete a row that contains a primary key that is
used as a foreign key in another table.

DELETE FROM departments
WHERE department_id = 60;

Copyright © 2009, Oracle. All rights reserved.10 - 31

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 32

Creating a Table
Using a Subquery

• Create a table and insert rows by combining the CREATE
TABLE statement and the AS subquery option.

• Match the number of specified columns to the number of
subquery columns.

• Define columns with column names and default values.

CREATE TABLE table
[(column, column...)]

AS subquery;

Copyright © 2009, Oracle. All rights reserved.10 - 33

CREATE TABLE dept80
AS
SELECT employee_id, last_name,

salary*12 ANNSAL,
hire_date

FROM employees
WHERE department_id = 80;

Creating a Table
Using a Subquery

DESCRIBE dept80

Copyright © 2009, Oracle. All rights reserved.10 - 34

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 35

ALTER TABLE Statement

Use the ALTER TABLE statement to:

• Add a new column

• Modify an existing column definition

• Define a default value for the new column

• Drop a column

• Rename a column

• Change table to read-only status

Copyright © 2009, Oracle. All rights reserved.10 - 36

Read-Only Tables

You can use the ALTER TABLE syntax to:

• Put a table into read-only mode, which prevents DDL or
DML changes during table maintenance

• Put the table back into read/write mode

ALTER TABLE employees READ ONLY;

-- perform table maintenance and then
-- return table back to read/write mode

ALTER TABLE employees READ WRITE;

Copyright © 2009, Oracle. All rights reserved.10 - 37

Lesson Agenda

• Database objects

– Naming rules

• CREATE TABLE statement:

– Access another user’s tables

– DEFAULT option

• Data types

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery

• ALTER TABLE

– Read-only tables

• DROP TABLE statement

Copyright © 2009, Oracle. All rights reserved.10 - 38

Dropping a Table

• Moves a table to the recycle bin

• Removes the table and all its data entirely if the PURGE

clause is specified

• Invalidates dependent objects and removes object
privileges on the table

DROP TABLE dept80;

Copyright © 2009, Oracle. All rights reserved.10 - 39

Quiz

You can use constraints to do the following:

1. Enforce rules on the data in a table whenever a row is
inserted, updated, or deleted.

2. Prevent the deletion of a table.

3. Prevent the creation of a table.

4. Prevent the creation of data in a table.

Copyright © 2009, Oracle. All rights reserved.10 - 40

Summary

In this lesson, you should have learned how to use the CREATE
TABLE statement to create a table and include constraints:

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Explain how constraints are created at the time of table
creation

• Describe how schema objects work

Copyright © 2009, Oracle. All rights reserved.10 - 41

Practice 10: Overview

This practice covers the following topics:

• Creating new tables

• Creating a new table by using the CREATE TABLE AS

syntax

• Verifying that tables exist

• Setting a table to read-only status

• Dropping tables

Copyright © 2009, Oracle. All rights reserved.

Creating Other Schema Objects

Copyright © 2009, Oracle. All rights reserved.11 - 2

Objectives

After completing this lesson, you should be able to do the
following:

• Create simple and complex views

• Retrieve data from views

• Create, maintain, and use sequences

• Create and maintain indexes

• Create private and public synonyms

Copyright © 2009, Oracle. All rights reserved.11 - 3

Lesson Agenda

• Overview of views:

– Creating, modifying, and retrieving data from a view

– Data manipulation language (DML) operations on a view

– Dropping a view

• Overview of sequences:

– Creating, using, and modifying a sequence

– Cache sequence values

– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes

– Creating, dropping indexes

• Overview of synonyms

– Creating, dropping synonyms

Copyright © 2009, Oracle. All rights reserved.11 - 4

Database Objects

Logically represents subsets of data from one or
more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of data retrieval
queries

Index

DescriptionObject

Copyright © 2009, Oracle. All rights reserved.11 - 5

What Is a View?

EMPLOYEES table

Copyright © 2009, Oracle. All rights reserved.11 - 6

Advantages of Views

To restrict
data access

To make complex
queries easy

To provide
data

independence

To present
different views of

the same data

Copyright © 2009, Oracle. All rights reserved.11 - 7

Simple Views and Complex Views

Yes

No

No

One

Simple Views

YesContain functions

YesContain groups of data

One or moreNumber of tables

Not alwaysDML operations through a
view

Complex ViewsFeature

Copyright © 2009, Oracle. All rights reserved.11 - 8

Creating a View

• You embed a subquery in the CREATE VIEW statement:

• The subquery can contain complex SELECT syntax.

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

Copyright © 2009, Oracle. All rights reserved.11 - 9

Creating a View

• Create the EMPVU80 view, which contains details of the

employees in department 80:

• Describe the structure of the view by using the iSQL*Plus
DESCRIBE command:

DESCRIBE empvu80

CREATE VIEW empvu80
AS SELECT employee_id, last_name, salary

FROM employees
WHERE department_id = 80;

Copyright © 2009, Oracle. All rights reserved.11 - 10

Creating a View

• Create a view by using column aliases in the subquery:

• Select the columns from this view by the given alias
names.

CREATE VIEW salvu50
AS SELECT employee_id ID_NUMBER, last_name NAME,

salary*12 ANN_SALARY
FROM employees
WHERE department_id = 50;

Copyright © 2009, Oracle. All rights reserved.11 - 11

SELECT *
FROM salvu50;

Retrieving Data from a View

Copyright © 2009, Oracle. All rights reserved.11 - 12

Modifying a View

• Modify the EMPVU80 view by using a CREATE OR REPLACE
VIEW clause. Add an alias for each column name:

• Column aliases in the CREATE OR REPLACE VIEW clause

are listed in the same order as the columns in the
subquery.

CREATE OR REPLACE VIEW empvu80
(id_number, name, sal, department_id)

AS SELECT employee_id, first_name || ' '
|| last_name, salary, department_id

FROM employees
WHERE department_id = 80;

Copyright © 2009, Oracle. All rights reserved.11 - 13

Creating a Complex View

Create a complex view that contains group functions to display
values from two tables:

CREATE OR REPLACE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)

AS SELECT d.department_name, MIN(e.salary),
MAX(e.salary),AVG(e.salary)

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
GROUP BY d.department_name;

Copyright © 2009, Oracle. All rights reserved.11 - 14

Rules for Performing
DML Operations on a View

• You can usually perform DML operations on
simple views.

• You cannot remove a row if the view contains the
following:

– Group functions

– A GROUP BY clause

– The DISTINCT keyword

– The pseudocolumn ROWNUM keyword

Copyright © 2009, Oracle. All rights reserved.11 - 15

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:

• Group functions

• A GROUP BY clause

• The DISTINCT keyword

• The pseudocolumn ROWNUM keyword

• Columns defined by expressions

Copyright © 2009, Oracle. All rights reserved.11 - 16

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view includes:

• Group functions

• A GROUP BY clause

• The DISTINCT keyword

• The pseudocolumn ROWNUM keyword

• Columns defined by expressions

• NOT NULL columns in the base tables that are not selected

by the view

Copyright © 2009, Oracle. All rights reserved.11 - 17

Using the WITH CHECK OPTION Clause

• You can ensure that DML operations performed on the
view stay in the domain of the view by using the WITH
CHECK OPTION clause:

• Any attempt to INSERT a row with a department_id
other than 20, or to UPDATE the department number for
any row in the view fails because it violates the WITH
CHECK OPTION constraint.

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM employees
WHERE department_id = 20
WITH CHECK OPTION CONSTRAINT empvu20_ck ;

Copyright © 2009, Oracle. All rights reserved.11 - 18

Denying DML Operations

• You can ensure that no DML operations occur by adding
the WITH READ ONLY option to your view definition.

• Any attempt to perform a DML operation on any row in the
view results in an Oracle server error.

Copyright © 2009, Oracle. All rights reserved.11 - 19

CREATE OR REPLACE VIEW empvu10
(employee_number, employee_name, job_title)

AS SELECT employee_id, last_name, job_id
FROM employees
WHERE department_id = 10
WITH READ ONLY ;

Denying DML Operations

Copyright © 2009, Oracle. All rights reserved.11 - 20

Removing a View

You can remove a view without losing data because a view is
based on underlying tables in the database.

DROP VIEW view;

DROP VIEW empvu80;

Copyright © 2009, Oracle. All rights reserved.11 - 21

Practice 11: Overview of Part 1

This practice covers the following topics:

• Creating a simple view

• Creating a complex view

• Creating a view with a check constraint

• Attempting to modify data in the view

• Removing views

Copyright © 2009, Oracle. All rights reserved.11 - 22

Lesson Agenda

• Overview of views:

– Creating, modifying, and retrieving data from a view

– DML operations on a view

– Dropping a view

• Overview of sequences:

– Creating, using, and modifying a sequence

– Cache sequence values

– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes

– Creating, dropping indexes

• Overview of synonyms

– Creating, dropping synonyms

Copyright © 2009, Oracle. All rights reserved.11 - 23

Sequences

Logically represents subsets of data from one or
more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some queriesIndex

DescriptionObject

Copyright © 2009, Oracle. All rights reserved.11 - 24

Sequences

A sequence:

• Can automatically generate unique numbers

• Is a shareable object

• Can be used to create a primary key value

• Replaces application code

• Speeds up the efficiency of accessing sequence values
when cached in memory

2 4

3 5

6 8

7

10

91

Copyright © 2009, Oracle. All rights reserved.11 - 25

CREATE SEQUENCE Statement:

Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

Copyright © 2009, Oracle. All rights reserved.11 - 26

Creating a Sequence

• Create a sequence named DEPT_DEPTID_SEQ to be used
for the primary key of the DEPARTMENTS table.

• Do not use the CYCLE option.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

Copyright © 2009, Oracle. All rights reserved.11 - 27

NEXTVAL and CURRVAL Pseudocolumns

• NEXTVAL returns the next available sequence value. It

returns a unique value every time it is referenced, even for
different users.

• CURRVAL obtains the current sequence value.

• NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

Copyright © 2009, Oracle. All rights reserved.11 - 29

Using a Sequence

• Insert a new department named “Support” in location ID
2500:

• View the current value for the DEPT_DEPTID_SEQ

sequence:

INSERT INTO departments(department_id,
department_name, location_id)

VALUES (dept_deptid_seq.NEXTVAL,
'Support', 2500);

SELECT dept_deptid_seq.CURRVAL
FROM dual;

Copyright © 2009, Oracle. All rights reserved.11 - 30

Caching Sequence Values

• Caching sequence values in memory gives faster access
to those values.

• Gaps in sequence values can occur when:

– A rollback occurs

– The system crashes

– A sequence is used in another table

Copyright © 2009, Oracle. All rights reserved.11 - 31

Modifying a Sequence

Change the increment value, maximum value, minimum value,
cycle option, or cache option:

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

Copyright © 2009, Oracle. All rights reserved.11 - 32

Guidelines for Modifying
a Sequence

• You must be the owner or have the ALTER privilege for the

sequence.

• Only future sequence numbers are affected.

• The sequence must be dropped and re-created to restart
the sequence at a different number.

• Some validation is performed.

• To remove a sequence, use the DROP statement:

DROP SEQUENCE dept_deptid_seq;

Copyright © 2009, Oracle. All rights reserved.11 - 33

Lesson Agenda

• Overview of views:

– Creating, modifying, and retrieving data from a view

– DML operations on a view

– Dropping a view

• Overview of sequences:

– Creating, using, and modifying a sequence

– Cache sequence values

– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes

– Creating, dropping indexes

• Overview of synonyms

– Creating, dropping synonyms

Copyright © 2009, Oracle. All rights reserved.11 - 34

Indexes

Logically represents subsets of data from one or
more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some queriesIndex

DescriptionObject

Copyright © 2009, Oracle. All rights reserved.11 - 35

Indexes

An index:

• Is a schema object

• May be used by the Oracle server to speed up the retrieval
of rows by using a pointer

• Can reduce disk input/output (I/O) by using a rapid path
access method to locate data quickly

• Is independent of the table that it indexes

• Is used and maintained automatically by the Oracle server

Copyright © 2009, Oracle. All rights reserved.11 - 36

How Are Indexes Created?

• Automatically: A unique index is created automatically
when you define a PRIMARY KEY or UNIQUE constraint in

a table definition.

• Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

Copyright © 2009, Oracle. All rights reserved.11 - 37

Creating an Index

• Create an index on one or more columns:

• Improve the speed of query access to the LAST_NAME
column in the EMPLOYEES table:

CREATE INDEX emp_last_name_idx
ON employees(last_name);

CREATE [UNIQUE][BITMAP]INDEX index
ON table (column[, column]...);

Copyright © 2009, Oracle. All rights reserved.11 - 38

Index Creation Guidelines

Do not create an index when:

The columns are not often used as a condition in the query

The table is small or most queries are expected to retrieve more than 2%
to 4% of the rows in the table

The table is updated frequently

A column contains a large number of null values

One or more columns are frequently used together in a WHERE clause or

a join condition

A column contains a wide range of values

The indexed columns are referenced as part of an expression

The table is large and most queries are expected to retrieve less than 2%
to 4% of the rows in the table

Create an index when:

Copyright © 2009, Oracle. All rights reserved.11 - 39

Removing an Index

• Remove an index from the data dictionary by using the
DROP INDEX command:

• Remove the emp_last_name_idx index from the data

dictionary:

• To drop an index, you must be the owner of the index or
have the DROP ANY INDEX privilege.

DROP INDEX emp_last_name_idx;

DROP INDEX index;

Copyright © 2009, Oracle. All rights reserved.11 - 40

Lesson Agenda

• Overview of views:

– Creating, modifying, and retrieving data from a view

– DML operations on a view

– Dropping a view

• Overview of sequences:

– Creating, using, and modifying a sequence

– Cache sequence values

– NEXTVAL and CURRVAL pseudocolumns

• Overview of indexes

– Creating, dropping indexes

• Overview of synonyms

– Creating, dropping synonyms

Copyright © 2009, Oracle. All rights reserved.11 - 41

Synonyms

Logically represents subsets of data from one or
more tables

View

Generates numeric valuesSequence

Basic unit of storage; composed of rows Table

Gives alternative names to objectsSynonym

Improves the performance of some queriesIndex

DescriptionObject

Copyright © 2009, Oracle. All rights reserved.11 - 42

Creating a Synonym for an Object

Simplify access to objects by creating a synonym (another
name for an object). With synonyms, you can:

• Create an easier reference to a table that is owned by
another user

• Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;

Copyright © 2009, Oracle. All rights reserved.11 - 43

Creating and Removing Synonyms

• Create a shortened name for the DEPT_SUM_VU view:

• Drop a synonym:

CREATE SYNONYM d_sum
FOR dept_sum_vu;

DROP SYNONYM d_sum;

Copyright © 2009, Oracle. All rights reserved.11 - 44

Quiz

Indexes must be created manually and serve to speed up
access to rows in a table.

1. True

2. False

Copyright © 2009, Oracle. All rights reserved.11 - 45

Summary

In this lesson, you should have learned how to:

• Create, use, and remove views

• Automatically generate sequence numbers by using a
sequence generator

• Create indexes to improve speed of query retrieval

• Use synonyms to provide alternative names for objects

Copyright © 2009, Oracle. All rights reserved.11 - 46

Practice 11: Overview of Part 2

This practice covers the following topics:

• Creating sequences

• Using sequences

• Creating nonunique indexes

• Creating synonyms

Copyright © 2009, Oracle. All rights reserved.

Oracle Join Syntax

Copyright © 2009, Oracle. All rights reserved.C - 2

Objectives

After completing this appendix, you should be able to do the
following:

• Write SELECT statements to access data from more than

one table using equijoins and nonequijoins

• Join a table to itself by using a self-join

• View data that generally does not meet a join condition by
using outer joins

• Generate a Cartesian product of all rows from two or more
tables

Copyright © 2009, Oracle. All rights reserved.C - 3

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

…

…

Copyright © 2009, Oracle. All rights reserved.C - 4

Cartesian Products

• A Cartesian product is formed when:

– A join condition is omitted

– A join condition is invalid

– All rows in the first table are joined to all rows in the second
table

• To avoid a Cartesian product, always include a valid join
condition in a WHERE clause.

Copyright © 2009, Oracle. All rights reserved.C - 5

Generating a Cartesian Product

Cartesian product:

20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

Copyright © 2009, Oracle. All rights reserved.C - 6

Types of Oracle-Proprietary Joins

• Equijoin

• Nonequijoin

• Outer join

• Self-join

Copyright © 2009, Oracle. All rights reserved.C - 7

Joining Tables Using Oracle Syntax

Use a join to query data from more than one table:

• Write the join condition in the WHERE clause.

• Prefix the column name with the table name when the
same column name appears in more than one table.

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

Copyright © 2009, Oracle. All rights reserved.C - 8

Qualifying Ambiguous
Column Names

• Use table prefixes to qualify column names that are in
multiple tables.

• Use table prefixes to improve performance.

• Instead of full table name prefixes, use table aliases.

• Table aliases give a table a shorter name.

– Keeps SQL code smaller, uses less memory

• Use column aliases to distinguish columns that have
identical names, but reside in different tables.

Copyright © 2009, Oracle. All rights reserved.C - 9

Equijoins

EMPLOYEES DEPARTMENTS

Foreign key

Primary key

…

Copyright © 2009, Oracle. All rights reserved.C - 10

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e, departments d
WHERE e.department_id = d.department_id;

Retrieving Records with Equijoins

…

Copyright © 2009, Oracle. All rights reserved.C - 11

SELECT d.department_id, d.department_name,
d.location_id, l.city

FROM departments d, locations l
WHERE d.location_id = l.location_id;

Retrieving Records with Equijoins: Example

Copyright © 2009, Oracle. All rights reserved.C - 12

Additional Search Conditions
Using the AND Operator

SELECT d.department_id, d.department_name, l.city
FROM departments d, locations l
WHERE d.location_id = l.location_id
AND d.department_id IN (20, 50);

Copyright © 2009, Oracle. All rights reserved.C - 13

Joining More than Two Tables

To join n tables together, you need a minimum of n–1
join conditions. For example, to join three tables, a
minimum of two joins is required.

EMPLOYEES LOCATIONSDEPARTMENTS

…

Copyright © 2009, Oracle. All rights reserved.C - 14

Nonequijoins

EMPLOYEES JOB_GRADES

…
JOB_GRADES table defines LOWEST_SAL
and HIGHEST_SAL range of values for
each GRADE_LEVEL. Hence, the
GRADE_LEVEL column can be used to

assign grades to each employee.

Copyright © 2009, Oracle. All rights reserved.C - 15

SELECT e.last_name, e.salary, j.grade_level
FROM employees e, job_grades j
WHERE e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records
with Nonequijoins

…

Copyright © 2009, Oracle. All rights reserved.C - 16

Returning Records with No Direct Match
with Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees in
department 190.

…

Copyright © 2009, Oracle. All rights reserved.C - 17

Outer Joins: Syntax

• You use an outer join to see rows that do not meet the join
condition.

• The outer join operator is the plus sign (+).

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column(+) = table2.column;

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column = table2.column(+);

Copyright © 2009, Oracle. All rights reserved.C - 18

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id(+) = d.department_id ;

Using Outer Joins

…

Copyright © 2009, Oracle. All rights reserved.C - 19

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id(+) ;

Outer Join: Another Example

…

Copyright © 2009, Oracle. All rights reserved.C - 20

Joining a Table to Itself

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

EMPLOYEES(WORKER) EMPLOYEES(MANAGER)

… …

Copyright © 2009, Oracle. All rights reserved.C - 21

Self-Join: Example

SELECT worker.last_name || ' works for '

|| manager.last_name

FROM employees worker, employees manager

WHERE worker.manager_id = manager.employee_id ;

…

Copyright © 2009, Oracle. All rights reserved.C - 22

Summary

In this appendix, you should have learned how to use joins to
display data from multiple tables by using Oracle-proprietary
syntax.

Copyright © 2009, Oracle. All rights reserved.C - 23

Practice C: Overview

This practice covers the following topics:

• Joining tables by using an equijoin

• Performing outer and self-joins

• Adding conditions

Copyright © 2009, Oracle. All rights reserved.

Using SQL*Plus

Copyright © 2009, Oracle. All rights reserved.D - 2

Objectives

After completing this appendix, you should be able to do the
following:

• Log in to SQL*Plus

• Edit SQL commands

• Format output using SQL*Plus commands

• Interact with script files

Copyright © 2009, Oracle. All rights reserved.D - 3

SQL and SQL*Plus Interaction

Buffer

Server

SQL statements

Query results

SQL
scripts

SQL*Plus

Copyright © 2009, Oracle. All rights reserved.D - 4

SQL Statements Versus
SQL*Plus Commands

SQL

• A language

• ANSI-standard

• Keywords cannot be
abbreviated

• Statements manipulate
data
and table definitions in the
database

SQL
statements

SQL
buffer

SQL*Plus
commands

SQL*Plus
buffer

SQL*Plus

• An environment

• Oracle-proprietary

• Keywords can be
abbreviated

• Commands do not
allow manipulation of
values in the database

Copyright © 2009, Oracle. All rights reserved.D - 5

Overview of SQL*Plus

• Log in to SQL*Plus.

• Describe the table structure.

• Edit your SQL statement.

• Execute SQL from SQL*Plus.

• Save SQL statements to files and append SQL statements
to files.

• Execute saved files.

• Load commands from file to buffer to edit.

Copyright © 2009, Oracle. All rights reserved.D - 6

sqlplus [username[/password[@database]]]

Logging In to SQL*Plus

1

2

Copyright © 2009, Oracle. All rights reserved.D - 7

Changing the Settings of SQL*Plus Environment

Copyright © 2009, Oracle. All rights reserved.D - 8

Displaying Table Structure

Use the SQL*Plus DESCRIBE command to display the structure

of a table:

DESC[RIBE] tablename

Copyright © 2009, Oracle. All rights reserved.D - 9

Displaying Table Structure

Name Null? Type
----------------------- -------- ------------
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

DESCRIBE departments

Copyright © 2009, Oracle. All rights reserved.D - 10

SQL*Plus Editing Commands

• A[PPEND] text

• C[HANGE] / old / new

• C[HANGE] / text /

• CL[EAR] BUFF[ER]

• DEL

• DEL n

• DEL m n

Copyright © 2009, Oracle. All rights reserved.D - 11

SQL*Plus Editing Commands

• I[NPUT]

• I[NPUT] text

• L[IST]

• L[IST] n

• L[IST] m n

• R[UN]

• n

• n text

• 0 text

Copyright © 2009, Oracle. All rights reserved.D - 12

Using LIST, n, and APPEND

LIST
1 SELECT last_name
2* FROM employees

1
1* SELECT last_name

A , job_id
1* SELECT last_name, job_id

LIST
1 SELECT last_name, job_id
2* FROM employees

Copyright © 2009, Oracle. All rights reserved.D - 13

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST

1* SELECT * from departments

Copyright © 2009, Oracle. All rights reserved.D - 14

SQL*Plus File Commands

• SAVE filename

• GET filename

• START filename

• @ filename

• EDIT filename

• SPOOL filename

• EXIT

Copyright © 2009, Oracle. All rights reserved.D - 15

Using the SAVE, START, and EDIT Commands

LIST
1 SELECT last_name, manager_id, department_id
2* FROM employees

SAVE my_query
Created file my_query

START my_query

LAST_NAME MANAGER_ID DEPARTMENT_ID
------------------------- ---------- -------------
King 90
Kochhar 100 90
...
107 rows selected.

Copyright © 2009, Oracle. All rights reserved.D - 16

Using the SAVE, START, and EDIT Commands

EDIT my_query

Copyright © 2009, Oracle. All rights reserved.D - 17

SERVEROUTPUT Command

• Use the SET SERVEROUT[PUT] command to control

whether to display the output of stored procedures or
PL/SQL blocks in SQL*Plus.

• The DBMS_OUTPUT line length limit is increased from 255

bytes to 32767 bytes.

• The default size is now unlimited.

• Resources are not preallocated when SERVEROUTPUT is

set.

• Because there is no performance penalty, use UNLIMITED

unless you want to conserve physical memory.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}]
[FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

Copyright © 2009, Oracle. All rights reserved.D - 18

Using the SQL*Plus SPOOL Command

SPO[OL] [file_name[.ext] [CRE[ATE] | REP[LACE] |
APP[END]] | OFF | OUT]

Stops spooling and sends the file to your computer's
standard (default) printer

OUT

Stops spoolingOFF

Spools output to the specified file namefile_name[.ext]

APP[END]

REP[LACE]

CRE[ATE]

Option

Creates a new file with the name specified

Adds the contents of the buffer to the end of the file
you specify

Replaces the contents of an existing file. If the file
does not exist, REPLACE creates the file.

Description

Copyright © 2009, Oracle. All rights reserved.D - 19

Using the AUTOTRACE Command

• Displays a report after the successful execution of SQL
DML statements such as SELECT, INSERT, UPDATE, or
DELETE

• May optionally include the query execution path and
execution statistics

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]]
[STAT[ISTICS]]

SET AUTOTRACE ON
-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution
-- statistics

Copyright © 2009, Oracle. All rights reserved.D - 20

Summary

In this appendix, you should have learned how to use SQL*Plus
as an environment to do the following:

• Execute SQL statements

• Edit SQL statements

• Format output

• Interact with script files

Copyright © 2009, Oracle. All rights reserved.

Using SQL Developer

Copyright © 2009, Oracle. All rights reserved.E - 2

Objectives

After completing this appendix, you should be able to do the
following:

• List the key features of Oracle SQL Developer

• Install Oracle SQL Developer 1.2.1

• Identify menu items of Oracle SQL Developer

• Create a database connection

• Manage database objects

• Use SQL Worksheet

• Save and Run SQL scripts

• Create and save reports

• Install and use Oracle SQL Developer 1.5.3

Copyright © 2009, Oracle. All rights reserved.E - 3

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development tasks.

• You can connect to any target Oracle database schema by
using standard Oracle database authentication.

SQL Developer

Copyright © 2009, Oracle. All rights reserved.E - 4

Specifications of SQL Developer

• Developed in Java

• Supports Windows, Linux, and Mac OS X platforms

• Default connectivity by using the JDBC Thin driver

• Does not require an installer

– Unzip the downloaded SQL Developer kit and double-click
sqldeveloper.exe to start SQL Developer.

• Connects to Oracle Database version 9.2.0.1 and later

• Freely downloadable from the following link:

– http://www.oracle.com/technology/products/database/sql_de
veloper/index.html

• Needs JDK 1.5 installed on your system that can be
downloaded from the following link:

– http://java.sun.com/javase/downloads/index_jdk5.jsp

Copyright © 2009, Oracle. All rights reserved.E - 5

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

Copyright © 2009, Oracle. All rights reserved.E - 6

SQL Developer 1.2 Interface

You must define a
connection to start

using SQL Developer
for running SQL queries
on a database schema.

Copyright © 2009, Oracle. All rights reserved.E - 7

Creating a Database Connection

• You must have at least one database connection to use
SQL Developer.

• You can create and test connections for:

– Multiple databases

– Multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an Extensible Markup
Language (XML) file.

• Each additional database connection created is listed in
the Connections Navigator hierarchy.

Copyright © 2009, Oracle. All rights reserved.E - 8

Creating a Database Connection

1

2

3

Copyright © 2009, Oracle. All rights reserved.E - 10

Browsing Database Objects

Use the Connections Navigator to:

• Browse through many objects in a database schema

• Review the definitions of objects at a glance

Copyright © 2009, Oracle. All rights reserved.E - 11

Creating a Schema Object

• SQL Developer supports the creation of any schema
object by:

– Executing a SQL statement in SQL Worksheet

– Using the context menu

• Edit the objects by using an edit dialog or one of the many
context-sensitive menus.

• View the data definition language (DDL) for adjustments
such as creating a new object or editing an existing
schema object.

Copyright © 2009, Oracle. All rights reserved.E - 12

Creating a New Table: Example

Copyright © 2009, Oracle. All rights reserved.E - 13

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Click the Open SQL
Worksheet icon.

Select SQL
Worksheet from the
Tools menu, or

Copyright © 2009, Oracle. All rights reserved.E - 14

Using the SQL Worksheet

1

2

3

4

5

6

7

8

9

Copyright © 2009, Oracle. All rights reserved.E - 15

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL*Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Enter SQL
statements.

Results are
shown here.

Copyright © 2009, Oracle. All rights reserved.E - 16

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

Use the Enter SQL
Statement box to
enter single or
multiple SQL
statements.

View the results on
the Script Output
tabbed page.

Copyright © 2009, Oracle. All rights reserved.E - 17

Saving SQL Scripts

Click the Save icon to
save your SQL
statement to a file.

The contents of the
saved file are visible
and editable in your
SQL Worksheet
window.

Enter a file name and
identify a location to
save the file, and
click Save.

Copyright © 2009, Oracle. All rights reserved.E - 18

Executing Saved Script Files: Method 1

Right-click in the SQL
Worksheet area, and select
Open File from the shortcut
menu.

Select (or navigate
to) the script file that
you want to open.

Click Open.

To run the code, click
the Run Script (F5) icon.

Copyright © 2009, Oracle. All rights reserved.E - 19

Executing Saved Script Files: Method 2

Use the @ command

followed by the location and
name of the file you want to
execute, and click the Run
Script icon.

The output from the
script is displayed on
the Script Output
tabbed page.

Copyright © 2009, Oracle. All rights reserved.E - 20

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

F9 F5

F9

F5

Copyright © 2009, Oracle. All rights reserved.E - 21

Formatting the SQL Code

Before
formatting

After
formatting

Copyright © 2009, Oracle. All rights reserved.E - 22

Using Snippets

Snippets are code fragments that may be just syntax or
examples.

When you place your cursor here,
it shows the Snippets window.

From the drop-down list, you can
select the functions category you

want.

Copyright © 2009, Oracle. All rights reserved.E - 23

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

Copyright © 2009, Oracle. All rights reserved.E - 24

Using SQL*Plus

• You can invoke the SQL*Plus command-line interface from
SQL Developer.

• Close all the SQL Worksheets to enable the SQL*Plus
menu option.

Provide the
location of the
sqlplus.exe

file only the
first time you

invoke
SQL*Plus.

Copyright © 2009, Oracle. All rights reserved.E - 25

Debugging Procedures and Functions

• Use SQL Developer to debug
PL/SQL functions and
procedures.

• Use the Compile for Debug
option to perform a PL/SQL
compilation so that the
procedure can be debugged.

• Use Debug menu options to set
breakpoints, and to perform step
into, step over tasks.

Copyright © 2009, Oracle. All rights reserved.E - 26

Database Reporting

SQL Developer provides a number of predefined reports about
the database and its objects.

Copyright © 2009, Oracle. All rights reserved.E - 27

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Organize reports in folders.

Copyright © 2009, Oracle. All rights reserved.E - 28

Search Engines and External Tools

Links to popular
search engines and
discussion forums

Shortcuts to
frequently used tools

1

2

Copyright © 2009, Oracle. All rights reserved.E - 29

Setting Preferences

• Customize the SQL Developer interface and environment.

• In the Tools menu, select Preferences.

Copyright © 2009, Oracle. All rights reserved.E - 30

Specifications of SQL Developer 1.5.3

• SQL Developer 1.5.3 is the first translation release, and is
a patch to Oracle SQL Developer 1.5.

• New feature list is available at:

– http://www.oracle.com/technology/products/database/sql_de
veloper/files/newFeatures_v15.html

• Supports Windows, Linux, and Mac OS X platforms

• To install, unzip the downloaded SQL Developer kit, which
includes the required minimum JDK (JDK1.5.0_06).

• To start, double-click sqldeveloper.exe

• Connects to Oracle Database version 9.2.0.1 and later

• Freely downloadable from the following link:

– http://www.oracle.com/technology/products/database/sql_de
veloper/index.html

Copyright © 2009, Oracle. All rights reserved.E - 31

Installing SQL Developer 1.5.3

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

Copyright © 2009, Oracle. All rights reserved.E - 32

SQL Developer 1.5.3 Interface

You must define a
connection to start

using SQL Developer
for running SQL queries
on a database schema.

Copyright © 2009, Oracle. All rights reserved.E - 34

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

• Browse, create, and edit database objects

• Execute SQL statements and scripts in SQL Worksheet

• Create and save custom reports

	Cover Page
	Introduction
	Lesson 1: Retrieving Data Using the SQL SELECT Statement
	Lesson 2: Restricting and Sorting Data
	Lesson 3: Using Single-Row Functions to Customize Output
	Lesson 4: Using Conversion Functions andConditional Expressions
	Lesson 5: Reporting Aggregated DataUsing the Group Functions
	Lesson 6: Displaying Datafrom Multiple Tables
	Lesson 7: Using Subqueries to Solve Queries
	Lesson 8: Using the Set Operators
	Lesson 9: Manipulating Data
	Lesson 10: Using DDL Statements to Create and Manage Tables
	Lesson 11: Creating Other Schema Objects
	Appendix C: Oracle Join Syntax
	Appendix D: Using SQL*Plus
	Appendix E: Using SQL Developer

